
In the 25 years since The Mythical Man-Month what have we learned
about project management?

J.M. Verner* , S.P. Overmyer, K.W. McCain

College of Information Science and Technology, Drexel University, Philadelphia, PA 19104, USA

Abstract

This paper discusses Brooks’The Mythical Man-Month, a landmark work in the software project management field, and compares the
software project management advice given there with practices employed some 25 years later. To find out the state of today’s practice 20
experienced software developers were interviewed regarding their impressions of factors leading to success or failure of software develop-
ment projects. Their observations are compared with the points raised by Brooks in his seminal work.q 1999 Elsevier Science B.V. All
rights reserved.

Keywords: Project management; Software development project; Capability maturity model

1. Introduction

The Mythical Man-Month[1], a landmark work, and a
cornerstone for project management was published in
1975. As evidence of its importance to the software engi-
neering community, we examined the paper’s citation
history. It was first cited in 1976 (six times), and since
then has averaged 23 citations per year, to 1998, when it
was cited 33 times (see Fig. 1).

Not only do authors from information technology cite this
book but authors in many other very diverse fields (includ-
ing business, management, ergonomics, engineering, opera-
tions research, law, planning and development, psychology,
economics, social issues, chemistry, oncology, physics,
anatomy, physiology, energy and fuels, etc.), also reference
it. In all we counted 50 different disciplines referring to this
landmark work in the past 25 years. While investigating
citations for this paper we were so intrigued by the many
diverse kinds of research citing Brooks’ book that we intend
to further investigate why researchers in these other disci-
plines cite it so frequently.1 Authors referencing the work

come from 28 different countries including many whose
native language is not English (USA authors head the list
and are followed by authors from the UK, Canada,
Australia, Germany, the Netherlands and Finland). Many
citations are by authors from academic institutions such as
the University of Maryland, MIT, Naval Postgraduate
School, Syracuse University, Virginia Polytechnic, Univer-
sity of Victoria, Canada, and the University of NSW,
Australia, though authors from over 30 institutions cite the
book at least twice.

2. Brooks’ assessment

Brooks’ work raised so much interest because it was the
first major publication to deal with the difficulties of mana-
ging large software development projects. It describes many
of the pitfalls project managers face when trying to control
such projects. Brooks discusses the fundamental problems
of project management and suggests that more projects have
gone awry for lack of calendar time than from all other
causes combined. He notes in particular that project
management problems stem from the following:

1. Our techniques of estimating are poorly developed and
reflect an unstated assumption that all will go well.

2. Our estimating techniques confuse effort with progress
hiding the assumption that men and months are inter-
changeable.

3. We are uncertain of our estimates and software managers
do not stubbornly support them. We need to develop and

Information and Software Technology 41 (1999) 1021–1026

0950-5849/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(99)00077-4

www.elsevier.nl/locate/infsof

* Corresponding author.
E-mail address:june.verner@cis.drexel.edu (J.M. Verner)
1 The citation data were gathered by searching the combined online files

for Science Citation Index(SCISEARCH) andSocial Science Citation
Index (SOCIAL SCISEARCh) for all articles with at least one citation to
any edition ofThe Mythical Man-Monthin the period 1974–summer 1999.
We are currently conducting a detailed citation content analysis of the
5301 source articles with an eye to exploring the relative impact of the
many sigificant concepts for which Brooks’ work is recognized across
disciplines and across time.



publicize productivity figures and stiffen our backbones
to defend our estimates.

4. Schedule progress is poorly monitored and techniques
used in other disciplines are considered radical here.

5. When slippage is recognized the response is to add
manpower. This makes the problem worse because
adding manpower to a late software project makes it
later (Brooks’ law).

Brooks also included many cautions for project managers
including:

1. Large individual differences exist between high and low
performers, often by an order of magnitude.

2. Development team organization may make all the differ-
ence.

3. The project manager must have a written plan.
4. Written specifications are necessary but not sufficient.
5. A vertical division of labor will result in radically simpli-

fied communication and improved conceptual integrity.
6. Change is inevitable, making change management and

planning imperative.

Since 1975 there have been many attempts to improve our
software project management and software engineering
practices and many useful books and articles have appeared.
There have also been significant advances in software tools
and techniques including the introduction of new require-
ments engineering methods, programming languages,
process improvement guidelines, and CASE tools, etc. We
do not intend to go into any detailed discussion here but note
that Brooks published another much cited paperNo Silver
Bullet (NSB) [2] that discusses the progress made to that
date. He also published an anniversary edition ofThe Mythi-
cal Man-Monthin 1995 that includes the NSB paper plus
three new chapters [3].

But even with all this progress we still read in books and
journals about software development failures. Indeed, a 4 h
workshop session was devoted to the discussion of software

failures at a recent conference (STEP99) [4]. Since unsuc-
cessful projects are likely to get rather less publicity than
those that are successful, we sought information from those
closest to the problem.

3. State-of-the-practice

3.1. Introduction

We were interested in discovering the current state-of-
the-practice of software development in the average busi-
ness organization. What do software practitioners see as the
major factors that lead to the success of the projects they
work on and what do they consider are factors that lead to
unsuccessful projects in their organizations? To answer this
question we have had structured discussions with 20 senior
software development professionals from a number of
different organizations in United States regarding their soft-
ware development practices. These interviews were
conducted independently of any discussion of Brooks’
work.

Our respondents work in organizations that range from
levels 1 to 4 on the SEI capability maturity model (CMM)
scale with from 5 to 500 development personnel involved in
each of the 34 developments summarized below. About half
the projects were viewed as successful by the developers
involved, although one developer did comment that a
project she worked on was considered successful by
management but was one of the most unpleasant projects
she had ever worked on.

We have organized our discussion under the following
headings: (1) management support, (2) customers and
users, (3) requirements and specifications, (4) project
manager, (5) estimation and schedule, (6) development
process and methodology (including risk management and
planning, monitoring and control), and (7) staffing. Within
each of the headings, we review the factors that firstly lead
to project success and then how that same factor may contri-
bute to the failure of a project. We conclude with a discus-
sion on what we think we, as a community, have learned
since Brooks’ landmark paper in 1975.

3.2. Management support

For the 20 successful projects, about half our respondents
mentioned that high-level management support was a key
factor in their project’s success. Comments included:

• we had good support from senior management in all areas
that was more than just lip service;

• we had support from the division head all the way down
to the users;

• senior management held the team to milestones that they
closely monitored;

• senior management made sure that the project was not
held up by things the developers could not control;

J.M. Verner et al. / Information and Software Technology 41 (1999) 1021–10261022

Fig. 1. The Mythical Man-Month number of citations by year.



• there was never a question about what needed to be done
and the evaluation criteria for success; and

• project focus was on measurable business results.

Almost all of the failed projects were affected by the lack
of higher level management support and/or support struc-
tures. In many cases the project manager was completely
left out of the decision making loop, in other cases decisions
were made with no input from the project manager; or the
project manger was not given the authority to make person-
nel decisions. Three of the projects ran into serious difficulty
because of the use of consultants. In one case, the project
manager had no authority over the consultants who subse-
quently left without debriefing the rest of the team. In
another case, there were too many consultants from too
many firms with no one in control of them. Several respon-
dents mentioned that a contributing factor to the failure of
their project was the lack of a champion, while in other
cases politics were the major factor leading to project fail-
ure. High-level management changes led to the failure of
another project while infrastructure changes part way
through project impacted badly on yet another project.

3.3. Customers and users

When describing successful projects, there were few
comments by our respondents regarding customers and
users. Only three respondents commented on the effects of
the users on projects; their comments included:

• we worked closely with business consultants throughout;
and

• the entire user-base had the opportunity of participating
in acceptance testing and volunteers from the various
organizations helped us test the product and gave us
ample feedback which was incorporated into the system.

In contrast, problems with customers and users affected
nearly 50% of our failed projects. Factors that were
mentioned include:

• too little involvement with the user community;
• customers had no confidence in the project manager and

tried to avoid dealing with him;
• the only customers who were interested in the project left

the company;
• the project ran into trouble because of user–staff turn-

over;
• there were just too many managers and customers to deal

with;
• late business partners affected the project badly; and
• there was serious friction between user groups.

3.4. Requirements and specifications

Good requirements gathering was explicitly mentioned
by nearly 50% of our respondents when discussing success-
ful projects; they made comments such as:

• the requirements and design were sound; and
• the requirements were clearly defined.

To get good requirements they mentioned working directly
with users and management with prototypes and/or iterative
refinement.

For the failed projects poor requirements were problems
in 40% of the projects. Our respondents made comments
such as:

• it was a huge project with vague requirements;
• there was no clear vision of the final deliverable; and
• the project was doomed because of poor requirements.

Poor requirements were due mainly to inadequate require-
ments gathering, lack of user input because the customer
would not make the time available, and misunderstandings
by the customer of what the specifications really meant.

3.5. Project manager

For the successful projects, respondents did not often
comment on the project manager. When they did, they
mentioned the presence of a knowledgeable and experi-
enced project manager, or a project manager who was
experienced in the applications area and who had upper
level management support.

Over half of the unsuccessful projects had project
manager problems. There was criticism of the project
manager, the lack of a project manager, and with changes
in the project manager midstream. Most discussion centered
around a project manager who:

• had no experience;
• spent insufficient time on planning the project;
• was unable to provide an integrated project plan;
• was without people skills;
• could not communicate with staff;
• did not set priorities;
• was unable (or chose not to) control the project; or
• was obsessed with micro managing everything.

Other project managers played favorites, did not under-
stand the customers’ problems, showed no appreciation for
staff working up to eighty hours and seven days per week,
took vacations during heavy work periods while denying
vacations to subordinates and labeled any staff member
who complained as a troublemaker.

3.6. Estimation and schedule

When asked about effort and schedule estimation for the
successful projects the following comments were made:

• project estimates were accurate;
• sufficient time was allotted to properly execute all tasks

despite a somewhat aggressive delivery date;
• scope of the initial delivery was reasonably agreed upon

by the business managers despite frequently shifting
business aims; and

J.M. Verner et al. / Information and Software Technology 41 (1999) 1021–1026 1023



• developers were able to estimate their own effort and
develop their own timetable.

One comment that was particularly interesting for a success-
ful project was that though the project began with an unrea-
listic dictated date the project manager had the delivery date
adjusted.

In contrast there were many more comments made
regarding estimation and scheduling for the failed projects.
Nearly 50% of the failed projects had estimation and sche-
dule problems. Our respondents commented in particular on
poor estimates that were made by management with no
input from the project manager or any other member of
the team. This included dictated dates that were decided
before the specifications were complete. They also
described estimates that were inflated fivefold by a manger
who could not bear to deliver the project late, overly opti-
mistic delivery dates, aggressive schedules with many
“extras” forced on to the team and overlapping phases.

3.7. Development process and methodology

When discussing the development process itself, our
respondents described many excellent features of the
processes employed for successful projects. They particu-
larly mentioned factors such as good risk management and
monitoring, frequent project meetings and status reports,
and the use of appropriate lifecycle models. In fact, for
the successful projects there was more emphasis by respon-
dents on the development process and allied factors than any
other factor that leads to a successful project.

With over 75% of the failed projects having problems
with the development process itself it is interesting to
contrast the respondents’ comments on the factors they
felt were instrumental in the failure of their projects. The
major problems discussed were in two main areas, the life-
cycle model used and, monitoring and control of the
process. In addition two of the failed projects had other
problems. One was described as being a research oriented
development and another as having changed tools in the
middle of the project.

3.7.1. Lifecycle methodology
There was much discussion of the methodology used for

the successful projects. All the respondents mentioned
choice of the right methodology as being a relevant factor
in the successful projects. Four respondents mentioned the
use of prototyping for their successful projects, one a phased
approach while the remainder of the successful projects
were developed with the use of a waterfall approach.

Three respondents mentioned that their failedproject had no
methodology at all. These projects were developed using basi-
cally a code-and-fix approach. Other respondents mentioned
that the wrong methodology (waterfall) was used or that the
methodology chosen was not properly applied. One respon-
dent suggested that if only an incremental approach had

been used that the project probably could have been
successful.

3.7.2. Risk management
Several of the respondents discussed risk management

and monitoring as a factor in the successful projects. They
made comments such as:

• potential risks were identified at the outset and incorpo-
rated into the project plan;

• issues were raised as they occurred and were dealt with
immediately so they could not become a problem; and

• expectations and risks were managed.

Interestingly not one of the respondents mentioned risk
assessment, or the lack of it, when discussing failed projects.

3.7.3. Planning, monitoring and control
This factor was singled out for over 75% of the successful

projects. In particular, respondents mentioned:

• the use of project management tools to identify critical
path components;

• planning then replanning when necessary;
• properly set up controls for requirements and/or scope

changes;
• management of user expectations; and
• good project tracking with immediate identification of

slippage with appropriate and timely action taken.

When discussing successful projects respondents
frequently described the reporting systems that were set
up both for the project team members and for management.
Two-thirds of the respondents mentioned communication as
being a key factor in their project success, while several
respondents suggested that effective mechanisms for report-
ing to management and customers were major factors in the
success of their project. Some of the notable factors respon-
dents related to successful projects were:

• effective communication;
• quick daily progress meetings;
• circulation of status reports to the entire team;
• weekly status meetings;
• minimal preparation time for meetings;
• simple reporting that did not take up a lot of time;
• informal meetings with an agenda; and
• well-organized and short meetings.

For the failed projects respondents mentioned three
projects that suffered from insufficient planning or had no
plan at all, and one project where there was abandonment of
planning under pressure. Respondents also mentioned that
many of the failed projects had no change control system set
up, that feature and scope creep were big problems, changes
were not documented, and milestones that were not met with
no subsequent action taken.

J.M. Verner et al. / Information and Software Technology 41 (1999) 1021–10261024



3.8. Staffing

Our respondents singled out staff turnover as being a
major contributor to both the success and failure of projects.
In the successful projects there was either no staff turnover,
or very little staff turnover. Our respondents noted that staff
were not pulled off the project to work on other projects and
that key individuals stayed with the project all the way
through. Every unsuccessful project, on the other hand,
had serious staffing problems. Respondents mentioned
many projects with too many resignations resulting in
poor staff continuity and low morale for the remaining
staff. They also described several instances where there
was too much dependency on a single person who resigned
in the middle of the project.

4. Discussion and conclusions

4.1. Where are we now?

We have had, in theory, over 25 years in which to
improve our ability to manage large software development
efforts according to the principles that Brooks and others
have observed and reported. There have been many other
published accounts of the software engineering process,
how it should proceed, how it should be measured, and
how it should be managed (e.g. Refs. [5–9]). Regardless,
we still experience significant problems with software
development projects, some of which are avoidable, and
some of which, in our opinion, are not. For example, project
“scope creep”, resulting in cost and schedule discrepancies,
can likely be attributed to a poor requirements process, and
is avoidable, or to poor change control mechanisms, which
is also avoidable. On the other hand, the simultaneous
departure of several key personnel will result in setbacks,
which while manageable, are probably unavoidable
although serious consideration by upper level management
to staff retention can help.

The results of our interviews suggest that, in general, both
successful and unsuccessful projects today have some
important variable characteristics, many of which appear
to be under management control. From these observations,
a series of nearly bipolar descriptor pairs emerge along

which the success or failure of modern software develop-
ment effort can be forecast, albeit with a low-level of preci-
sion. These pairs are shown in Fig. 2. These descriptors
represent the critical success or failure factors as reflected
by our respondents, based upon their experience. Of the
factors pointed out by our respondents, Brooks mentioned
several as problems in 1975. The notable ones are estima-
tion, planning, communication/organization, risk/change
management, and specification issues. Our respondents
indicated that successful projects addressed these problems
while unsuccessful projects were unsuccessful because of a
lack of attention to these issues. In other words, projects
heeding Brooks’ advice were more likely to be successful.

There are a number of problem areas mentioned by our
respondents that Brooks did not directly address in his
earlier work. Many of these problems are partially or
completely beyond the control of the project manager,
although all of these problems are such that strategies
should be developed to mitigate the risk of project failure
as a result of emergence of any one of them. Some examples
of these are: (1) stakeholder involvement, (2) upper
management support, (3) staff turnover, and (4) the project
manager’s experience.

Our respondents did not mention Brooks’ law regarding
specific project management response to schedule slips
though it is likely that project managers still add manpower
in an attempt to alleviate schedule pressure. No mention was
made of assessing specific productivity of individual perfor-
mers to address Brooks’ caution about discrepancies in
productivity between high and low performers.

4.2. Conclusions

As reflected in the comments of our respondents, some
software organizations have heeded the advice of Brooks
and others, and have significantly improved their ability to
successfully manage complex software development
projects, while some have not. With the change in the nature
of computing since 1975, have come many new problems
related to end-users, their level of technical sophistication,
and the high level of complexity of the development envir-
onment. As we face the challenges of managing COTS,
object-oriented and yet-to-be-conceived developments,
and of measuring process and productivity in these new

J.M. Verner et al. / Information and Software Technology 41 (1999) 1021–1026 1025

Fig. 2. Project success and failure factors.



paradigms, it appears that the same issues will likely resur-
face. Many of these issues are those that can be found in any
project management environment and are the same nine
factors listed in Fig. 2.

The idea that so many project managers are apparently
unprepared to deal with these issues calls into question their
preparation for management. Until software project
management is viewed as both a technical and managerial
discipline requiring a formal graduate-level education and
requisite experience for its practitioners, we are likely to
continue to encounter many of the same problems that
Fred Brooks warned us about so many years ago. However,
other problems have emerged, and until senior business
managers and customers/users are made aware of their
roles in a software development project we will still have
project failures due to factors completely beyond the project
manager’s control.

References

[1] F.P. Brooks Jr., The Mythical Man-Month, Essays on Software Engi-
neering, Addison-Wesley, Reading, MA, 1975.

[2] F.P. Brooks Jr., No silver bullet—essences and accidents of software
engineering, Computer 20 (4) (1987) 10–19.

[3] F.P. Brooks Jr., Anniversary Edition of The Mythical Man-Month,
Essays on Software Engineering, Addison-Wesley, Reading, MA,
1995.

[4] STEP99, Software Technology and Engineering Practice, Pittsburgh,
August 1999.

[5] S. McConnell, Rapid Development, Microsoft Press, 1998.
[6] A.P. Sage, J.D. Palmer, Software Systems Engineering, Wiley/Inter-

science, New York, 1990.
[7] B.W. Boehm, Software Engineering Economics, Prentice-Hall, Engle-

wood Cliffs, NJ, 1981.
[8] S.J. Andriole, Managing Systems Requirements: Methods, Tools, and

Cases, McGraw-Hill, New York, 1996.
[9] N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous and Practical

Approach, Thomson Computer Press, UK, 1996.

J.M. Verner et al. / Information and Software Technology 41 (1999) 1021–10261026


