
Design Patterns for Object-Oriented Software
Development

Wolfgang Pree
Johannes Kepler University Linz

Akenbergerstr. 69
A-4040 LINZ, Austria

t437024689432
pree@swe.uni-linz.ac.at

ABSTRACT
The tutorial gives an overview of state-of-the-art
design patterns approaches, including pattern catalogs
and framework patterns. A selection of useful patterns
is discussed in detail. The tutorial also introduces
socalled hot spot cards, which have proved to be a
useful communications vehicle between domain
experts and software engineers in order to exploit the
potential of design patterns. In the early development
phases hot spot cards help to capture those system
aspects that have to be kept flexible. Case studies
based on Java illustrate how to apply design patterns.

Keywords
Design patterns, software architecture, frameworks,
object-oriented design

INTRODUCTION
The terms object-orientation and component
rechnology have become buzzwords associated with
the solution of many problems in the realm of
software engineering. Above all, software components
are supposed to be better reusable and more flexible
compared to conventionally developed software.
Unfortunately, the benefits associated with object
technology have their price.

Only frameworks, that is, semifinished software
architectures, enable the exploitation of the full
potential of object-oriented software construction.
Frameworks represent the highest level of reusability
known today: not only source code and single
components, but also architectural design-which we
consider the most important characteristic of frame-
works-is reused in applications built on top of a

Permission to make digital/hard copies ofall or part ofthis material for
personal or classroom use is grated without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title ofthe publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to reoublish. to oost on servers or to redistribute to lists. requires specific
pen&ion &d;or fee
ICSE 97 Boston MA USA
Copyright 1997 ACM O-89791-914-9/97/05 S3.50

Hermann Sikora
RACON Software, Inc.

Goethe&. 80
A-4020 LINZ, Austria

+I3706929213
lrzgsik@grz-linz.raiffeisen.at

framework. Overall, well-designed and thoroughly
implemented frameworks enable a degree of software
reusability that can significantly improve software
quality.

The tutorial first focuses on the concepts underlying
frameworks, and goes on to present advanced design
heuristics for developing such artefacts: though design
patterns are currently heralded as a means to support
framework development, we still lack a link between
design patterns that capture and communicate proven
object-oriented design and the framework development
process. As a pragmatic solution to this problem, we
introduce a hor-spot-driven design approach using hot
spot cards to bridge this gap. These cards proved to be
a valuable communication vehicle between domain
experts, whose knowledge is a critical success factor
for framework design, and software engineers. They
help to reduce the number of framework design
iterations. In other words, hot spot cards fill the gap
between the early activities in the development
process and the design/implementation activities.
They let you get the most out of patterns.

Case studies and examples illustrate framework
technology and hot-spot-driven design. We use the
Unified Booth & Rumbaugh Notation and the Java
programming language to present the examples.

FRAMEWORKS & PATTERNS
How can we teach framework development? Usually it
is recommended that programmers who want to learn
about framework construction should take a close
look at various existing frameworks. Unfortunately,
only very few tiameworks with an excellent design are
accessible. Furthermore, exploring a framework is a
tedious task. Poor documentation of frameworks
makes studying design and implementation details
painful and time consuming. Abstracting design
patterns which have been obscured by many
implementation details requires an in-depth look at a
framework. Sometimes it becomes eve2 impossible

663

to understand particular design decisions without any
hints.

This is why the roots of the design pattern movement
go back to people who tried to describe framework
construction on a level higher than the underlying
programming language. Erich Gamma pioneered a
catalog-like presentation of design patterns in his
Ph.D. thesis [3]. There he describes core design
aspects of the GUI framework ET++ [6] in an
informal way, combining informal text with class and
object diagrams. His thesis formed the basis of an
enhanced catalog-like presentation of more than 20
design patterns published in the Gang-of-Four (GoF)
book [S].

Gamma et al. state the difference between frameworks
and catalog patterns: “.... frameworks are implemented
in a programming language. In this sense
frameworks are more concrete than design patterns.
. . . . Mature frameworks usually reuse several design
patterns.” [4]

Meanwhile other authors published patterns in a
catalog style, for example, in the realm of the PLOP
(Pattern Languages of Programming) conference
proceedings [2] or as separate book [l].

These pattern catalogs contain numerous similar
entries. They mainly differ in the semantics
(method/class names) of the aspects that are kept
flexible. Pree [7] coins the term metapattem and
discusses the commonalities between catalog entries.
The tutorial presents the essential framework
construction principles by means of a case study and
relates them to catalog entries in the GoF book.

Finally, are patterns just a hype or not? Lewis et al.
[6] view the pattern movement from the perspective
of frameworks as part of the evolution of this
technology: ‘Patterns . . . is one of the most recent
fads to hit the framework camp. . . . Expect more
buzzwords to appear on the horizon.” Because patterns
have become the vogue in the software engineering
community, the term now is used wherever possible,
adorning even project management or organizational
work. So the genericity of the term pattern might be
the reason that patterns are found everywhere, a fact
which is regarded as a clear indication of a hype.

HOT SPOT CARDS
How can one assess the quality of a framework?
Besides the usual software quality attributes such as
correctness, ease of use, efftciency, and portability,
frameworks have to offer more. Though this quality
attribute is related to flexibility, it does not mean that
frameworks are better if mere flexibility is
maximized. So striving for flexibility for the
flexibility’s sake, achieved by incorporating as many
design patterns as possible, does not result in a good

framework. On the contrary, unnecessary flexibility
leads to significantly more complexity. Frameworks
must be adaptable in an adequate way depending on
domain-specific requirements.

Overall, flexibility has to be given into a framework
with the right doses. As the quality of a framework
depends directly on the appropriateness of hot spots,
hot spot identification has to become an explicit
activity in the framework development process.
Means for documenting and communicating hot spots
between domain experts and software engineers
become crucial.

The tutorial illustrates how hot spot identification can
be communicated by what we call hot spot cards. Hot
spot cards form the basis for transforming an object
model into a domain-specific framework.

Based on flexibility requirements specified as a stack
of hot spot cards, software engineers have to
transform the object model. In this step the essential
framework-centered construction patterns assist the
software engineer. The tutorial discusses the
relationship between the information captured on hot
spot cards and framework construction patterns. Prec
[g] describes in detail how to accomplish the
transformation.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

664

Buschmann F., Meunier R., Rohnert H.,
Sommerlad P. and Stal M. (1996) Pattern-Oriented
Software Architecture-A System of Patterns.
Wiley and Sons
Coplien J. and Schmidt D. (eds.) (1995). Pattern
Languages of Program Design. Conference
Proceedings. Reading, Massachusetts: Addison-
Wesley
Gamma E. (1992). Objektorientierte Softwarc-
Entwicklung am Beispiel von ET++: Dcsign-
Muster, Klassenbibliothek, Werkzeuge. Doctoral
Thesis, University of Zurich, 1991; published by
Springer Verlag, 1992
Gamma E., Helm R., Johnson R. and Vlissides J.
(1993). Design patterns: abstraction and reuse of
object-oriented design. In Proceedings of the
ECOOP’93 Conference, Kaiserslautem, Germany;
published by Springer Verlag
Gamma E., Helm R., Johnson R. and Vlissides J,
(1995). Design Patterns-Elements of Reusable
Object-Oriented SojIware. Reading, Massachusetts:
Addison-Wesley
Lewis T., Rosenstein L., Pree W., Weinand A,,
Gamma E., Calder P., Andert G., Vlissides J.,
Schmucker K. (1996) Object-Oriented Application
Frameworks. Manning Publications/Prentice Hall
Pree W. (1995). Design Patterns for Object-
Oriented Sofmare Development. Wokingham:
Addison-Wesley/ACM Press
Pree W. (1996). Framework Patterns. New York
City: SIGS Books

