
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

An Event-B Capability-Centric Model for
Cloud Service Discovery

Aicha Sid’Elmostaphe
Telecom SudParis, SAMOVAR
Institut Polytechnique de Paris

Paris, France
Faculty of Science and Technology, CSIDS

University of Nouakchott
Nouakchott, Mauritania

aicha.sid elmoustaphe@telecom-sudparis.eu

J Paul Gibson
Telecom SudParis, SAMOVAR
Institut Polytechnique de Paris

Paris, France
paul.gibson@telecom-sudparis.eu

Imen Jerbi
BYO Networks

Paris, France
imen.jerbi@byo-networks.com

Walid Gaaloul
Telecom SudParis, SAMOVAR
Institut Polytechnique de Paris

Paris, France
walid.gaaloul@telecom-sudparis.eu

Mohamedade Farouk Nanne
Faculty of Science and Technology, CSIDS

University of Nouakchott
Nouakchott, Mauritania

mohamedade@gmail.com

Abstract—Cloud computing has become increasingly
adopted due to its ability to provide on-demand access to
computing resources. However, the proliferation of cloud
service offerings has introduced significant challenges in
service discovery. Existing cloud service discovery ap-
proaches are often evaluated solely through simulation
or experimentation and typically rely on unstructured
service descriptions, which limits their precision and scal-
ability. In this work, we address these limitations by
proposing a formally verified architecture for capability-
centric cloud service discovery, grounded in the Event-
B method. The architecture is built upon a capability-
centric service description model that captures service
semantics through property-value representations. A core
element of this model is the formally verified variantOf
relation, which defines specialization among services. We
prove that variantOf satisfies the properties of a partial
order, enabling services to be structured as a Directed
Acyclic Graph (DAG) and thus supporting hierarchical
and scalable discovery. We formally verify the consistency
of our model across multiple refinement levels. All proof
obligations generated by the Rodin platform were suc-
cessfully discharged. A scenario-based validation further
confirms the correctness of dynamic operations within the
system.

Keywords—Formal verification; cloud service discovery;
capability modelling

I. INTRODUCTION

Cloud computing has emerged as a paradigm
that changes the way IT services are delivered [1].
By proposing a multitude of on-demand services,
cloud computing has become indispensable for compa-

nies seeking efficient workload management and cost-
effective high-quality service [2]. The rapid growth in
the number of cloud services has intensified the chal-
lenges of efficient service discovery [3]. Cloud service
discovery aims to assist cloud users in locating the most
suitable cloud services for their needs [4].

Although numerous approaches for identifying cloud
services have been proposed including [5]–[16], current
cloud service discovery solutions lack a structured and
detailed definition of cloud services [17]. Furthermore,
they fail to consider the continuous growth in the num-
ber of service offerings and the increasing heterogeneity
of cloud services.

In addition to the lack of structure in service de-
scriptions, the dynamic nature of the cloud environment,
where services may frequently appear while others may
disappear [3], adds further complexity to the discovery
process. The cloud service discovery process involves
both the description of services and a matchmaking
mechanism that compares available offerings with user
requirements. However, the unstructured nature of ser-
vice descriptions increases the difficulty of performing
accurate matchmaking, which in turn amplifies the over-
all complexity of the discovery process. These chal-
lenges underscore the need for approaches that can guar-
antee the correct behavior of cloud service discovery
systems.

Despite recent progress, to the best of our knowl-
edge, current cloud service discovery approaches have
been exclusively evaluated through simulation and ex-
periments. However, simulation-based approaches have

www.ijacsa.thesai.org 1 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

not proven to be efficient in evaluating complex systems,
particularly in terms of assessing their functional proper-
ties, including system correctness [18]. Similarly, while
experiments provide valuable insight into performance
metrics, they fall short in comprehensively assessing all
possible system states or interactions.

In contrast, formal verification has shown promising
results in ensuring the correctness of complex informa-
tion systems. Formal verification allows us to verify the
functional properties of complex and large-scale sys-
tems and specify the relationships between behavioral
interactions within such systems. Formal verification can
demonstrate the precision and correctness of these sys-
tems, making it an essential tool in the context of cloud
computing [18]. Furthermore, formal verification offers
a viable solution for addressing fundamental challenges
in cloud service discovery [17], including reliability,
scalability, and security, making it highly relevant for
the advancement of this field.

Nevertheless, formal verification has received sig-
nificantly less attention in the context of cloud service
discovery compared to adjacent fields such as service
composition [19]–[25]. To date, only a limited number
of works [24], [26], [27] have tackled the formal veri-
fication of cloud service discovery systems.

While these efforts represent valuable contributions,
they do not comprehensively address the full range
of challenges inherent in cloud service discovery. In
particular, to the best of our knowledge, no existing work
formally verifies cloud service discovery systems that
support multiple types of services and dynamic behavior.

To address these limitations, this paper proposes a
new verification approach1 that covers multiple aspects
of cloud service discovery. Our approach ensures that (i)
both services offered by cloud providers and requested
by users are described formally; (ii) the returned services
satisfy required functional levels; and (iii) dynamic
changes are handled without compromising the correct-
ness of discovery operations. Given the complexity of
verifying these requirements, we adopt the formalism of
Event-B.

Event-B is a formal method for modeling and devel-
oping complex systems. Its objective is to build correct
systems by construction through a series of refinements
from abstract specifications to concrete implementa-
tions. Each refinement step is validated using mathemat-
ical proof obligations based on predicate calculus and
typed set theory [28]. In this work, we formally verify
a cloud service discovery architecture. Recognizing the
benefits of using a service repository in the enhancement
of the efficacy of cloud service discovery [4], along
with the efficiency of tree-like structures, we propose
an architecture that combines both elements for storing
and organizing services.

1For detailed proofs and the complete for-
mal model, see: https://github.com/Aichasdm/
Capability-centric-cloud-service-discovery-model.git

Furthermore, we argue that the unstructured nature
of cloud service descriptions is a major factor contribut-
ing to the complexity of service discovery. To address
this, we adopt the Capability Model [29], a structured
representation that not only mitigates heterogeneity and
unstructured data but also supports highly configurable
and dynamic service offers such as cloud offerings. The
Capability Model enables the representation of both
functional and non-functional service properties and
provides a partial order between services, which can be
structured as a directed acyclic graph.

The novelty of this work is twofold. First, it bridges
the gap between cloud service discovery and formal
verification, resulting in more reliable and consistent dis-
covery systems. Second, it provides a formal verification
of service description based on a generic and extensible
model—the Capability Model. Our verification using the
Event-B method offers a rigorous foundation that en-
sures the consistency and correctness of the model itself.
The Capability Model has previously been applied in the
context of Web services [30], business processes [31]
and Network as a Service(NaaS) [32]. This verification
supports its safe reuse across diverse service-oriented
domains, including but not limited to cloud computing.

To summarize, the main contributions of this paper
are:

1) Verification of the cloud service description model;
2) Verification of the consistency of the partial order

between services;
3) Verification of the behavior of the cloud service

discovery process.

The remainder of this paper is as follows. Section II
gives a review of related works; Section III provides our
motivation and an overview of the proposed architecture;
Section IV describes the formalization and verification
of the consistency of the cloud description model and
the partial order relation between services; Section V
presents the formal model of the proposed cloud service
discovery; Section VI discusses our findings. Finally,
Section VII presents a conclusion.

II. RELATED WORKS

This section reviews existing approaches for cloud
service discovery. In light of the numerous solutions
proposed in recent years, we focus on the most fre-
quently cited and contextually relevant works. Based
on our research context, the approaches are classified
into two categories. The first includes methods devel-
oped to formalize or verify cloud service discovery
through mathematical or logical techniques. The second
encompasses approaches validated through experimental
or simulation-based evaluations only.

A. Formal Cloud Service Discovery Approaches

The following is a brief overview of research efforts
that utilize formal methods to verify cloud service

www.ijacsa.thesai.org 2 | P a g e

https://github.com/Aichasdm/Capability-centric-cloud-service-discovery-model.git
https://github.com/Aichasdm/Capability-centric-cloud-service-discovery-model.git

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

discovery systems. Notably, only a limited number of
works in the literature directly address this problem.

In [27], the authors propose a resource discovery
model for grid computing based on a hierarchical tree
structure, supporting multi-attribute queries. The model
is verified using model checking techniques. The system
behavior is decomposed into three components: data
gathering, control, and discovery. This modular design
facilitates maintenance, development, and verification.
The relationships between these components are formal-
ized using Binary Decision Diagrams (BDDs). Prop-
erties of the resource discovery process are specified
using temporal logic (CTL and LTL) and verified to
ensure they are satisfied. The authors claim the model
demonstrates soundness, completeness, and consistency.

In [26], a method is presented for discovering human
resources in the Expert Cloud, with an emphasis on
trust-based expert search. The system is modeled as
an undirected, weighted graph where nodes represent
human resources and edges indicate prior interactions.
Each node is annotated with information relevant to the
resource. The structural and compositional aspects of the
discovery process are verified using the NuSMV2 model
checker, and the properties are defined in temporal logic.
The authors argue that their model is sound, reachable,
complete, deadlock-free, and consistent. However, the
approach does not address key concerns such as quality
of service (QoS), billing, or authorization.

Authors in [24] aim to leverage the gap between
formal verification and cloud service discovery and
composition by proposing an architecture for formal
service matching where behaviors are seen as ordered
sequences of services. The proposed architecture allows
the formal matching and composition of ordered se-
quences of services. The approach is based on Cloudle
[8] and the ABCS framework [33].

While valuable, these approaches exhibit several
limitations. First, they address only specific aspects of
service discovery, such as trust in a particular domain, as
in [26], or consistency of ordered sequence of services
[24]. Moreover, although the model proposed in [27] is
useful, it has been applied in the context of grid com-
puting and has not been evaluated for cloud services.

B. Informal cloud service discovery approaches

In contrast to formal methods, a large number of ap-
proaches rely on simulations or experiments. These can
be broadly categorized into ontology-based, keyword-
based approaches, and hybrid approaches(ontology-
based and keyword-based) following the classification
in [4]. This discussion is not intended as an exhaustive
review of all existing approaches. Instead, it presents
a representative selection of notable works to illustrate
the key characteristics and trends within this category
of cloud service discovery methods.

2See https://nusmv.fbk.eu

1) Ontology-Based Approaches: In [6], Modica and
Tomarchio propose a semantic discovery framework that
facilitates the alignment between user demands and
provider offerings by considering their respective utility
and business objectives. The model incorporates seven
ontologies, including shared concepts between user and
provider perspectives (Support, mOSAIC, Application,
SLA ontologies), provider-specific ontologies (Market
and Offer), and a user-specific ontology (Request). To
enable comparison between the user and provider per-
spectives, a set of mapping rules is defined. Furthermore,
a semantic matchmaking process is integrated into the
framework to evaluate the degree of similarity between
user requests and provider offers, leveraging a semantic
similarity algorithm.

Within a series of works [8], [34]–[36], Kang and
Sim have proposed the Cloudle engine for discovering
cloud services. It represents a cloud service search
engine that consults a cloud ontology to reason about
relationships among cloud services. The proposed archi-
tecture includes a query processor, a similarity reasoning
utility based on a cloud ontology, and a price and
timeslot utility. The query processor handles user queries
and sends them to both the similarity reasoning utility
and the price and timeslot utility agent. The former
includes three similarity reasoning methods: (i) concept
similarity reasoning, (ii) object property reasoning, and
(iii) datatype property reasoning.

The engine was later extended, in [37] with an
agent-based testbed for cloud service discovery. The
system architecture is based on multiple broker agents
and trading agents (providers and users), with various
applications and resources. The service discovery pro-
cess involves four stages: selection, evaluation, filtering,
and recommendation. Matching between user requests
and provider specifications is performed using a cloud
ontology, based on three similarity reasoning methods:
concept similarity, property similarity, and datatype sim-
ilarity.

In a further enhancement, [38] presents a revised
architecture for Cloudle. The main difference compared
to the previous version is the introduction of crawlers.
Crawlers are responsible for maintaining and updat-
ing the service database. They are deployed to collect
information about cloud service providers from web-
pages, thereby keeping the Cloudle database up to date.
The service reasoning process includes three reasoning
types: similarity reasoning, compatibility reasoning, and
numerical reasoning.

Finally, [39] proposes CB-Cloudle, an enhancement
of Cloudle that introduces a centroid-based cloud search
engine. It uses a dedicated crawler for each cloud
provider and ranks cloud services based on the k-means
clustering algorithm.

[40] introduces an ontology-based cloud service
search engine called CSSE. The CSSE framework con-
sists of three layers: the cloud service ontology layer, the
cloud service identification layer, and the search engine

www.ijacsa.thesai.org 3 | P a g e

https://nusmv.fbk.eu

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

user layer. The user layer provides a web interface that
allows users to request cloud services by entering search
keywords. The ontology layer includes a repository of
cloud concepts generated by the cloud ontology builder,
which is based on the NIST cloud computing standards
and real-world cloud service metadata gathered in a
prior work [41]. The identification layer contains a cloud
service repository and a service identifier that detects po-
tential cloud services through similarity checks between
user queries and ontology concepts.

In [42], the authors propose a platform for cloud
service discovery. First, natural language processing
(NLP) techniques are applied to automatically annotate
cloud service descriptions with semantic content. Based
on these annotations, each service is represented as a se-
mantic vector. The platform enables semantic matching
between user queries—written in natural language—and
suitable cloud services.

[14] proposes a decentralized, peer-to-peer (P2P)
semantic service discovery approach. A multi-layered
cloud ontology is employed to represent service de-
scriptions in a standardized and meaningful way. These
service descriptions are stored in decentralized reg-
istries that collectively form the P2P network. Peers are
grouped into clusters based on the semantic similarity
of their service descriptions. Furthermore, Semantic
Overlay Networks (SONs) are used to establish semantic
links between peers, thereby enhancing the effectiveness
of the discovery process.

To address fuzziness in user preferences, [10] pro-
poses Cloud-FuSeR, a fuzzy, user-oriented cloud service
selection system. It comprises: a fuzzy cloud ontol-
ogy for computing similarity between user needs and
services, a fuzzy Analytic Hierarchy Process (AHP)
for deriving weights of non-functional properties, and
a fuzzy TOPSIS method to rank services using AHP-
derived weights and service performance.

2) Keyword-Based Approaches: [5] proposes an
automated version of CSSE that extracts cloud service
descriptions from the Web. Extracted features are clus-
tered by similarity. The Service Detection and Tracking
(SDT) model is introduced to support modeling and
tracking services across providers.

In [7], a two-stage recommendation model is pre-
sented. First, it analyzes unstructured textual descrip-
tions of cloud services using Hierarchical Dirichlet
Processes (HDP) to form clusters. Then, a Personalized
PageRank algorithm ranks services based on tags, en-
abling personalized recommendations.

[15] proposes a cloud service recommendation
system named CSRecommender, which enables users to
search for cloud services and receive a list of relevant
results based on queries and ratings. The system consists
of five main components: a crawler, which collects
potential cloud service descriptions from the web; a
cloud service identifier, which verifies whether a web-
page represents a valid cloud service; an indexer, which

stores identified services in a structured repository; a
search engine, which allows keyword-based queries; and
a recommender system, which offers both collaborative
and content-based recommendations.

In [43] Focused Crawler for the Cloud service Dis-
covery (FC4CD) is presented. This tool can identify,
gather and analyze cloud services available on the Web.
In [44], the authors present a cloud service registry
and discovery system designed to classify and iden-
tify services based on their underlying model (IaaS,
PaaS, SaaS) and associated QoS attributes. Initially,
cloud services are categorized into datasets by a service
model. A decision tree-based identification algorithm
then classifies user requests according to the relevant
service model using QoS preferences provided by the
cloud consumer. Once the model is identified, the Split
and Cache (SAC) algorithm performs service discovery
by retrieving cloud service providers (CSPs) whose
offerings match the specified QoS requirements.

3) Hybrid Approaches: In [10], The authors pro-
pose a cloud service recommendation system based
on semantic technologies, employing a fuzzy service
ontology structure. Cloud service descriptions are parsed
using natural language processing (NLP) techniques to
identify and extract key concepts, which are subse-
quently used to populate a fuzzy ontology for cloud
services. User queries, also expressed in natural lan-
guage, are parsed to extract fuzzy connectives (e.g.,
AND, OR) and are represented as logical expressions.
These expressions are then translated into first-order
Horn clause logic and further refined using disjunctive
normal form (DNF) transformations to generate multiple
query candidates. The matching process is carried out
by evaluating semantic similarity between user require-
ments and ontology concepts, utilizing SPARQL queries
to retrieve relevant cloud services.

In [12], The authors present an LDA-based Self-
Adaptive Semantic Focused (LDA-SSF) crawler de-
signed to efficiently collect, categorize, and store
Cloud services by leveraging a Cloud Service Ontology
(CSOnt) to calculate semantic similarity. To enhance
the crawling process, a URLs Priority technique, based
on Term Frequency–Inverse Document Frequency(TF-
IDF) and semantic similarity, is employed to assign
priority scores to candidate URLs by computing their
textual similarity to a given Cloud service category.
Moreover, an ontology-learning technique, based on the
LDA model and semantic distance, is proposed to auto-
matically enrich the CSOnt with new concepts, thereby
maintaining the crawler’s performance over time.

All the approaches presented in this section have
been evaluated only through simulation or experimental
validation. As previously stated, such evaluations cannot
guarantee the correctness of the discovery system or
identify hidden flaws. Furthermore, these approaches
lack standardization in cloud service discovery. Fur-
thermore, while formal methods have been applied to
various aspects of cloud computing, such as service

www.ijacsa.thesai.org 4 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

composition and orchestration [19]–[25], these works
typically address services already deployed within cloud
environments. In contrast, our work focuses on the
discovery of services offered by cloud providers. This
phase has received limited attention in formal specifica-
tion literature. We formalize this process using Event-B,
capturing both the static structure of capability-based
descriptions and the dynamic behavior of user-driven
discovery over an evolving service repository. To our
knowledge, this constitutes the first refinement-based
Event-B formalization dedicated specifically to cloud
service discovery.

III. APPROACH OVERVIEW AND MOTIVATION

Cloud service discovery systems assist users in iden-
tifying suitable services offered by various providers.
These systems must operate in highly dynamic envi-
ronments, where providers frequently update, add, or
remove their service offerings. Users typically send
requests specifying both functional and non-functional
requirements such as service type, region, pricing, and
specific capabilities. The system is expected to return
services that fully satisfy the given constraints.

However, unstructured service descriptions and am-
biguous user inputs can lead to significant mismatches
between requested and returned services. In addition,
the evolving nature of cloud offerings requires that
discovery systems handle service updates while ensuring
continued correctness and consistency. Without formal
verification, such systems may have subtle faults that
remain undetected during simulation or empirical testing
[27]. To address these challenges, this work proposes a
repository-based cloud service discovery system whose
behavior and correctness are formally verified using the
Event-B method. At the core of this architecture is the
Capability Model [29], [45], which provides a struc-
tured representation of service properties and supports
abstraction, variability, and semantic alignment between
services and user needs.

Figure 1 illustrates the proposed architecture. Ini-
tially, cloud users submit service requests described
using the Capability Model. These requests are first
validated for consistency by the request/offer checker
component. Once validated, the request is forwarded to
the matching engine, responsible of the matchmaking
process, which consults the repository of cloud service
offerings to identify suitable candidates. The resulting
list is then returned to the user.

The adopted matchmaking strategy is deliberately
simple and deterministic. We do not currently support
partial satisfaction or ranking of offers; only services
that fully satisfy the constraints of the request (or
generalize it) are returned. While advanced discovery
techniques, such as similarity-based ranking or graph
traversal over variant hierarchies, are common in prac-
tical systems, they are out of scope in the present work.
Our focus is on verifying the logical foundations of

cloud service discovery behavior and ensuring correct-
ness through refinement and theorem proving.

Fig. 1. Overview of the adopted architecture

The Capability Model enables expressive yet se-
mantically rigorous service descriptions, capturing both
functional aspects (e.g., service type) and non-functional
properties (e.g., price, performance). Unlike tradi-
tional approaches such as WSDL, it supports seman-
tic alignment and abstraction through relations such
as specifies, extends, and variantOf, which
facilitate service categorization and generalization.

Although details about these inter-capability rela-
tions and their formal properties are introduced in the
next section, it is important to note that they enable
the repository to be managed as a graph structure that
supports reasoning about compatibility and substitution
between services. These features lay the foundation for
scalable and correct service discovery under evolving
system configurations.

The next section presents the formalization and
verification of this architecture. We begin by specifying
the structural properties of the Capability Model and
proceed to formalize the discovery behavior under dy-
namic conditions using refinement in Event-B.

IV. FORMAL MODELING AND VERIFICATION OF THE
CAPABILITY MODEL

In this section, we present our formal model for
service description. Since our model is developed using
the Event-B method, we begin with a brief overview
of its core concepts. We then introduce the Capabil-
ity Model [29], a capability-centric service description
model. Following this, we present the Event-B for-
malization of the model in detail, and conclude with
its validation using a motivating example. As noted
in [29], the Capability Model is sufficiently expressive
to describe a wide range of service-oriented systems,
including cloud services, web services, and business
processes. Accordingly, this work contributes to the
formal validation of the Capability Model by ensuring
its correctness under rigorously defined structural and
behavioral conditions.

www.ijacsa.thesai.org 5 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

A. The Event-B method

Event-B [28] is a formal method for modeling and
developing complex systems through a correctness-by-
construction approach . It supports system development
via a series of refinement steps, transitioning from an
abstract specification to a more concrete and imple-
mentable model. Each refinement step must preserve
correctness and is validated through the generation and
discharge of proof obligations.

An Event-B model consists of two main components:
contexts and machines. The context defines the static
part of the model, including sets, constants, axioms, and
theorems. In contrast, the machine captures the dynamic
behavior of the system, and includes variables, invari-
ants, and events. Events represent atomic transitions;
each is defined by parameters, guards (which control
when an event may occur), and actions (which update
the state variables).

Correctness is ensured by discharging proof obliga-
tions that validate invariant preservation, guard strength-
ening, well-definedness, and other formal properties.
These obligations are automatically or interactively ver-
ified using the Rodin platform [46], which integrates
theorem provers for Event-B. In this work, Event-B
is used to model and verify a capability-centric cloud
service discovery system. We structure the model across
multiple refinement levels, using formal proofs to guar-
antee that both structural and behavioral properties are
preserved throughout development.

B. Overview of the Capability model

Service description plays a fundamental role in
the automation of service discovery and in achieving
interoperability in web-based environments [47]. The
concept of capability has emerged as a central element in
service description [48]. To enable automated discovery,
service descriptions must explicitly define the capa-
bilities of services, thereby allowing users to identify
and select services based on their functionality rather
than relying on informal documentation to infer what a
service can perform [47].

The Capability Model was initially proposed in [29],
and a subsequent formalization was presented in [45]. In
this paper, we focus on the version introduced in [45],
providing a complete and rigorous formalization using
the Event-B method. Where appropriate, we refer back
to the original model in [29] to ensure alignment with
its conceptual foundations. To validate the coherence of
our formalization with the original model, we reuse the
motivating example presented in [45]. This allows us to
demonstrate that our Event-B specification conforms to
the same structural and behavioral assumptions. We have
made minor corrections to the original example where
discrepancies were observed, thereby illustrating the
added value of formal verification and theorem proving
in identifying subtle inconsistencies.

1) The model components: The core concept in the
Capability Model [29] is that of a capability, which de-
fines the functionality a service can provide. The model
describes a service in terms of its capability, represented
as a set of property entries (or attributes). Each prop-
erty entry consists of a pair (Property, V alue), where
Property denotes a service property (e.g., destination,
price), and V alue represents the set of possible values
associated with that property. Both property and value
refer to ontological terms.

A Property entry is defined with respect to a
triplet (Property,MGV, SR) where MGV (most gen-
eral value) is the domain of values that the property
can take, and SR is a specification relation that could
be defined over elements of MGV with respect to the
meaning of the property Property.

To illustrate this, consider the example shown in
Figure 2, in which a shipping company offers four
service configurations to accommodate diverse customer
types.

Fig. 2. A motivation example for the variantOf relation between
capability from [45]

• C1: A standard offer that provides a basic shipping
service to Australia without any constraints on
package weight or destination.

• C2: A specialized offer for packages to Australia,
restricted to those with a weight less than or equal
to 100 kg. The pricing is conditional: if the weight
is less than or equal to 50 kg, the price is calculated
as 5× weight; otherwise, it is 10× weight.

• C3: A further specialized offer for packages des-
tined to Sydney and Melbourne. If the destination is
Sydney, the acceptable weight range is between 10
and 70 kg; otherwise, the acceptable weight range
is between 10 and 100 kg.

• C4: A specialized offer for packages to Sydney,
restricted to those with a weight between 10 and
40 kg. the price is calculated as 5× weight

Thus, as illustrated in Figure 2, capability
C2 conforms to the Capability Model. For
example, the property entry to, Australia
is defined with respect to the triplet
(to,GeographicalLocation,locatedIn),
where GeographicalLocation denotes the most
general value of to, and locatedIn expresses a
specification relation such that, for instance, Sydney is
considered to be locatedIn Australia.

Furthermore, a specific property that is shared

www.ijacsa.thesai.org 6 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

among all capabilities within the same domain
is actionCategory. This property specifies the
category of action that the capability can achieve.
For instance, in Figure 2, all capabilities have the
value shipping for the property actionCategory.
In addition, the capability model allows for the
definition of complex types of property values.
In particular, there are five types of values for
a property SingleV alue, ConstrainedV alue,
FunctionalV alue, ConditionalV alue, and
EnumeratedV alue. SingleV alue refers to values of
the type instance or subclass. For example, in Figure
2 Sidney can be seen as an instance of Australia
that is itself a subclass of GeographicalLocation.
ConstrainedV alue allows to make a constraint on
the value of a property. For example, in Figure 2, the
property weight in C2 is of type ConstrainedV alue.
FunctionalV alue is used to define relationships
between properties of the same capability. For example,
the value of the property price in C4 is of type
FunctionalV alue. ConditionalV alue enables the
definition of a value that depends on the value of
another property. As an example, the value of the
property weight in C2 is of type ConditionalV alue.
Finally, EnumerationV alue denotes a finite set of a
property values. For instance, the value of the property
to within C3 is of type EnumerationV alue.

It worth to note that, the semantics of the specifi-
cation relation SR are domain-dependent and should,
if possible, be defined with respect to the meaning
of the values within each MGV. For instance, in nu-
merical domains, for example, specification relation
between elements may be simply the set inclusion (e.g.,
{10, 20} ⊆ {0..100}), while in geographical domains,
it may be represented by a containment relation such as
locatedIn. In networking domains, such as IP address
hierarchies, specification could rely on subnet inclusion.

variantOf Relation: In addition to modeling rela-
tionships between the properties of a capability, the Ca-
pability Model introduces relations between capabilities
to support hierarchical structuring. In [45], the authors
define such a hierarchy through the variantOf relation,
which captures when one capability is more specific
than another. This relation generalizes the sub-relations
specifies and extends, and is defined based on an
extension of the specification relation SR to operate over
sets of values within a shared MGV.

The variantOf relation is formally defined as fol-
lows:

A capability C1 is said to be variantOf C2 if the
following two conditions hold:

(i) For every property p in C1, the value assigned
to p in C1 is either equal to the value of p in
the extended capability C2/C1, or it specifies the
value of p in C2/C1;

(ii) There exists at least one property p in C1 for
which the value of p in C1 strictly specifies the
corresponding value in C2/C1.

Here, C2/C1 denotes the extension of capability
C2 by C1, i.e., a merged capability that includes all
properties of C2 and any additional properties from C1.

The specifies relation between two value sets v1
and v2 is defined as:

v1 specifies v2 ⇐⇒ (v1 ⊂ v2∨
∃SR.v1 7→ v2 ∈ SR

where MGV is the most general value domain
associated with the property and SR is a specification
relation between twos sets of MGV .

C. The Event-B Model Architecture

In this section, we present our Event-B formalization
of the Capability Model.

Fig. 3. Architecture of the Event-B model for the verification of the
capability model

The model is structured into three contexts(See
Figure 3):

• C0 defines the core concepts of the Capability
Model, including property value types;

• C1 formalizes the specification relation between
capabilities;

• VariantOf defines the variantOf relation and
includes proofs that it constitutes a partial order,
along with several inference theorems to deduce
variantOf relations between capabilities.

Figure 4 illustrates the corresponding Event-B model
of the context C0. We define three foundational sets:
i)PROPERTY: the set of domain-specific properties (e.g.,
actionCategory, to, weight, price in the ship-
ping domain); ii) GENERALVALUES: the set of most
general property values (MGVs), including values such
as natural numbers, locations, and other domain-relevant
categories; iii) Expression: a set of logical expres-
sions used to define constraints over property values.

Other core elements such as Capability,
PropertyEntry, and possibleValues are
defined as constants within the model. The set
possibleValues, a subset of GENERALVALUES,
represents all possible values a property may take
within a given capability. To capture semantic

www.ijacsa.thesai.org 7 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

of different property values types, we define
specific subsets of possibleValues (e.g
ConstrainedValue, ConditionalValue,etc.).
A PropertyEntry is defined as a pair from
the cartesian product of PROPERTY and a subset
of possibleValues. Additionally, The relation
between a property and its MGV has been established
by the relation hasMGV that maps each property
in PROPERTY with its domain of valid values in
GENERALVALUES. For example, hasMGV(to) =
GeographicalLocation , hasMGV(weight) =
N, and hasMGV(price) = N, with the
assumptions that GeographicalLocation
⊆ GENERALV ALUES and N ⊆
GENERALV ALUES. Given this, for instance,
valid propertyEntry include (weight, {10})
and (weight, {20, 30, 40, 60}). A capability is then
represented as a set of such property entries. For
example, C1 in the motivating example can be modeled
in our model as

C1 = {actionCategory 7→ shipping, to 7→
Australia}

where {actionCategory,to} ⊆ PROPERTY,
shipping is the hasMGV(actionCategory),
and Australia is a set that belongs to
GeographicalLocation.

Property value Types: SingleValues. This refer to
a subset of GENERALVALUES that represent either a
singleton or a set of multiple elements. Given that, we
are using Rodin which is based on set theory, we do not
need to use this constant as it is already integrated in
Event-B language as a subset of possibleValues.

ConstrainedValues. A ConstrainedValue is
defined through a constructor that maps a property and
a logical expression to a set of values that satisfy the ex-
pression within the property’s most general value. This
constructor is represented as: Const ∈ PROPERTY ×
Expression → P(ConstrainedValues)

The semantics of Const are given by the fol-
lowing definition: Const(p 7→ exp) = {x |
satisfies(x,exp) = TRUE ∧ x ∈ hasMGV(p)}.
That is, Const(p 7→ exp) returns the subset of
hasMGV(p) whose elements satisfy the condition that
the expression exp evaluates to TRUE. . This relies
on the satisfies relation, which is defined as:
satisfies ∈ GENERALVALUES×Expression →
BOOL. As an example, in Figure 2, the value of the
property weight in C2 can be represented using a
constrained value:

Const(weight 7→ makeExpression(

makeGeneralvaluesFromNats(

allNatLessThanOrEqualNat(100))))

Here, Const(weight 7→ exp) defines a constraint
on the property weight, where exp is the expression
makeExpression(

makeGeneralvaluesFromNats(
allNatLessThanOrEqualNat(100))). This ex-
pression is satisfied by all natural numbers less than or
equal to 100, i.e., satisfies(x, exp) evaluates to
TRUE for every x ∈ N such that x ≤ 100.

ConditionalValues. A ConditionalValue
represents dependencies between the values of two
properties within a capability. We define it via a
constructor that maps a capability, a property, two
sets of possible values, and a Boolean condition to
a set of ConditionalValues. This constructor is
defined as: CND ∈ Capability × PROPERTY ×
P(GENERALVALUES) × P(GENERALVALUES) ×
BOOL → P(ConditionalValues)

The semantics of CND are governed by the relation:
condition ∈ GENERALVALUES×Expression →
BOOL. Given a capability cap, a property p, and
a condition dependent on another property p_c, the
meaning of a conditional value is as follows:

CND(cap 7→ price 7→ v_p 7→ v_p2 7→
condition(cap 7→ p_c 7→ v_c)) ={

v_p if condition(cap 7→ p_c 7→ v_c) = TRUE

v_p2 otherwise

Here, p is the property being assigned a conditional
value, and p_c is the property whose value influences
the selection. v_p and v_p2 are sets of values from the
MGV of p , and v_c is a set of values from the MGV
of p_c.

Example. In our motivating example (Figure 2),
the value of price in capability C2 is of type
ConditionalValue. It can be written as:

CND(C2 7→ price 7→
FN(C2 7→ price 7→ weight 7→ f5) 7→
FN(C2 7→ price 7→ weight 7→ f10) 7→

condition(C2 7→ weight 7→
Const(weight 7→ makeExpression(

makeGeneralvaluesFromNats(

allNatLessThanOrEqualNat(50)))))

This expression states that if the weight is less than or
equal to 50, then the price is computed using function
f5(that returns 5× weight); otherwise, it is computed
using f10(that returns 10× weight).

FunctionalValues. A FunctionalValue is
defined by a constructor that maps a capability, a target
property, a source property, and a function to a set of
FunctionalValues. The constructor is given by:
FN ∈ Capability×PROPERTY×PROPERTY×f →
P(FunctionalValues) where f is the set of
partial functions defined as: f = PROPERTY ×
GENERALVALUES ⇀ GENERALVALUES. The
semantics of a FunctionalValue define how
the value of one property is computed based
on the value of another property. Formally, the

www.ijacsa.thesai.org 8 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

interpretation of: FN(cap 7→ p 7→ pf 7→ fn)
is the set: {fn(pf 7→ x) | x ∈
getPossibleValuesOfPonCapability(cap 7→
pf) ∧ (pf 7→ x) ∈ dom(fn)} cap is a capability,
p is the property within cap whose value is
determined by a FunctionalValue, pf is
another property within cap whose value is used
as input to the function fn, fn ∈ f is a partial
function in the most general value domain of p, and
getPossibleValuesOfPonCapability(cap,
pf) returns the possible values of property pf within
capability cap.

Example. In our motivating example,
the value of price within capability
C4 is defined as a FunctionalValue:
FN(c4 7→ price 7→ weight 7→ f5). The function
f5 computes the price as five times the weight.
It is defined as: f5 ∈ PROPERTY × N → N
with semantics given by: f5(weight 7→
ng) = makeGeneralvalueFromNat(5 ×
getNatForGeneralValue(ng)). This means
that the price is computed as 5 × weight, using
the numeric interpretation of the general value. This
expresses that for every value x of the source property
pf that exists in the current capability and lies in the
domain of function fn, the function computes the
corresponding value of property p as fn(pf 7→ x).

Capability Validity. To ensure the well-structured
definition of services, we define the notion of a valid
capability. A capability is considered valid if it satisfies
the following conditions:

(i) It includes a property denoted as
actionCategory, representing the action
performed by the capability;

(ii) It does not contain duplicate properties with con-
flicting values;

(iii) All property values lie within the domain defined
by their associated MGV.

This constraint is defined as an axiom at the context
level, by the constant Capability_valid. During
any interaction with the system, we check whether a
given capability belongs to the set of valid capabilities.

Specification Relation. The specification relations
described above, denoted SR and SR, define, respec-
tively, relationships between individual values and be-
tween sets of values within the same most general value
(MGV) domain. These relations are formally defined in
Event-B within context C1, a portion of which is shown
in Figure 5.

We distinguish between two levels of specification:

• SpecificationRelation (SR): a relation
between individual values of a given MGV,
defined as: SpecificationRelation ∈
P(GENERALVALUES) ⇀ P(GENERALVALUES×
GENERALVALUES)

• SpecificationRelationOnSets (SR): a relation
between sets of values from a given MGV, defined

CONTEXT C0
SETS PROPERTY GENERALVALUES Expression
CONSTANTS PropertyEntry possibleValues

hasMGV Capability ConditionalValues Enumer-
ationValues ConstrainedValues FunctionalValues
Const satisfies FN condition CND ...

AXIOMS
AXM_pv: possibleV alues ⊆ GENERALV ALUES
AXM_hasValue: hasMGV ∈ PROPERTY →

P (GENERALV ALUES)
AXM_PropertyEntry: PropertyEntry =

PROPERTY × P (possibleV alues)
axm_actionCategory: actionCategory ∈

PROPERTY
AXM_Capability: Capability = P (PropertyEntry)
AXM_PEvalidity: ∀p, v ·p ∈ PROPERTY ∧ v ⊆

hasMGV (p)⇒ p 7→ v ∈ PropertyEntry
THM_PEvalidity: ⟨theorem⟩ ∀v, p·p ∈ PROPERTY ∧

v ⊆ hasMGV (p)⇒ v ⊆ possibleV alues
AXM_pv: possibleV alues ⊆ GENERALV ALUES
AXM_p1: ConstrainedV alues ⊆ possibleV alues
AXM_p2: SingleV alues ⊆ possibleV alues
AXM_p3: ConditionalV alues ⊆ possibleV alues
AXM_p5: EnumerationV alues ⊆ possibleV alues
AXM_p6: FunctionalV alues ⊆ possibleV alues
AXM_ConstStructure: Const ∈ PROPERTY ×

Expression→ P (ConstrainedV alues)
AXM_satisfies: satisfies ∈

GENERALV ALUES × Expression→BOOL
AXM_Const:

∀p, exp·p ∈ PROPERTY ∧ exp ∈ Expression⇒
Const(p 7→ exp) = {x|satisfies(x 7→ exp) =
TRUE ∧ x ∈ hasMGV (p)}

...: ...
END

Fig. 4. Snapshot of the Event-B context C0 defining the core
components.

as: SpecificationRelationOnSets ∈
P(GENERALVALUES) ⇀
P(P(GENERALVALUES) ×
P(GENERALVALUES))

Specifies Relation. We define the relation
specifies, which holds between two capabilities
that share the same property. It states that the
value in one capability specializes the value in
the other. Formally: specifies ∈ PROPERTY ×
Capability_valid × P(GENERALVALUES) ↔
Capability_valid × P(GENERALVALUES). The
semantics of this relation are given by:

(p 7→ c1 7→ v1) 7→ (c2 7→ v2) ∈ specifies ⇔
(v1 ⊂ v2 ∨ (hasMGV(p) ∈

dom(SpecificationRelationOnSets)∧
v1 7→ v2 ∈ SpecificationRelationOnSets(

hasMGV(p))

Where p is a property shared by the capabilities c1 and

www.ijacsa.thesai.org 9 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

c2, v1 is the value of p in c1, and v2 is its value in
c2. Intuitively, the specifies relation holds either
when there is a strict inclusion between v1 and v2, or
when a domain-specific specification relation exists for
the property’s most general value, indicating that v1 is
more specific than v2.

CONTEXT C1
EXTENDS C0
CONSTANTS SpecificationRelation Specifi-

cationRelationOnSets
AXIOMS
AXM_SR: SpecificationRelation ∈

P (GENERALV ALUES) 7→
P (GENERALV ALUES ×
GENERALV ALUES)

AXM_SRSemantic: ∀mgv ·mgv ∈
dom(SpecificationRelation) ⇒
SpecificationRelation(mgv) ⊆ mgv ×mgv

AXM_SR_irreflexivity: ∀mgv, a·mgv ∈
dom(SpecificationRelation) ∧ a ∈ mgv ⇒ a 7→ a /∈
SpecificationRelation(mgv)

AXM_SR_transitivity:
∀mgv, a, b, c·mgv ∈ dom(SpecificationRelation)
∧ a 7→ b ∈ SpecificationRelation(mgv) ∧ b 7→
c ∈ SpecificationRelation(mgv) ⇒ a 7→ c ∈
SpecificationRelation(mgv)

thm_spec: ⟨theorem⟩ ∀locatedIn, location·location ⊆
GENERALV ALUES ∧ location ∈
dom(SpecificationRelation) ∧ locatedIn =
SpecificationRelation(location) ⇒ locatedIn ⊆
location× location

AXM_SpecificationRelationOnSetsStructure:
SpecificationRelationOnSets ∈
P (GENERALV ALUES) 7→
P (P (GENERALV ALUES) ×
P (GENERALV ALUES))

...: ...
END

Fig. 5. Snapshot of the Event-B context C1 defining the basic
specification relations.

Example. In our motivating example, the value of
the weight property in capability C4 is more specific
than this in C2. Formally:

weight 7→ C4 7→
getPossibleValuesOfPonCapability(

C4,weight) 7→ (C2 7→
getPossibleValuesOfPonCapability(C2 7→

weight)) ∈ specifies

This holds because we have formally proved that:
{10, . . . , 40} ⊂ {0, . . . , 100}.

VariantOf Relation. The model introduces a
variantOf relation between capabilities. Its defini-
tion has been proposed in [45], and we have for-
mally encoded this definition in Event-B. Figure 6

illustrates the corresponding Event-B context. The def-
inition of the variantOf relation is stated in axiom
AXM_variantOf.

Additionally, we have formally proved that both
specifies and variantOf are transitive and ir-
reflexive. These proofs were conducted under the as-
sumption that the relations SR and SR are themselves
irreflexive and transitive, and that for any given MGV,
it is not possible for both a strict inclusion and a SR
relation to exist simultaneously between any two sets.

CONTEXT VariantOf
EXTENDS C1
CONSTANTS specifies variantOf capabili-

tyExtension
AXIOMS
...:
AXM_variantOfStructure: variantOf ∈

Capability valid↔ Capability valid
partial order between capabilities

AXM_variantOf:
∀A,B ·A ∈ Capability valid ∧ B ∈
Capability valid ∧
getPropertiesForCapability(B) ⊆
getPropertiesForCapability(A)⇒
(A 7→ B ∈ variantOf ⇔
(
getPossibleV aluesOfPonCapability(
A 7→ actionCategory) =
getPossibleV aluesOfPonCapability(
B 7→ actionCategory) ∧ (
∀p, v p A, v p BextA·p ∈
getPropertiesForCapability(A) ∧
v p A = getPossibleV aluesOfPonCapability(A 7→
p) ∧ v p BextA =
getPossibleV aluesOfPonCapability(
capabilityExtension(B 7→ A) 7→ p)⇒
(v p A = v p BextA ∨ (p 7→ A 7→ v p A) 7→
(capabilityExtension(B 7→ A) 7→ v p BextA) ∈
specifies)) ∧
(∃p0·p0 ∈ getPropertiesForCapability(A)∧ (p0 7→
A 7→ getPossibleV aluesOfPonCapability(A 7→
p0)) 7→ (capabilityExtension(B 7→ A) 7→
getPossibleV aluesOfPonCapability(
capabilityExtension(B 7→ A) 7→ p0)) ∈
specifies)))

...:
END

Fig. 6. Snapshot of the variantOf context

While in [45], authors provide a rich conceptual and
semi-formal foundation including inference rules and
implementation support for discovering these relations,
key correctness properties are only asserted but not
formally verified. In contrast, our contribution offers a
rigorous formalization of the model using the Event-
B method. We encode the entire capability structure
including property value types, the specifies and
variantOf relations, and their supporting constraints

www.ijacsa.thesai.org 10 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

into a provable specification. Moreover, our model intro-
duces an additional consistency condition not enforced
in [45]. Specifically, we require that every capability
adheres to a well-formed structure (that we denote as
a valid capability). This structural constraint enhances
the reliability of capability definitions and ensure the
soundness of subsequent reasoning. Therefore, we have
defined these relations exclusively over valid capabil-
ities, as reasoning about capability specialization is
only meaningful when the capabilities themselves are
structurally consistent.

Most importantly, we formally prove that the
variantOf relation satisfies the properties of a partial
order that were only affirmed informally in [45]. It
is important to note that the partial order property of
the variantOf relation directly enables the use of a
directed acyclic graph (DAG) as the underlying structure
of the service repository. By formally proving that
variantOf is irreflexive and transitive, we ensure that
the resulting capability graph does not contain cycles
and maintains a coherent hierarchical structure. This
acyclic and ordered structure is essential for efficient
reasoning, enabling traversal operations (e.g., finding
more generic or more specific capabilities) and sup-
porting efficient service discovery [45]. Consequently,
the correctness of the partial order lays the theoretical
foundation for representing and managing cloud service
variability using graph-based repositories.This insight
provides a novel and formally grounded refinement of
the original model. By discharging these proof obli-
gations in Rodin, we reinforce the suitability of the
Capability Model for correctness service discovery ap-
plications.

D. Validation of the Model

We have validated the model incrementally by means
of two complementary strategies.

First, we performed unit-level validation by con-
structing test contexts to verify the structural and se-
mantic correctness of the individual model components.
This approach is conceptually similar to unit testing in
software engineering . The architecture of the resulting
Event-b model is shown in Figure 3. For each main con-
text (e.g., C0), we created a corresponding test context
(e.g., C0 Test) in which key axioms were instantiated
and verified as theorems. These theorems were then
proven using the Rodin platform . This strategy allowed
us to confirm that the model components were well-
defined and consistent.

Second, we validated the model using a concrete,
real-world scenario based on the motivating example
described earlier. To support this, we introduced a
new context, C_Nat, dedicated to the representation
of natural numbers. This was necessary because Rodin
does not allow multiple disjoint interpretations within a
single abstract set such as GENERALVALUES. Within
C_Nat, we defined natural numbers as a subset of
GENERALVALUES and specified logical expressions

such as lessThan and greaterThan. We also de-
fined a mapping between abstract natural numbers and
concrete numeric value.

The four capabilities presented in our motivating ex-
ample were encoded in the VariantOf_Test context
according to the Event-B model. We formally verified
the validity of each capability and subsequently proved
the variantOf relationships between them.

We argue that this validation strategy provides strong
assurance of the model’s soundness. All generated
proof obligations were successfully discharged using the
Rodin tool. The overall proof statistics are shown in
Figure 13.

V. FORMAL MODELING OF CLOUD SERVICE
DISCOVERY

In this section, we present our Event-B model, which
formalizes a cloud service discovery system based on
the architecture shown in Figure 1. We then verify
and validate the model by discharging proof obligations
and using a real-world scenario to demonstrate the
correctness of the system’s behavior.

A. The Event-B model

Our Cloud Service Discovery (CSD) system is mod-
eled as a formal Event-B refinement hierarchy built upon
the previously defined Event-B Capability Model. This
allows us to reason about discovery behavior while pre-
serving the semantic correctness of service description.
In this section, the terms service, offer, and capability
refer to a cloud service offering described according to
the Capability Model. The architecture of the final model
is illustrated in Figure 7. The system is modeled across

Fig. 7. The cloud service discovery formal model

three refinement levels, progressively transitioning from
an abstract model to a more CSD concrete system.

Refinement Strategy. The formal development of
the CSD model is organized as follows:

• M0 – Initial Model: This level captures the
foundational behavior of the system. It is repre-
sented by the machine M0, which sees the con-
text C Behavior extending the capability model

www.ijacsa.thesai.org 11 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

contexts and incorporating definitions of constants
required to describe basic behavior. At this level,
we model the elementary behavior of the CSD
system. We begin by representing the repository
as a graph, where offers denotes the set of
current service offers (nodes), and variantsOf
denotes the edges capturing the variantOf relation
between offers. The system supports three primary
interactions, formalized as events:

MACHINE M0
SEES C Basic Behavior
VARIABLES offerscurrent service’ offers

responsethe response returned to the user
requestedCapabilitythe requested
service/offer variantsOf
the set of current relationships between offers

INVARIANTS inv1: offers ⊆ Capability valid
offers must be valid capabilities
inv2: requestedCapability = ∅ ∨
requestedCapability ∈ Capability valid
user request is either ∅ when there is no request
otherwise it is a valid capability
inv3: variantsOf = {c1 7→ c2|c1 ∈ offers∧c2 ∈
offers ∧ c1 7→ c2 ∈ variantOf}
inv4: response = {requestedCapability} ∨
response = {offer|offer ∈ offers ∧
requestedCapability 7→ offer ∈ variantOf}

EVENTS
Initialisation begin act1: offers := ∅

act2: response := ∅
act3: requestedCapability := ∅
act4: variantsOf := ∅

end
END

Fig. 8. Snapshot of the Event-B M0 defining the initial model

◦ addOffers – introduces new service offers
into the system;

◦ removeOffers – removes existing service of-
fers;

◦ getOffersForNewRequest – initiates a
discovery process based on a user requested
service.

As illustrated in Figure 8, the model
also includes two additional variables:
requestedCapability, representing
the user’s service request, and response,
representing the potential returned services. The
model remains abstract at this stage, as reflected
by the non-deterministic invariants shown in
Figure 8. Nonetheless, it ensures that all services,
whether requested or offered, are valid.
Initialization: At each refinement level, the system
begins with an empty repository, no requests, and
no response.
addOffers (Figure 9): This abstract event
inserts a valid offer (Capability_valid)
into the repository. It updates the set of of-
fers, adds edges to variantsOf using the

MACHINE M0
SEES C Basic Behavior
EVENTS
Event addOffer ⟨ordinary⟩ =̂

adding new offer to the existing ones
any offer a service’ offer described based on the

capability model
where grd1: offer ∈ Capability valid

offer must be a valid capability
grd2: offer /∈ offers

offer is not already in the repository of offers
then act1: offers := offers ∪ {offer}

add offer to exissting offers
act3: variantsOf := variantsOf ∪

addNewV ariantsOf(offers 7→ offer)

add relationships between the new offer and
existing ones

act2: response :∈ {{offer0|offer0 ∈
offers ∪ {offer} ∧
requestedCapability 7→ offer0 ∈
variantOf}, {requestedCapability}}
update response

end
END

Fig. 9. Formalization of the event addOffers

addNewVariantOf relation, and modifies the
response and requestedCapability ac-
cordingly.
removeOffers: Semantically similar to
addOffers, this event removes a service offer
and its associated edges from the repository and
updates the response set.
getOffersForNewRequest (Figure 10): This
event models service discovery. Given a valid re-
quest, it updates requestedCapability and
returns either an exact match or a set of more
generic offers satisfying the variantOf relation.

MACHINE M0
SEES C Basic Behavior
EVENTS
Event getOffersForNewRequest ⟨ordinary⟩ =̂

any request request is described based on the capabil-
ity model

where grd1: request ∈ Capability valid
request must be a valid capability

then act1: requestedCapability := request
request is assigned to requestedCapability

act2: response :∈ {{offer|offer ∈ offers ∧
request 7→ offer ∈ variantOf}, {request}}
response is equals {request} or the set of
variantOf with request

end
END

Fig. 10. Formalization of the event getOffersForNewRequest

www.ijacsa.thesai.org 12 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

• M1 – First Refinement:(Figure 11) This
level, represented by machine M1 (which
also sees C Behavior), refines the abstract
model by introducing more concrete behaviors.
In particular, it refines the three core
events (addOffers, removeOffers, and
getOffersForNewRequest) into specialized
versions, and provides more precise invariants.
- addOfferWhenRequestIsEqualToOffer,
addOfferWhenOfferIsVariantOfRequest,
and addOffer: These events distinguish whether
the user request matches an existing offer exactly,
is a variantOf an offer, or is unrelated. Each case
results in different updates to response and
requestedCapability.

MACHINE M1
REFINES M0
SEES C Basic Behavior
VARIABLES offers response

requestedCapability variantsOf
INVARIANTS inv1: offers ⊆ Capability valid

inv2: requestedCapability = ∅ ∨
requestedCapability ∈ Capability valid
inv3: variantsOf = {c1 7→ c2|c1 ∈ offers∧c2 ∈
offers ∧ c1 7→ c2 ∈ variantOf}
inv4a: requestedCapability ∈ offers ⇒
response = {requestedCapability}
inv4b: requestedCapability /∈ offers ⇒
response = {offer|offer ∈ offers ∧
requestedCapability 7→ offer ∈ variantOf}

EVENTS
Event addOfferWhenRequestIsEqualToOffer ⟨ordinary⟩

=̂
refines addOffer

any offer
where grd1: offer ∈ Capability valid

grd2: offer /∈ offers
grd3: offer = requestedCapability

then act1: offers := offers ∪ {offer}
act2: response := {offer}
act3: variantsOf := variantsOf ∪

addNewV ariantsOf(offers 7→ offer)
end
...

END
Fig. 11. Snapshot of the Event-B M1 defining the first refinement

- removeOfferWhenOfferIsInResponse-
AndEqualsRequest,
removeOfferWhenOfferIsInResponseAnd-
NotEqualToRequest, and removeOffer:
These events differentiate between removing an
offer that equals the current request, that is part of
the response but not equal, or that is unrelated.
- getOffersForNewRequestWhenRequest-
IsInOffer and
getOffersForNewRequestWhenRequ-
estIsNotInOffer: These events handle the
case where the request is already in the repository

(response is the request itself), or not (response is
the set of variantOf offers).

• M2 – Second refinement:(Figure 12) This re-
finement introduces the notion of service cat-
egorization through subgraphs. Based on the
actionCategory property, mandatory in each
capability as per the Capability Model, offers are
grouped into subgraphs, each corresponding to a
distinct category of service. This categorization
enhances efficiency by allowing discovery to be
restricted to the relevant subgraph. Our primary ob-
jective in this refinement is to prove that the global
graph, represented by offers and variantsOf,
is equivalent to the union of these subgraphs.
Additionally, we verify that these subgraphs are
disjoint.

MACHINE M2
REFINES M1
SEES C Decomposition
VARIABLES offers response

requestedCapability variantsOf
variantsOfByCategory
offersByCategory

INVARIANTS inv1: variantsOfByCategory ∈
P (GENERALV ALUES) 7→ P (variantOf)

inv2: union(ran(variantsOfByCategory)) =
variantsOf
inv3: offersByCategory ∈
P (GENERALV ALUES) 7→
P (Capability valid)
...

EVENTS
Event addOffer ⟨ordinary⟩ =̂
refines addOffer

any offer
where grd1: offer ∈ Capability valid

grd_wd: getActionCategory(offer) ∈
dom(variantsOfByCategory)

grd_wd2: getActionCategory(offer) ∈
dom(offersByCategory)

grd2: offer /∈ offersByCategory(
getActionCategory(offer))

grd3: ...
then act1: offers := offers ∪ {offer}

act2: variantsOf := variantsOf ∪
addNewV ariantsOf(offers 7→ offer)

act3:
variantsOfByCategory :=
variantsOfByCategory ◁−
{getActionCategory(offer) 7→
(variantsOfByCategory(
getActionCategory(offer)) ∪
addNewV ariantsOf(offers 7→ offer))}

act4: ...
end

END
Fig. 12. Snapshot of the Event-B M2 defining the second refinement

Technically, we define new variables

www.ijacsa.thesai.org 13 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

including offersByCategory and
variantsOfByCategory. They are linked to
the global structure(e.g the graph) through the
gluing invariants:

offers =
⋃

offersByCategory,

variantsOf =
⋃

variantsOfByCategory.

B. Validation

In this section, we validate our CSD model by lever-
aging twos kinds of validations described as follows.

1) Proof Obligation: As shown in Figure 13, for
the complete model, a total of 347 proof obligations
were generated. Among these, 158 were discharged
automatically, while 189 required manual intervention.
Notably, 123 obligations were associated specifically
with the machine M2, of which 68 were discharged
manually.

Fig. 13. Proof statistics view from the Rodin platform showing
automatic and manual discharge across refinement levels

2) Validation through Interaction Scenarios: Al-
though all proof obligations associated with the for-
mal Event-B model were successfully discharged, it
remained necessary to validate the system’s behavior
under dynamic operations such as service insertion,
removal, and user request handling. However, due to
the complexity of the model, particularly the expressive
axioms involving property value types and specification
relations, ProB, which supports model animation, was
unable to complete execution in our experiments. To
address this limitation, we employed a manual, scenario-
based validation strategy. For each interaction, the re-
sulting system state was manually derived by applying
the action clause of the corresponding Event-B event
to the previous state. Because all events were formally
verified to preserve the model’s invariants, each state
in the scenario is guaranteed to be consistent with
the formally defined behavior. This process effectively
simulates the system’s dynamic execution and consti-
tutes a valid behavioral validation trace grounded in the
provably correct model.

For this purpose, we reuse the same structure as
in the motivating example presented earlier. The ca-
pabilities C1, C2, C3, C4 , described below, follow the

same structure and naming convention as in the logis-
tics example, are now adapted to a cloud computing
context. Each capability is compliant with the formally
defined Capability_valid structure, and thus their
structural correctness is already formally verified. In
this context, we simulate a scenario involving a service
provider p, who adds and removes service offers, and
two users, u1 and u2, who send discovery requests.

• C1: An infrastructure as a service(IaaS) cloud of-
fering providing a standard virtual machine (VM)
in the AWS3 limited to the Europe region .

C1 = {actionCategory 7→ compute,

region 7→ Europe, provider 7→ aws}

• C2: A specialized offer using t3 instance family.

C2 = {actionCategory 7→ compute,

region 7→ Europe, provider 7→ aws,

instanceType 7→ t3}

• C3: A further specialized offer targeting spe-
cific zones (e.g., eu-west-2 for London and
eu-west-3 for Paris).

C3 = {actionCategory 7→ compute,

region 7→ {eu-west-2,eu-west-3},
provider 7→ aws}

• C4: A variant of C2 that introduces a Static Solid
Storage(SSD)

C4 = {actionCategory 7→ compute,

region 7→ eu-west-2, provider 7→ aws,

instanceType 7→ t3.micro,

storageType 7→ SSD}

These capabilities are all defined in accor-
dance with the verified Event-B model, where
each capability is a set of property entries satis-
fying domain-specific constraints (e.g., region ⊆
GeographicalLocation). As such, no additional
assumptions regarding validity are required: the model
ensures correctness by construction.

This real-world example illustrates the direct ap-
plicability of our approach to cloud computing en-
vironments, demonstrating how variantOf relations
support capability specialization and service discovery
over a formally verified and semantically structured
service repository.

The scenario proceeds as follows:

1) The provider adds capability C1.
2) The provider adds capability C2.
3) User u1 submits a request for C2.
4) User u2 submits a request for C4.
5) The provider adds capability C3.

3https://aws.amazon.com

www.ijacsa.thesai.org 14 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

6) The provider removes capability C2.
7) The provider re-adds capability C2.

Each step in this sequence modifies the system
state by triggering an Event-B event. The updated val-
ues of key variables such as offers, variantsOf,
response, and requestedCapability are de-
picted in Figure 14. These transitions are shown to
preserve the model invariants, thereby demonstrating the
behavioral correctness of the system.

VI. RESULTS AND DISCUSSION

Our Event-B model for cloud service discovery
(CSD) has been developed incrementally. In Section
IV, we proposed the Event-B model for the Capability
Model. The proposed model not only covers all types
of properties in the Capability Model, but also goes
beyond by formalizing the variantOf relation between
services. Furthermore, we mathematically proved that
variantOf satisfies the properties of a partial order
relation, enabling the organization of services into a
Directed Acyclic Graph (DAG) structure that facilitates
discovery. Additionally, we introduced the concept of a
valid capability, which supports the structural validation
of service definitions.

The model was validated through two types of tests.
First, we conducted unit-level validation by encoding
test contexts for each component of the model, allow-
ing us to prove structural consistency and the well-
definedness of all model elements. Second, we vali-
dated the model using our motivating example. This
demonstrated that the formal specification is sufficiently
expressive to represent the example, confirming the con-
formity of our formal model with the original Capability
Model.

In Section V, we verified a repository-based CSD
system built upon the formal Capability Model, used
for describing both services and user requests. In this
model, we ensured request consistency through the valid
capability concept, verified the correct construction of
the service repository as a DAG, and validated the
correctness of the matching process. Additionally, we
confirmed the structured organization of services based
on the actions they perform.

We formally proved the correctness of the complete
model through 347 proof obligations generated by the
Rodin tool, of which 189 were discharged interactively
and the rest were discharged automatically. Furthermore,
we performed a second validation using a real-world
cloud services scenario. Our validation confirmed that
our model is mathematically sound, correct by construc-
tion, and applicable to cloud service environments.

However, in this initial stage, our approach only
supports exact or generalized matching. This restrictive
matching strategy is insufficient for practical cloud sys-
tems which typically require support for partial satisfac-
tion and ranking mechanisms. Although our model es-
tablishes a strong theoretical foundation, further refine-

S0
offers = ∅, offersByCategory = {∅ 7→ ∅ },
variantsOf = ∅,
variantsOfByCategory = {∅ 7→ ∅ },
response = ∅, requestedCapability = ∅

S1
offers = {C1}, offersByCategory = {compute 7→ {C1} }, variantsOf = ∅,
variantsOfByCategory = { ∅ 7→ ∅ },
response = ∅, requestedCapability = ∅

S2
offers = {C1,C2}, offersByCategory = {compute 7→ {C1,C2} },
variantsOf = {C2 7→ C1}, variantsOfByCategory = { compute 7→ {C2 7→ C1} },
response = ∅, requestedCapability = ∅

S3
offers = {C1,C2}, offersByCategory = {compute 7→ {C1,C2} },
variantsOf = {C2 7→ C1}, variantsOfByCategory = { compute 7→ {C2 7→ C1} },
response = C2, requestedCapability = C2

S4 offers = {C1,C2}, offersByCategory = {compute 7→ {C1,C2} },
variantsOf = {C2 7→ C1}, variantsOfByCategory = { compute 7→ {C2 7→ C1} },
response = {C1, C2}, requestedCapability = C4

S5 offers = {C1,C2,C3},
offersByCategory = {compute 7→ {C1,C2,C3} },
variantsOf = {C2 7→ C1, C3 7→ C1},
variantsOfByCategory = { compute 7→ {C2 7→ C1, C3 7→ C1} },
response = {C1, C2, C3}, requestedCapability = C4

S6 offers = {C1,C3},
offersByCategory= {compute 7→ {C1,C3} },
variantsOf={C3 7→ C1},
variantsOfByCategory = { compute 7→ {C3 7→ C1} },
response = {C1, C3}, requestedCapability = C4

S7 offers = {C1,C2,C3},
offersByCategory = {compute 7→ {C1,C2,C3} },
variantsOf = {C2 7→ C1, C3 7→ C1},
variantsOfByCategory = { compute 7→ {C2 7→ C1, C3 7→ C1} },
response = {C1, C2, C3}, requestedCapability = C4

addOffer(C1)

addOffer(C2)

request(C2)

request(C4)

addOffer(C3)

removeOffer(C2)

addOffer(C2)

Fig. 14. State transition diagram of the cloud service discovery
system under the validation scenario

ment is needed to verify properties that are specific to
real-world cloud environments, such as scalability. This
involves analyzing of the computational complexity of
the matchmaking process, DAG traversal, and repository
operations.

www.ijacsa.thesai.org 15 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

VII. CONCLUSION

In this work, we proposes a formal architecture for
capability-centric cloud service discovery, grounded in
the Event-B method. The architecture is based on a
capability-centric description model called the Capabil-
ity Model, which supports rich property representations
tailored to cloud service characteristics. Our system is
repository-based and structured as a directed acyclic
graph (DAG) using a formally verified partial order
relation denoted as VariantOf. We verified the soundness
of this structure by proving the consistency of the
service description model and the partial order relation.
The behavior of the system was modeled across multiple
refinement levels, including a decomposition of services
according to the action they perform. 347 proof obliga-
tions generated by the Rodin tool were discharged, and a
scenario-based validation was conducted to confirm be-
havioral correctness. However, the matchmaking process
currently supports only exact and generalized matching,
which may be restrictive in real-world systems. Future
work will address this limitation by supporting partial
satisfaction and ranking techniques. Furthermore, we
plan to formally optimize the repository structure by
eliminating transitive edges in the graph.

ACKNOWLEDGMENT

The authors would like to thank the Department of
Cooperation and Cultural Action (SCAC) of the French
Embassy in Mauritania for its financial support of the
three-year research mobility in France.

REFERENCES

[1] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter,
Cloud computing patterns: fundamentals to design, build, and
manage cloud applications. Springer, 2014, vol. 545.

[2] N. Antonopoulos and L. Gillam, Cloud computing. Springer,
vol. 51, no. 7.

[3] H. Nabli, R. Ben Djemaa, and I. Amous Ben Amor, “De-
scription, discovery, and recommendation of cloud services: a
survey,” Service Oriented Computing and Applications, vol. 16,
no. 3, pp. 147–166, 2022.

[4] M. M. Al-Sayed, H. A. Hassan, and F. A. Omara, “An intel-
ligent cloud service discovery framework,” Future Generation
Computer Systems, vol. 106, pp. 438–466, 2020.

[5] A. Alfazi, Q. Z. Sheng, A. Babar, W. Ruan, and Y. Qin,
“Toward unified cloud service discovery for enhanced service
identification,” in Service Research and Innovation: 5th and
6th Australasian Symposium, ASSRI 2015 and ASSRI 2017,
Sydney, NSW, Australia, November 2–3, 2015, and October 19–
20, 2017, Revised Selected Papers 5. Springer, 2018, pp. 149–
163.

[6] G. Di Modica and O. Tomarchio, “Matching the business per-
spectives of providers and customers in future cloud markets,”
Cluster Computing, vol. 18, pp. 457–475, 2015.

[7] Y. Jiang, D. Tao, Y. Liu, J. Sun, and H. Ling, “Cloud service
recommendation based on unstructured textual information,”
Future Generation Computer Systems, vol. 97, pp. 387–396,
2019.

[8] J. Kang and K. M. Sim, “Cloudle: An agent-based cloud search
engine that consults a cloud ontology,” in Cloud Computing and
Virtualization Conference. Citeseer, 2010, pp. 312–318.

[9] ——, “Ontology-enhanced agent-based cloud service discov-
ery,” International Journal of Cloud Computing, vol. 5, no. 1-2,
pp. 144–171, 2016.

[10] N. Karthikeyan, R. K. RS et al., “Fuzzy service conceptual
ontology system for cloud service recommendation,” Computers
& Electrical Engineering, vol. 69, pp. 435–446, 2018.

[11] H. Ma, Z. Hu, K. Li, and H. Zhu, “Variation-aware cloud service
selection via collaborative qos prediction,” IEEE Transactions
on Services Computing, vol. 14, no. 6, pp. 1954–1969, 2019.

[12] H. Nabli, R. B. Djemaa, and I. A. B. Amor, “Efficient cloud
service discovery approach based on lda topic modeling,”
Journal of Systems and Software, vol. 146, pp. 233–248, 2018.

[13] L. Sun, J. Ma, Y. Zhang, H. Dong, and F. K. Hussain, “Cloud-
fuser: Fuzzy ontology and mcdm based cloud service selection,”
Future Generation Computer Systems, vol. 57, pp. 42–55, 2016.

[14] V. Viji Rajendran and S. Swamynathan, “Sd-csr: semantic-based
distributed cloud service registry in unstructured p2p networks
for augmenting cloud service discovery,” Journal of Network
and Systems Management, vol. 27, pp. 625–646, 2019.

[15] J. Wheal and Y. Yang, “Csrecommender: a cloud service
searching and recommendation system,” Journal of Computer
and Communications, vol. 3, no. 6, pp. 65–73, 2015.

[16] M. Zhang, R. Ranjan, A. Haller, D. Georgakopoulos, M. Men-
zel, and S. Nepal, “An ontology-based system for cloud infras-
tructure services’ discovery,” in 8th international conference on
collaborative computing: networking, applications and work-
sharing (CollaborateCom). IEEE, 2012, pp. 524–530.

[17] A. Heidari and N. Jafari Navimipour, “Service discovery mech-
anisms in cloud computing: a comprehensive and systematic
literature review,” Kybernetes, vol. 51, no. 3, pp. 952–981, 2022.

[18] A. Souri, N. J. Navimipour, and A. M. Rahmani, “Formal
verification approaches and standards in the cloud computing:
a comprehensive and systematic review,” Computer Standards
& Interfaces, vol. 58, pp. 1–22, 2018.

[19] K. Klai and H. Ochi, “A formal approach for service com-
position in a cloud resources sharing context,” in 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid). IEEE, 2016, pp. 458–461.

[20] Y. Li, S. Zhao, H. Diao, and H. Chen, “A formal validation
method for trustworthy services composition,” in 2016 Inter-
national Conference on Networking and Network Applications
(NaNA). IEEE, 2016, pp. 433–437.

[21] P. Wang, L. Yang, and G. W. Li, “Mobile cloud computing
system components composition formal verification method
based on space-time pi-calculus,” in International Conference
on Cloud Computing. Springer, 2015, pp. 159–167.

[22] A. Lahouij, L. Hamel, M. Graiet, and B. el Ayeb, “An event-
b based approach for cloud composite services verification,”
Formal Aspects of Computing, vol. 32, no. 4, pp. 361–393,
2020.

[23] L. Hamel, M. Graiet, M. Kmimech, M. T. Bhiri, and
W. Gaaloul, “Verifying composite service transactional behavior
with event-b,” in 2011 Seventh International Conference on
Semantics, Knowledge and Grids. IEEE, 2011, pp. 99–106.

[24] M. Barati and R. St-Denis, “An architecture for semantic service
discovery and realizability in cloud computing,” in 2015 6th
International conference on the network of the future (NOF).
IEEE, 2015, pp. 1–6.

[25] M. Barati, “A formal technique for composing cloud services,”
Information Technology and Control, vol. 49, no. 1, pp. 5–27,
2020.

[26] N. J. Navimipour, “A formal approach for the specification and
verification of a trustworthy human resource discovery mech-
anism in the expert cloud,” Expert Systems with Applications,
vol. 42, no. 15-16, pp. 6112–6131, 2015.

[27] A. Souri and N. J. Navimipour, “Behavioral modeling and
formal verification of a resource discovery approach in grid

www.ijacsa.thesai.org 16 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 5, 2025

computing,” Expert Systems with Applications, vol. 41, no. 8,
pp. 3831–3849, 2014.

[28] J.-R. Abrial, Modeling in Event-B: system and software engi-
neering. Cambridge University Press, 2010.

[29] S. Bhiri, W. Derguech, and M. Zaremba, “Modelling capabili-
ties as attribute-featured entities,” in Web Information Systems
and Technologies: 8th International Conference, WEBIST 2012,
Porto, Portugal, April 18-21, 2012, Revised Selected Papers 8.
Springer, 2013, pp. 70–85.

[30] W. Derguech and S. Bhiri, “Modelling, interlinking and discov-
ering capabilities,” in 2013 ACS International Conference on
Computer Systems and Applications (AICCSA). IEEE, 2013,
pp. 1–8.

[31] W. Derguech, S. Bhiri, and E. Curry, “Using ontologies for
business capability modelling: describing what services and
processes achieve,” The Computer Journal, vol. 61, no. 7, pp.
1075–1098, 2018.

[32] I. Jerbi, N. Assy, M. Sellami, H. Brabra, W. Gaaloul, S. Bhiri,
O. Tirat, and D. Zeghlache, “Enabling multi-provider cloud net-
work service bundling,” in 2022 IEEE International Conference
on Web Services (ICWS). IEEE, 2022, pp. 405–414.

[33] G. De Giacomo, F. Patrizi, and S. Sardina, “Automatic behavior
composition synthesis,” Artificial Intelligence, vol. 196, pp.
106–142, 2013.

[34] J. Kang and K. M. Sim, “Cloudle: a multi-criteria cloud service
search engine,” in 2010 IEEE Asia-Pacific Services Computing
Conference. IEEE, 2010, pp. 339–346.

[35] ——, “Cloudle: an ontology-enhanced cloud service search en-
gine,” in International Conference on Web Information Systems
Engineering. Springer, 2010, pp. 416–427.

[36] ——, “Ontology and search engine for cloud computing sys-
tem,” in Proceedings 2011 International Conference on System
Science and Engineering. IEEE, 2011, pp. 276–281.

[37] ——, “Towards agents and ontology for cloud service dis-
covery,” in 2011 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery. IEEE, 2011,
pp. 483–490.

[38] K. M. Sim, “Agent-based cloud computing,” IEEE transactions
on services computing, vol. 5, no. 4, pp. 564–577, 2011.

[39] S. Gong and K. M. Sim, “Cb-cloudle and cloud crawlers,” in
2014 IEEE 5th International Conference on Software Engineer-
ing and Service Science. IEEE, 2014, pp. 9–12.

[40] A. Alfazi, T. H. Noor, Q. Z. Sheng, and Y. Xu, “Towards
ontology-enhanced cloud services discovery,” in Advanced
Data Mining and Applications: 10th International Conference,
ADMA 2014, Guilin, China, December 19-21, 2014. Proceed-
ings 10. Springer, 2014, pp. 616–629.

[41] T. H. Noor, Q. Z. Sheng, A. Alfazi, A. H. Ngu, and J. Law,
“Csce: a crawler engine for cloud services discovery on the
world wide web,” in 2013 IEEE 20th International Conference
on Web Services. IEEE, 2013, pp. 443–450.

[42] M. Á. Rodrı́guez-Garcı́a, R. Valencia-Garcı́a, F. Garcı́a-
Sánchez, and J. J. Samper-Zapater, “Ontology-based annotation
and retrieval of services in the cloud,” Knowledge-based sys-
tems, vol. 56, pp. 15–25, 2014.

[43] K. Boukadi, M. Rekik, M. Rekik, and H. Ben-Abdallah, “Fc4cd:
a new soa-based focused crawler for cloud service discovery,”
Computing, vol. 100, pp. 1081–1107, 2018.

[44] A. Q. Md, V. Varadarajan, and K. Mandal, “Efficient algorithm
for identification and cache based discovery of cloud services,”
Mobile Networks and Applications, vol. 24, no. 4, pp. 1181–
1197, 2019.

[45] I. Jerbi and S. Bhiri, “Definition and induction of a specification
order relation between capabilities,” in 2021 IEEE International
Conference on Services Computing (SCC). IEEE, 2021, pp.
126–133.

[46] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta,
and L. Voisin, “Rodin: an open toolset for modelling and

reasoning in event-b,” International journal on software tools
for technology transfer, vol. 12, pp. 447–466, 2010.

[47] P. Oaks, A. H. Ter Hofstede, and D. Edmond, “Capabilities: De-
scribing what services can do,” in Service-Oriented Computing-
ICSOC 2003: First International Conference, Trento, Italy,
December 15-18, 2003. Proceedings 1. Springer, 2003, pp.
1–16.

[48] S. Bhiri, W. Derguech, and M. Zaremba, “Web service capabil-
ity meta model.” in WEBIST, 2012, pp. 47–57.

www.ijacsa.thesai.org 17 | P a g e

	Introduction
	Related Works
	Formal Cloud Service Discovery Approaches
	Informal cloud service discovery approaches
	Ontology-Based Approaches
	Keyword-Based Approaches
	Hybrid Approaches

	Approach Overview and Motivation
	Formal modeling and verification of the capability model
	The Event-B method
	Overview of the Capability model
	The model components

	The Event-B Model Architecture
	Validation of the Model

	Formal Modeling of Cloud Service Discovery
	The Event-B model
	Validation
	Proof Obligation
	Validation through Interaction Scenarios

	Results and Discussion
	Conclusion
	References

