Genie logiciel pour la conception d'un Systeme
d'Information

CSC4521

Voie d'Approfondissement
Intégration et Déploiement de Systemes d’Information
(VAP DSI)

Architecture Analysis

paul.gibson@telecom-sudparis.eu

http://jpaulgibson.synology.me/~jpaulgibson/TSP/Teaching/CSC4521/

.../CSC4521/CSC4521-Architecture
Analysis.pdf

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025

mailto:paul.gibson@telecom-sudparis.eu

Software architecture review: The state of practice

Table 1. Perceived benefits of architecture review.

Benefits/goals of conducting architecture review Responses

a. Identifying potential risks in the proposed architecture 76 (88%)
b. Assessing quality attributes (for example, scalability, performance) 66 (77%)
c. ldentifying opportunities for reuse of architectural artifacts and 62 (72%)
components

d. Promoting good architecture design and evaluation practices 55 (64%)
e. Reducing project cost caused by undetected design problems 54 (63%)
f. Capturing the rationale for important design decisions 51 (59%)
g. Uncovering problems and conflicts in requirements 51 (59%)
h. Conforming to organization’s quality assurance process 47 (55%)
i. Assisting stakeholders in negotiating conflicting requirements 37 (43%)
j. Partitioning architectural design responsibilities 34 (40%)
k. Identifying skills required to implement the proposed architecture 34 (40%)
l. Improving architecture documentation quality 34 (40%)
m. Facilitating clear articulation of nonfunctional requirements 27 (31%)
n. Opening new communication channels among stakeholders 27 (31%)

Babar, Muhammad Ali, and lan Gorton. "Software architecture review: The state of practice." Computer 42.7 (2009): 26-32.

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 2

Availability

Scalability

Performance

Fault
Tolerance

Reliability

Security

Elasticity

Deployability

Testability

Agility

Recoverability

Learnability

https://itechnolabs.ca/software-architecture-5-principles-you-should-know/

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis

J Paul Gibson, TSP, 2025

Single Responsibility Principle

Open-Closed Principle

SOLID
Principles ¢

Liskov Substitution Principle
Interface Segregation Principle

Dependency Inversion Principle

https://itechnolabs.ca/software-architecture-5-principles-you-should-know/

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025

These are the underlying principles of SOLID:

eS- Single Responsibility Principle: Every
module or class should only have responsibility
for a single functionality. As outlined in the original
principle, responsibility is a “reason to change,”
and each class should have only one such
reason.

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 5

These are the underlying principles of SOLID:

e O- Open-Closed Principle: Basically, the open-clo
principle states that all software entities should be ©
to enhancements and extensions without having tc
modified or altered. The concept of polymorphisn
OOPS is similar to this.

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 6

These are the underlying principles of SOLID:

e L- Liskov Substitution Principle: Defining each
derived class as a replacement for its base class
IS stated in this principle. The following example is
given to make this concept understandable. An
object of type A may be substituted for an object of
type B if A is a subclass of B. In other words, it
means that the software program’s objects can be

replaced with examples of subtypes without
interfering with the code.

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 7

These are the underlying principles of SOLID:

|- Interface Segregation Principle: Keeping this
principle in mind is one of the most important things
you can do to increase efficiency. According to It,
existing interfaces should not be augmented by the
addition of new methods. Each interface should
cater to a particular client, and each class must
implement several interfaces.

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 8

These are the underlying principles of SOLID:

 D- Dependency Inversion Principle: According
to this principle, high-level modules should never
rely on low-level modules. Each module should be
independent of the other. Also, abstractions should
not rely on detalls, but details should be based on
abstractions. Following this principle, one can
introduce an interface abstraction to avoid
dependencies between high-level and low-level
modules.

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 9

TO DO - Evaluate your Wavestone Designs/
Architecture against the SOLID principles (where
appropriate)

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 10

m h STEP 02

Th e . I.ea St ' The Principle

of Least The Principle

P rincl p I es Astonishment of Least Effort

A

https://itechnolabs.ca/software-architecture-5-principles-you-should-know/

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 11

Instrumentation and Lo¢

Authentication

c Yos SCUttin g Authorization
Cconcerns

Exception management

Communication

https://itechnolabs.ca/software-architecture-5-principles-you-should-know/

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 12

)

‘ (¢ 7

'“4> Software Architecture Metrics

o
- S
Propagation Cost ¥ W .
, \‘\vf/ Counts linearly
Measures component B\ / independent
interdependencies. , paths through
Assesses impact of code.

changes across
components

: Depth of
v Inheritance N

/

{

¢ vral Debt Measures
Index inheritance levels in
object-oriented
Indicates overall designs.
architectural

debt. Combines metrics " e

like cyclomatic
complexity and code
size.

P Nesting Depth @

Deepest levels of
nested Structures

Relative Cyclicity

Qualifies Degree

of Cyclic
Dependency Measures ’
Lndependence K
Large Group of etween
. Independent components S
{5 ¢ 2. & ~ Components Ny
- .'. g J/"\ =
o\, ‘If. e o\
' \t._d""

https://medium.com/oolooroo/metrics-for-software-architects-and-
designers-25b736a17a99

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 13

Software metrics warn us of lurking architectural and
technical debt.

e Average Component Dependency (ACD):
Measures how many other components a given
component depends on. Lower values are preferred
as they suggest a more modular architecture.

* Propagation Cost (PC): Quantifies how a change in
one component might propagate to other components.
|deally, this should be minimized to ensure localized
changes.

e Structural Debt Index (SDI): A composite metric that
captures the overall architectural debt. Higher SDI
values can hint at increased maintenance costs in the
future.

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 14

Software metrics warn us of lurking architectural and
technical debt.

 Cyclomatic Complexity: Measures the number of linearly
independent paths through a program’s source code, providil
insight into the code’s testability and maintainability.

* Depth of Inheritance: Reflects the inheritance levels in obje
oriented programs. A deeper inheritance tree might lead to
more complexity and reduced modularity.

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 15

TO DO - Estimate/Calculate the ACD and/or PC of your
architecture

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 16

Software Architecture and Design Metrics - Comparison Matrix

Average
Measures average number of To reduce coupling and Maintainability, Reduce dependencies where |
Component Lower is typically better. Static analysis tools
Dependency dependencies per component. improve modularity. v Modularity possible. ‘
. Indicates the impact of changes in To assess the impact of L P
Propagation - ’ - " Maintainability, Minimize component
Cost one component on others. ::;\:esm :nd improve system Lower is typically better. Impact analysis tools Testability interd Soncies
Assesses the cost to fix design Encourage sound design |
Structural Debt gy vcts. decisions and reduce Lower is typically better. Code quality tools Maintainability Prioritiae refactoring where index
Index is high.
technical debt.
Maintainability Predicts the maintainability of the To assess and improve code .. v X . o4 Improve code readability and
Index code. maintainabiity over time, | 'SP & better (ommx). (Code analysis tooks Malntainabiiey reduce complexity.
Minimize complexity for |
Cyclomatic Counts the linearly independent easior nad Varies by component size;
ntenance and Static analysis tools Testability, Reliability Simplify complex code.
Complexity paths through a program. testing. generally, lower is better. p—
Depth of Measures "depth’ of inheritance Prevent overly complex ; . UML tools, Code Reusability, Flatten deep inheritance trees
Inheritance _tree in OOP. inheritance hierarchies, o e s tUPically Better. o lusis tools Maintainability where possible. |
]) : Identify areas where design - : |
S— Quantities degree of cyclic can be improved to reduce Zero cycles is ideal. Architecture analysis \\ ineainability Eliminate cyclic dependencies.
Cyclicity dependencies. tools
complexity.
Size of Biggest Identifies largest group of To highlight and address Architecture analysis "
Cycle Group e ane Saane complex interd T Smaller groups are preferred. Maintainability Break down large cycle groups.
|
Maintainability Qualitative measure of ease of To guide improvements in - \. Cod - Maintainabil Implement code quality
Level maintaining software. software maintainability. Fghe il o : quality "y improvements. ‘
Max Nesting Indicates deepest level of nested To maintain code readability ; Maintainability, :
ot ol - % wwny Shallower is better. Code review tools Readability Refactor to reduce nesting. |
|
Component Measures interdependence Mn“ mwmm Lower indicates better Static analusis tool Modularity, Decouple components where *
Coupling between components. independence. modularity. Maintainability feasible. ‘
c ¢ Assesses how related the Improve the single- Modularity
Co'w‘.;:" functionalities of a component responsibility principle Higher cohesion is desired. Static analysis tools Mai ntaimb;lit Increase cohesion by refactoring.
are. within components. v
. lsngMmedlnlnesofcodexmw ble and Smaller, well-defined Cod usis took Maintainability, Keep components small and ‘
or function points. understandsbls. components are better. Testability focused. ‘
To signal when a component ;
Component Often measured by cyclomatic : - Maintainability, _—
Complexity complexity or similar metrics. may be too complex to Lower complexity is better. Static analysis tools Testability Simplify complex components.

maintain or test effectively.

https://medium.com/oolooroo/metrics-for-software-architects-and-
designers-25b736a17a99

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis J Paul Gibson, TSP, 2025 17

Technical Debt

Choosing a A known cost
Deliberate shiny new for a
technology known benefit
Hacky
unplanned
Inadvertent Garbage code RUgTIX
(strategic short
term fix)
Reckless Prudent

https://akfpartners.com/growth-blog/what-is-tech-debt

CSC4521 - Génie logiciel pour la conception d'un Systeme d’Information - Architecture Analysis

J Paul Gibson, TSP, 2025

18

