Design, Implementation, and Evaluation of a

Revision Control System

Walter F. Tichy

Department of Computer Sciences
Purdue University
West Lafayette, Indiana 47907

CSD-TR-397

ABSTRACYT

The Revision Control System (RCS) is a software tool that
helps in managing multiple versions of text. RCS automates the
saving, restoring, logging, identification, and merging of revisions,
and provides access control as well as access synchronization. It is
useful for text that is revised frequently, for example programs,
deocumentation, and papers.

This paper presents the design and implementation of RCS.
Both design and implementation are evaluated by contrasting RCS
with SCCS, a similar system. SCCS is implemented with [orward,
merged deltas, while RCS uses reverse, separate deltas. (Deltas
are the differences between successive revisions.) It is shown that
the latter technique improves runtime efliciency, while requiring
no extra space.

Keywords: Experimental computer science, programming eaviron-
ments, software maintenance, software tools, version control.

March 25, 1982

Design, Implementation, and Evaluation of a

Revision Control System

HWalter F. Tichy

Department of Computer Sciences
Purdue University
West Lafayette, Indiana 47207

CSD-TR-397

1. Introduction

An important characteristic of software is that it changes constantly. The
plasticity of software {osters a mode of development in which modifieation of a
released software product is the norm rather than the exception. Some of the
changes are necessary to correct errors, i.e., to meke the pregram consistent
with its apecifications. Other changes move a software system away from its ori-
ginal specifications. "Improved"” versions of heavily used software products
seem to arise almost spontaneously. This latter phenomenon, dreaded by every
system builder, arises because a successful preduct, depended upon by a large
user community, will always be applied in unexpected ways or unforeseen situa-
tions, generating the desire and even necessity to add all kinds of extensions,

bells, and whistles.

‘The constant modifications produce a family of related software systemns. As
the size of the family grows, the management of the family becomes more and
more difficult. Management is necessary for keeping the cost of the evolving
family down and for averting chaes. The cost can be limited by avoeiding duplica-
tion of effort and by configuring every family member from as many standard
parts as possible. Skillful management, design, and implementation must be

combined to prevent chaos and to keep the family together.

This paper presents the Revision Control System (RCS), a software tool that
helps in contrelling the evolution of software system families. RCS stores and
retrieves multiple revisions of program and other text, It logs changes, identifies

revislons, merges revisions, and controls acecess to them. The space everhead of

-2.

storing multiple versions is minimized by saving only the differences between

successive revisions.

The basic idea of RCS is not new. There are several other systems that have
a similar purpose, for example SCC3[Roc75a], and SDC[Hab79a]. Most of the
early revision control systems are limited in that they treat each system part in
isoclation and do not consider configurations of parts. RCS avoids thig limitation,
and corrects sorme other design flaws. RCS is also irnplemented in a novel way,
namely with reverse, separate deltas, which improve its performance consider-
ably.

In SBeclions € and 3 we present desigh and implementation of RCS. Section
4 contains the evaluation. We compare RCS with SCCS, and perform an experi-
ment to demonstrate that reverse, separate deltas (as used in RCS} can lead to
better performance than forward, merged deltas (as used in SCCS), while cost-
ing almost no extra space. The evaluation should be of value to designers of

sirnilar systems.

2. Design of RCS

The user interface of RCS has been tuned for the UNIX programming
environment[Ker79a]. However, readers not familiar with UNIX should be able to
follow the description without problems, since the basic ideas are independent

of a particular operalting system.

Suppose a programmer wishes to put a flle mod containing program text
under centrol of RCS. He may plan a series of modifications, from which it would
be difficult to recover without a back-up copy in case the modifications go
wrong. It could also be that the programmer anticipates numerous revisions of
the program, and that he wants to save them in a space efficient way. Whatever

his motivation, he issues the following command:
ci -i mod

Ci, short for checkin, deposits revisions inte RCS files. RCS filles contain multiple
revisions of text that are managed by RCS. In this example, the option -2 indi-
cates that an RCS file for mod must be initialized. i therefore creates a file
mod. v and deposits inte it the contents of med as revision 1.1. By convention, ail
RCS flles end in .v. (% records the date and time of the deposit as well as the
programrer's identification. If the -i option is present, it also prompts for a

short description of the program. The description can be used as part of the

program deocurnentation.
When it becomes necessary to change mod, the programmer executes the

checkout command
co mod

This command retrieves a copy of the latest revision stored in mod.» and places
it into the flle mod. The programmer can now edit, compile, test, and debug
mod. At all times, he is assured that the old version of his program is still avail-
able. When he thinks that his modifications have led to a new version that is

worth saving, he can check it in by executing ¢z again. The command
ci mod

deposits the contents of vnod as a new revision into mod.v, increments the revi-
sion number by one, and recerds date, time, and programmer id. i also
premptis for a log message summarfzing the change. At the time of deposit, the
information about the change is still fresh in the programmer’s mind, and the
prompting is a gentle reminder to supply it. One can later read the complete
log of all revisions and figure out what happened to a program without having to
compare source code listings.

It is also possible to assign a revision number explicitly, provided it is
higher than the previous ones. For example, if all existing revisions are num-
bered at level i (i.e., if they have numbers of the form 1.1, 1.2, ete.), then the

command
ci -r2 mod

starts pumbering at level 2 and assign 2.1 to the new revision. Correspondingly,

co can be instructed to retrieve revisions by number, The command
co -r2.4 mod

retrieves the latest revision with & number between 2.1 and 2.4. Thus, revision
numbers in the co command are actually cutoffl numbers. Similarly, revisions

cah be retrieved by cuteff date. The command

co =-d19/2 mod

retrieves the latesl revision that was checked in on or before Feb. 19, 23:59:58

o'clock of Lthe current year.

- -

It 1s also possible to retrieve revisions by author and state. The state indi-
cates the statlus of a revision, By default, the state is set to ezperimental at
checkin time. A revision may be promoted to the status stable or released by
changing its state attribute. Co retrieves revisions according to any combina-

tion of revision number, date, author, and state.

So far. we have been inaccurate about one detail, namely about the locking
of revisions. RCS must prevent twe or more persons from depositing competing
changes to the same revision. Suppose two programmers check out revision 2.4
and modify it. Programmer A deposits his revision first, and programmer B
somewhat later. Unfortunately, programmer B knows nothing aboul A's changes.
so the eflect is that A's changes are "undone” by B's deposit. A's changes are

not lost since all revisions are saved, but they are confined to a single revision.

This conflict is prevented in RCS by locking. In order to check in a new revi-
sion, a programmer must lock the previous one. At most one programmer at a
time may lock a particular revision, and only this programmer may append the
next revision to it. Locking can be done with both co and ¢i. Whenever someone
intends to edit a revision (as opposed to reading or compiling it), he should
check it out and lock it by using the -l option on co. On subsequent checkin, c2
checks for the existence of the lock and then removes it. If the programmer
wants to check in a revision but wishes to continue medifying it, he can use the
-l option on ci, which moves the existing lock to the newly checked-in revision,
and suppresses the deletion of his working file. This shortcut saves an exira co

eperation.

There is one exception to this rule: The owner of an RCS file does not need
to lock. This exception simplifies the commands for RCS files if they are Lhe
responsibility of a single programmer. In case an RCS file is updated by several
people, the owner of the flle should always lock although locking is not enforced,
or he should be someone who is not permitted to deposit new revisions. Other-

wise, a conflict situation as outlined above could arise.

2.1. The Revision Tree

The above situation of two programmers modifying the same revision should
actually be handled with a branch in the development. If both programmers
want their modifications to remain separate, then RCS can be instructed to
maintain two revisions with a common ancestor. These two revisions may again

be modified several times, giving rise to a tree with two branches. RCS allows

-5-

the construction of a tree of revisions and provides facilities for joining
branches,

An RCS revision tree has a main branch, called the frunk, along which the
revisions are numbered 1.1, 1.2, ..., 2.1, 2.2, ete. A revision may sprout one or
more side branches. Branches are numbered fork.1, fork.2, ..., etec. where fork
is the number of the fork revision. Revisions on a branch are again numbered
sequentially, using the branch number as a prefix. Branch revisions may sprout
additional branches. Figure 1 illustrates an example tree with 4 branches (nol
counting the trunk). Revisions and branches may actually be numbered in arbi-

trary inerements. For instance, revision 3.2 may directly precede revision 3.8.

1.2.1.3 1.3.1.1 2.1 1.2.2.2 1.2.2.1.1.1

-~ -~

I I | I |
I I I I |

Fig. 1: Arevigion tree with 4 side branches.

Revisicns and branches may be labelled symbolically, For instance, branch
1.3.1 could be labelled femp. Revisions on a labelled branch can then be
identified using the branch label as a prefix. In our example, revision 1.3.1.1 is
the samme as temp. 1. It is also possible to give a symbolic name to an individual
revision. This label can then serve as a prefix for branches starting with thal

revision.

Symbolic labels are mapped to revision nurnbers and have a variety of uses.
For instance, branches can be labelled with the identification of the programmer
working on them such that a programmmer need not remember "his" branch
numbers in several RCS files. Special configuration labels can be assigned to
branches or revisions in several RCS files in such a way that a single checkout
command can collect the proper revisions {or a whole configuration. For exem-

ple, assume that a system family consists of RCS5 fles fiv, ..., fr.v. Assume

-8-

furthermore that we labelled a specific branch in every file with configz if the

revisions on this branch belong to configuration configz. Then the command
co -reeniigx *.v

retrieves the latest revisions of all parts that make up configz, alihough the
actual revision numbers may be non-uniform. Since several labels may map to
the same revision number, shering of parts among several configurations is pos-

sible,

Every revision in the tree consists of the following attributes: a revision
number, a checkin date and time, the author's identification, a state, a log mes-
sage, and the actual text. All these items are determined at the time the revi-
sion is checked in. The revision number is either given explicitly in lhe ¢i com-
mand, or it is determined by incrementing the number of the revision that the
programmer locked previously. The programmer must hold a lock for the latest
revision on a branch if he wants to append to that branch, or he must be the
owner of the RCS file and the latest revision on that branch must be unlocked. A
new revision must be appended to an existing branch or starl a new branch.
Insertion in the middle of branches is not allowed. Starting a new branch does
not require a lock.

We discussed the state attribute and the log message already. There is no
fixed set of states, but co has an option to check out revisions according to their
state attributes. The important aspecl of the log message is that RCS reminds
the programmer to supply the information. Of course, an uncooperative person

may answer with an empty message, but his name is recorded anyway.

The bulk of a revislon is contained in the text attribute. RCS3 stores only
deltas, i.e., differences between revisions. From the user’s point of view, the
differences are completely transparent; RCS encourages him to think in terms
of complete revisions.

There is also some administrative data stored in an RCS flle. This data con-
sists of a table mapping symbolic labels to revision numbers, a list of locks,
which are pairs of programmer identifications and revision nurnbers, -and an

access list. The access list specifles who may alter the RCS file. If the access list

-7 -

is empty, everybody with normal write permission [or the flle may change it.

2.2, Auxiliary RCS Commands

There are twe auxiliary RCS commands. Flog displays the log entries and
other information about revisions in a variety of formats. Fes changes RCS file
attributes, XCS ean be used to shrink and expand the access list, to ehange the
symbolic labels, te reset the state atiribute of revisions, and to deiete revisions.
It also has a facility to lock and unlock revisions. as well as to "force” locks. A
programmer forces a lock if he removes a lock held by somebody else. Forcing
of locks is sometimes necessary if a programmer forgets to release his locks.
Fes allows the foreing, but also sends a mail message to the programmer whose

lock was broken,

A special option on the co command permits the joining of revisions. Revi-
sions 71 and 78 are joined with respect to revision 7€ by applying to a copy of 73
all changes that transform 72 inte 71. If 7! and r3 are on two separate branches
that have r2 as a common ancestor, joining has the effect of incorporating into a
copy of 73 all changes that lead from 72 to 71. The resulting revision can be
edited or checked back in as a new revision. Cp will inform the user if there is
an overlap between the changes from r& to 7! and from r2 to r3. In that case,
the user has to examine and edit the resulting revision. (Revision 2 may actu-

ally be omitted; co finds the youngest common ancestor automatically.)

The join operaticn is completely genereal in that it may be applied to any tri-
ple of revisicns. A less obvious application ig if v < ¥2 < 73 on the same branch.
In this case, joining 71 and 73 with respecl to 72 has the effect of undoing in a
copy ol 73 all changes that led from 71 to 72 There are also multiple joins, in

which the result of one join becomes revision r1 of the next join.

LY

2.3. Identification

In a system family of moderate size, it is desirable to "stamp" every revi-
sion with its number, creation date, author, etec. The stamping provides a means
of identification and is done fully automatically by RCS. To obtain a standard
identification, the source text should contain the marker #ffeader$ in a con-
venient place, for exarnple in a comment at the beginning of the program. H
this revision is later checked out, the marker will be replaced with a character

string of the format
8Header: RCSflle revisionnumber date time author stated

where the six fields contain the actual values. Assume a revision checked out
with such a header has number 1.2. The programmer may edit this revision and
check it back in with number 1.3. He need not update the above stamp. because
RCS does this antomatically. Whenever revision 1.3 is checked out, co searches
for markers of the form #Header: ...% as well as FHeaderd and replaces them
with the proper stamp. Note that the updale of the stamp must be done at
checkout and not checkin time, because the stale of a revision may change over
tirne.

Additional markers like 34uthor8, BDate8, BRCSfiled etc., generate por-
tions of the $Haoder$ stamp. The marker Log has a special function. It aceu-
mulates the complete log of a given branch in the revision itself. Whenever co
finde the markers log or $log: ...$ it inserts the current log message right
after it, preceded by the header discussed above. Thus, when a programmer
checks out a revision for modiflcation, the whole history is readily available in
the souree file. For example, revision 1.3.1.1 in Figure 1 could contain the follow-

ing history.

-g-

BLleg: checkout.v &
1.3.1.t BR2/01/20 20:32:11 wit
started a new branch for PDP-11 version with smaller table.

1.3 B82/01/05 10:03:23 wit
added option -p to co for printing to stdout

1.2 B1/12/20 21:44:23 pjd
added check for multiply defined symbolic names

1.1 B1/12/01 03:20:18 wit

initial revision
Note that if a revision is checked out, the log contains all entries up to (anc
including} that revision. Since the revisions are actually stored as deltas, eacl.
log entry occurs in only one deita. Thus, the space required for accumulating
the log is negligible.

The identification technique can also be used to stamp object flles. This is

done by placing some of the markers discussed above into character strings
that are compiled into the object modules. For example in the language C, the

deciaration
char RCSid[] = "$Header3":

initializes the array RCSid with the standard identification string. This string
will appear in the object module after compilation. A third auxiliary RCS com-
mand, ident, extracts all such strings from a compiled and linked progranm.
Thus, It is extremely simple to determine which revisions and which modules
went into a certain software system. Such a facility is invaluable for prograrm

maintenance.

3. Implementation of RCS

KCS stores deltas for conserving space. The grain of change is the line, i.e.,
if any single character is changed on a line, RCS considers the whole line
changed, We chose this approach because UNIX provides the program diff, which
compules deltas on a line-by-line basis. Diff uses hashing and is quite fast, but
may occasionally fail to find the minimum difference. In practice, this
deficiency causes no preblem, since the changes from one revision to the next

normally affecl only a small fraction of the lines.

-10-

Another implementation decision concerns how to store the deltas. One can
elther merge the deltas or keep Lhem separate. SCCS uses merged deltas, RCS
separate deltas. Merged deltas work as follows. Suppose we store the initial revi-
slen unchanged and compute the delia for the second revision with diff. Assume
the deita indicates that a single block of lines was changed. Merging the delta
into the initial revision invelves marking the original block of lines ag excluded
from revision 2 and higher, inserting the block of replacement lines {which may
be longer, shorter, or empty) right after the first block, and marking the second
block as included in revision 2 and higher. Merging additional deltas works
analogously, except that excluded and included blocks may overlap. To regen-
erate a revision, a special program scans through the revision flle and extracts
all those lines that are marked for inclusion in the desired reviSion. For a

detailed discussion of this technique see [Roc75a].

Merged deltas have the property that the time for regeneralion is the same
for all revisions. The whole revision file must be scanned for collecting the
desired lines. If all revisions are of approximately the same length, the time for
copying the desired lines into the output file is also the same for all revisions.
Thus, regeneration time is a function of the number of revisions stored and the
average length of each revision, However, there is a high cost involved in merg-
ing a new delta. First. the old revision must be regenerated to let diff cormpute
the delta. Next, the delta is edited into the revision file. This operation is com-

plicated, because it must consider overlapping changes and branches.

Separate deltas are conceptually simpler and have some performance
advantages if arranged properly. They work as follows. Suppose we store the ini-
tial revision unchanged. For the second revision, diff produces an edit-script
that will generate the second revision from the first. This script is simply
appended to the revision file. On regeneration, the initial revision is extracted
into a temporary file, a simple stream editor is invoked, and the edit-script is
piped inte the editor. This operation regenerates the second revision. Later

revisions are stored and regenerated analogously.

The above method applies deltas in a forward direction. The initial revision

is stored intact and can be extracted quickly, but all other revisions require the

ke L-If-

-11 -

editing overhead. Since the initial revision is accrssed much less frequently than
the newest one, the deltas should actually be applied in the reverse direction. In
such an arrangement, the newest revision is stored intact, and deltas are used
to regenerate the older revisions. RCS uses this idea. Reverse deltas are not
harder to implement than forward deltas, since diff generates a reverse delta if

the order of its arguments is reversed.

The advantage of separate, reverse deltas is that the revision accessed
most often can be extracted quickly - all that is needed is a copy of a pertion of
the revision file. Regeneration time for the newest revision is merely a function
of its length and not of the number of revisions present. Adding a new revision is
also faster than with merged deltas. First, generate the latest revision (which is
fast) and execute @iff to produce the reverse delta. Next, concatenate the new
revision, the reverse delta for the previous revision, and the remaining deitas.

The concatenation is much quicker than the merging.

The disadvantage of reverse, separate deltas is that the regeneration of old
revisions takes longer than with merged deltas. The problem is that the applica-
tion of n deltas requires » passes over the latest revision. Alse, the editing cost
is incurred every time an old revision is regenerated, whereas merged deltas
require editing only once per delta during the merge. Section 4 presents data
to determine how much more often the latest revision should be accessed to

obtain a net saving in processing time.

Branches need special treatment if we use reverse deltas, The naive sclu-
tion would be to keep complete copies for the ends of all branches, including the
trunk. Clearly, this is unacceptable because it requires too much space. The
following arrangement solves the problem. The latest revision on the trunk is a
complete copy, the deltas on the trunk are reverse deitas, but deltas on side
branches are forward deltas. Regenerating a revision on a side branch proceeds
as follows. First, copy the latest revision on the trunk; second, apply reverse del-
tas until the fork revision for the branch is obtained; third, apply forward deltas

until the desired revision is reached.

RCS uses this scheme. Figure 2 shows the tree of Figure 1, with each node

represented as a triangle whose Lip peints in the direction of the delta. Note

-12-

that regenerating a branch revision always incurs the editing overhead. How-

ever, if active branches appear towards the end of the trunk, only a few deltas ‘

need to be applied.

/N '\ | | /N /N
/N /X | 2.1 | /N /N
/ \ / \ | | / N\ / \
/1.2.1.3\ /1.8.1.1\] | »n.2.2.28n /1.2.2.1.1.1\
I | | I I
I I | I I
/N | mmmeme-- /N]
/ N\ | 1.3/ /N I
/ N e \ / / N--serommme
/l.2.1.1\ N/ /1.2.2.1\
_________ '\ / —— e m———
| I I
I | I
| e |
| \ 1.2 / |
______________________ \ Jomm—————
N/
N/
I
I
AN %
\ /
N/
N/
Fig. 2: A revision tree with forward and reverse deltas.
4. Evaluation

In this section, we compare design and performance of RCS and SCCS. Cur
purpose is not to criticize the developers of SCCS. SCCS has proven to be an
enormously useful tool, and the basic idea of keeping a set of differences has
withstood the test of time. We merely wish to discuss some annoying shertcom-
ings of SCCS and how future revision conlrol systems should be improved to

become even more useful. We also present performance measurements that

-13 -

make the implementation tradeoffs clear.

4.1. Design

A frequent source of errors in SCCS3 is that all commands require the revi-
sion file as a parameter, although the user would rather specify the working file.
The revision flle contains the revisions and is managed by SCC3S; the working file
contains a single checked-out revision and is edited by the user. Since the user
is focusing his attention on the working file, SCCS should permit him to supply

the working file name.

To avoid this problem, the user of RCS can actually specify the working file,
or the revision file, or both. The last form is useful if neither the revision file nor

the working file are in the current directory. For example, the RCS command
co pathl/mod.v pathZ2/mod

extracts a revision from mod.v in directory path? and places it into file mod n
directory paihZ. 1f Lthe revision flle is omitted, the RCS cornimands first look for
the revision file in the subdirectory RCS and then in the current directory.
Thus, the user need not clutter his working directories with revision flles. The
file naming conventions of RCS have been designed such that it can be combined
with the tool MAKE[Fel79a). MAKE performs automalic system regeneration
after changes and depends on flle name suflixes. SCCS was built before MAKE

and the two were never integrated properly.

The access control in SCCS is sometimes too strict. If a revision is locked, it
is impossible to force the lock unless one has extra privileges. Since the forcing
of locks is occasicnally necessary, all users normally acquire that privilege.
However, forecing a lock by privileged users leaves no trace. We chose a more
flexible approach for RC3. Foreing a lock is possible with a special command, but
it always leaves a highly visible trace, namely a message in the mailbox of the
user whose lock was broken. Thus, RCS allows work to proceed while delaying

the resolution of the update conflict, instead of vice versa.

Automatic identification of revisions based on special markers in the source

file is another idea thal coriginated with SCCS. However, the identification

-14 -

mechanism in SCCS is awkward to use. First, the markers are not mnemonic and
therefore difficult to remember. Second, the SCCS checkout command
overwrites the marker with the actual value. Thus, the location of the original
marker is lost, and the value cannot be updated automatically on later
checkouts, SCCS therefore offers a special case: If the checked-out revision is
locked for editing, the expansion of the markers is suppressed. This option
keeps the markers in place, but has two other disadvantages. First, revisions
that are checked out for editing are not stamped. Thus, the revision being
modified contains no identification at all. Second, sometimes one checks out a
revision unlocked, but edits it anyway. This happens in a number of cir-
cumstances. In some cases, one intends to make only small a modification,
expecting to throw it away when done. Unfortunately. these little projects tend
to grow such that it becomes werthwhile to save the modifications. In other case,
one checks out a revision unlocked because one lacks the locking privilege, or
because the revision has been locked for too long without progress. Rather than
wait until the respensible persen returns and resolves the cenflicls, one checks
out a revision unlocked and proceeds with modifications Lo meet one's schedule.
Now one is forced to remove the old stamps and reinsert the markers by hand,
Often, these annoying corrections are simply not done, leaving outdated stamps
around. Because of these problems and complications, the identification

mechanism in SCCS is often not used in practice.

RCS avoids all these problems. The markers are always expanded correctiy,
and they are easy to remember. RCS also provides a facility for accumulating
the log in the source file.

SCCS provides no syrmbolic revision names, making it awkward to specify
which revisions constitute a specific configuration if the revisions do not share
the same numbers. One can usually manage to keep revision numbers and dates
in synchrony for the initial release. However, as soon as maintenance becomes
necessary while the next release is already in development, branches are intro-
duced and the numbering becomes non-hemogeneous. Symbolic names are a

clean way of restoring order in such situations.

=15 -

SCCS requires the user to know that revisions are stored as deltas, The
user can specify explicitly which deltas to exclude or include during a SCCS
checkout operation. This low-level facility is needed because SCCS provides no
commands for merging revisions. In RCS one need not consider such implemen-
tation deteils. One can specify the merging of two branches directly, without

having to figure out which deltas to exclude or inciude,

In ail fairness, we need to point out that SCCS offers many features that are
missing from RCS. For example, SCCS performs complete checksumming, and
provides flags that control the creation of branches and the range of revision
numbers. We feel that many of these features are unnecessary and contribute to
the bulkiness of SCC3. We realize. however, that some of these features may
creep into RCS eventually. In any case, the relative performance of RCS and
SCCS, to be discussed in the next section, should not be affected by the pres-
ence or absence of these features, since they require negligible time and space

for processing. 1

4.2. Performance

In this section, we analyze the relative performance of reverse, separate
deltas (as used in RCS) and forward, merged deltas (as used in SCCS). The meas-
urements were collected on a VAX/11-780 with 4 Mbytes of main memory, run-
ning version 4.1 of the Berkeley Unix. The measurements are load, machine, and
operating system dependent. One should therefore consider performance ratios

between RCS and SCCS rather than the abscolute numbers.

Fan exceplion is perhaps checksumming. RCS co derives its speed advantage from process-
ing only part of the RCS flle. However, a full cheeksum would require processing the com-
plete file. An ineremental checksum, one for each delta, is probably more appronriate for
sepaate deltas, and would preserve the speed advantage of RCS co,

- 18-

4.2.1. Design of the Experiment

To obtain useful data, we had to construct a benchmark file with the aver-
age number of revisions, the average number of changes per revision, and the
average number of lines per revision. Since there is only little data available on
the use of RCS at this time, we based our measurements on statistics reported
for SCCS[Roc?5a]. Rochkind observed that the average length of a single revi-
sion is about 250 lines. This was confirmed independently in[Ker79a], where the
average UNIX flle length was found to be slightly over 240 lines. Rochkind furth-
ermore reports that the average number of revisions is 5, with a space overhead
of 35 percent. Assuming that all revisions are of the same length (this assump-
tion will be justified below), then each of the 4 changes (exciluding the initial

one) accounts for 35/4 percent of the initial revision, or 22 changed lines.

The missing statistics are the average line length and the average length of
a block of changed lines. This data was derived from our environment. One of
the most popular editors on our YAXes is one that keeps a backup copy for every
file touched. We wrote a program that finds pairs of backup copies and edited
versions and compares them. A sample of about 900 flles revealed the following.
The average length of a changed block of lines was approximately 6 lines, and
the average line length was 33 characters. To our surprise, we alse found that
the average file length was 243 lines and the average number of lines changed
was 19. Such a close match justifies that we "mix" observalions from two

different environments to synthesize the test data.

Our data also showed that backup copy and edited version were of almost
the same length. This means that modifications do not change the file size

significantly, and our assumption of equal length of all revislons is justified.

Based on this data, we created 2 sets of 10 benchmark files containing 1 to
10 revisions each. One set was for RCS, the other for SCCS. The initial revision
consisted of 250 lines of 33 characters. In all other revisions, we changed a total
of 22 lines in 2 blocks of 5 lines and 2 blocks of 6 lines. These blocks were equally
spread through the file, and did not overlap until the 7th revision. The effect of
overlapping changes is probably insignifleant, because no serious degradalion in

performance was cbserved for the 7th and higher revisions. An exception is

=17 -

SCCS ei, which seems to be sensitive to overlaps (see below).

We performed initial timings of SCCS and RCS operations. These showed
that the SCCS echeckout operation was on the average 50% slower than the
equivalent RCS operation for the latest revision. Due to the inaccuracy of the
UNIX clock, these measurements were consistent only for a lightly loaded sys-
tem. If the system was heavily loaded, the timings varied widely. To obtain more
accurate measurements, we increased the size of the revisions 20 times. Thus,
the initial revision was 5000 lines, and a single change involved 440 lines in 4
blocks. All timings given below were measured with those enormous files. Con-
sequently, the measurements are greatly exaggerated, and one should only con-

sider performance ratios rather than the absolute numbers.

In all comparisons, every pair of points was obtained by executing the
corresponding RCS and SCCS operations alternately 10 times and taking the
average. Thus, changes of the system load affected both SCCS and RCS com-
mands equally. The curves shown were measured with a single user logged on.
The maximum variation in the measurements was less than 5% of the average
and considered insignificant. We took similar sets of measurements on a lightly
loaded (about 10 users) and on a heavily loaded system (over 30 users). On the
lightly loaded. system, the times required were slightly higher, and the curves
were no longer smooth. However, because of the alternate execution of RCS and
SCCS operations, the ratios between corresponding operations were the same as
in the single user case. On the heavily loaded system, the measurements varied
considerably with changing load conditions, and were up to 30% higher than on

the single user system. Still, the ratios stayed about the same.

1.2.2. Results

Figure 3 shows the time required to check out the latest revision as a func-
tion of the number of revisions present. Recall that the latest revision is stored
unchanged by RCS. Consequently, the time required by the RCS co operation
stays approximately constant, no matter how many revisions are stored. SCCS,
on the other hand, has to scan all revisions. The graph shows that the ratio

between SCCS co and RCS co increases steadily, until SCCS co takes about twice

18

as long as RCS co. For the average case with 5 revisions, SCCS co is about 80%
slower than RCS co.

Figure 4 shows the timme required te check out a revisicn ag a function of Lthe
number of deltas applied. This was done on the benchmark file with 5 revisions.
The time required for SCCS co remains constant, because 3CCS reads the com-
plete flle, independent of the revisicn retrieved. RCS co exhibits quite a
different behavior. RCS co is faster for the latest revision, but slower for all oth-
ers. The two curves cross over for the predecessor of the latest revision. The
stope of the curve for RCS co reflects the time for the editing passes over the
file.?

Figure 5 shows the time required to add a new revision te the trunk, as a
function of the number of revisions present. (Because of the long executions
times, 5 rather than 10 runs per data point provide enough accuracy. The max-
imum variation is within 1% of the average for all but the first pair of points.)
BCCS ci requires 20X to 30% more time than RCS ci. Computing the delta
accounts for about 60% of RCS ci. Appending Lo side branches should be more
expensive for RCS ci, because of the editing required to generate the branch tip.
The deterioration in perfermance of S3CCS ¢i between revision 8 and 7 could be

due to the overlapping changes in revisions 7 and higher.

Our data demonstrates that reverse, separate dellas outperform merged,
forward deltas if the latest revision is accessed more often than all others. Con-~
sidering only the checkout operation, RCS and SCCS require about the same
total time if the latest revision is checked oul slightly over twice as often as the
others (assuming equal frequency for all others). If this ratio is lower, SCCS-
style deltas are preferable, otherwise RCS-style deltas. We believe that the ratio
of 2/1 is easily exeeeded in practice, because one needs to recover old revisions

only rarely.

2] T C .

An earlier implementation invoked & general purpose text editor, ed, as a separate process
to perform the regeneration of old revisions., This resulled in an enormous performance
penalty: 3 to 5 Limes Lhe cost of SCCS col

lg

4.3. Future Work

RCS has been instrumented to collect statistics about its use. In particular,
it records the number of deltas that need to be applied to generate a desired
revision. This data will show whether the initial revision is accessed frequently
enough to warrant the use of reverse deltas. We are also collecting data on the
average nurmber of revisions per revision file. We believe that an averasge of 5 is
too low. For example, Glasser[Gla7Ba] reports an average of 6.6 revisions per
SCCS file. We hypothesize that the number of revisions present is actually a

function of the age of the file.

The ideal behavior of RCS would be if the checkout time for older revisions
remained coenstant, just as in SCCS. One way Lo achieve this would be to keep the
latest revision intact, but te merge the edit scripts. This technique would give
fast performance for the latest revision, and require a single editing pass for all

others.

&. Conclusions

We presented design and implementation of a revision control system, and
evaluated it against a similar system. We showed experimentaliy that an imple-
mentation with reverse, separate deltas may outperform one with forward,
merged deltas. The experiment consisled of timing various operalions on a set

of bennchrnark fles.

Because of the lack of adequate metrics, the user interface design could
only be evaluated subjectively, although the design improverments may turn out

to be more valuable than the performance improvements.

Acknowledgments: Many people contributed to this project, and I am grate-
(ul to all of them. Special thanks go to Bill Joy and Eric Allman from Berkeley,
who thoreughly criticized my design and made sure] did not make an undesir-
able system. David Arnovitz implemented 2 (!) protoiypes, and Tim Korb and

Stephan Bechtoelsheim patiently used RCS despite some problems at first.

-20-

References

Fel79a. Feldman, Stuart 1., “Make - A Program for Méintaining Computer Pro-
grams," Software — Practice end Ezperience 9(3) pp. 255-265 (March 1979).

Gla7Ba. Glasser, Alan L., "The Evolution of a Source Ceode Control System,"”
Saftware Pngineering Notes 3(8) pp. 122-125 (Nov. 1978). Proceedings of
the Software Quality and Assurance Workshop.

Hab79a. Habermann, A. Nico, A Software Development Control System, Techni-
cal Report, Carnegie-Mellon University, Department of Computer Science
{Jan. 1979).

Ker79a. Kernighan, Brian W. and Mashey, John R., ‘‘The UNIX Programming
Environment,"” Software — Practice and Ezperience 9(1) pp. 1-15 (Jan.
1979).

Roc'?ba. Rochkind, Marc J., “The Source Code Ceontrol System,'" [EEE Transac-
tions on Software Engineering SE-1(4) pp. 364-370 (Dec. 1975).

+ 4
[s]

1% +

3 4

v T fLL cw

[

o ¢+

9 +

g T Sces cw
1-@@@@@@..®@Ros;a
LI o * * *RCS co

c +

‘* e =

s 4

PO 3

-

L - | 1 + 1) t t L) t }]

| L3 y 3 (7 &] o #df rensiows
P e et

Figd : Time for dtechswt of lalest revision

+
Cs3 T
o =
25 4+ s co
20
is 4+
lo ¥ ;/ + . . - 5Cc5 co
5 -
4 ' t $ t -
:) 3 4 [e ﬂj ctelfan

Fug-lt o Teme for checlownt s a fumchin of He
muﬂ-«,éw 4 Mﬂo WCG(.

il |
Isi4
30+ /; — S5CCS o
Lo) o
o + - - ¥ ¥ — “ ~ RCS ¢t
ta +
19
lo ¢
T e ol padion
J t ¥ i ; '; L +)] —:'—P
[L 3 (" I+ t T & i 19 % 5 redcou,
G“{‘#(/I‘ C/&{(_,-&,L:M

F'\.'%.S-: T e OC)"' el on o pvw»u(‘wn Ji e
Wb oy 0} rears Lown p rrewst,

-po

Appendix A- How Lo get slarted with RCS _
Suppose you have a flie f.c that you wish to put under control of RCS, Invoke
ci -1 fe
This command creates f.v and stores f.c Into it as revision 1.1. It will also delete
f.e. To get f.c back, Ltype

co fe
You can now edit [.c and check it in as revision 1.2 by Invoking
ci f.e
To avoid the deletion during ci (in case you want to continue editing), invoke

ei -1 f.e

The -1 option on ci leaves [.c alone and saves you one co operation. This option
can also be used during initialization.

Suppose you have files with names f.c and £.h which would result in two RCS
files i.v. There are two ways to tec get around this problem. One selution is te
change [.h to f.h, fh.c, or fheader.c. The other solution is to tell RCS not to strip
off the suffix. This can be done by specifying the RCS filenames explicitly during
initialization, like in

el -i fLewv fhy

In this case, ci creates f.c.v and {.h.v and locks for [.c and f.h in your current
directory. Once f.c.v and {.h.v have been created, you can use

ci f.e f.h
co f.ec f.h

and ci will flgure cut what RCS files to take. You can also use s mixture, like
ei -i f.e [hv
This command puts f.c inte f.v and f.h into f.h.v. This alternative is convenient

for default rules in MAKE.

It is a good idea to make an extra directory called RCS in your working
directory. Co and ci will first lock there to find RCS files (ending in .v). Of
course, if you specify RCS files explicitly, you must precede them with RC3/. The
above command becomes

ei -i f.e RCS/fL.hv

Ci creates RCS/f.v for f.c, if RCS exists, otherwise it creates {.v in your working
directory. RCS/f.h.v is given explicitly, and ci looks for a file {.h in your working
directory. After initialization, everything goes back to normal and

co f.¢ [.h
ci f.e th

will work as expected.

Combining MAKE and RCS

If your RCS files are in the same directory as your working files, you can put
a default rule inte your makefile. Do not use a rule of the form .v.c, because this
will always keep a copy of your working files around, even these you are not
working on. Instead, do this:

-23-

SUFFIXES: v

V.0!
co-q <
ce B3{CFLAGS) -c 3*.c
rm -f 8*.c

prog: fl.of2.o...
ce floflo..... -0 prog

This rule has the following effect. If a file f.c does not exist, and {.o is older than
[.v, MAKE checks out f.c, compiles f.c into f.0, and then deletes f.c From then cn,
MAKE will use f.o0 until you change f.v again.

If [.c exists (presumably because you are working on it), the default rule
.c.o takes precedence, and f.c is compiled into f.c, bul not deleted.

To avoid confusion of f.c and f.h, store [.c in f.vand i.h in £h.v. The default
rule will apply only for f.¢; you need te write an explicit checkout rule for f.h.

If you keep your RCS file in the directory ./RCS, all this won't work and you
have to write explicit checkout rules for every file, like

[1.e: RCS/f1.v
co-qll.e

Unfortunately, these rules do not have Lhe property of removing unneeded .c-
files,

Appendix B: RCS Manual Pages

O

CI(1) UNIX Programmer’s Manual Ci(1)

NARE
ci — check in RCS revisions

SYNOPSIS
ci [options] file ...

DESCRIPTION
(i stores new revizions into RCS flles. Each filename ending in *.v' i taken to be
an RCS file, all others are assumed to be working flles containing new revisions.
(i deposits the contents of each working file into the corresponding RCS flie.

Pairs of RCS flles and working flles may be specified in 3 ways (see also the
exarmnple section of co (1}).

1) Both the RCS file and the working file are given. The RCS flle is of the form
palhl/file.v or pathl /file.sfz.v and the working file is of the form path2/file.sfzT,
where pathi/ and pathZ2/ are (possibly different or empty) paths, file is the the
filename stem common to both files, and .sfz is a (possibly empty) suffix.

2) Only the RCS file is given. Then the corresponding working file is file.sfz in the
current directory,

3) Only the working file is given. Then the corresponding RCS file is ol the form
Jile.sfz v or file.v, and co tries to find it first in the directery . /HCS, and then in

the current directory.

If file.sfz is stored in file.v, then .sfz of the working file may be omitted; ¢i will
add it if nonempty.

For ci Lo work, the caller's login must be on the access list, except if the access
list is empty or the caller is the superuser or the owner of the flle, To append a
a new revision to an existing branch, the tip revision on that branch must be
locked by the caller. Otherwise, only a new branch can be created. This require-
ment is not enforced for the owner of the file. (An existing lock by somebody
else may be broken with the rcs command.)

Fer each revision checked in, ci prompts for a log message. The log message
should summarize the change and is terminated with a line containing a single
‘! or a control-D. If several files are checked in, ct asks whether Lo reuse the
previcus log message.

—i[rev] creates a new RCS flle. deposits the contents of the working file as the
initial revision, and assigns revision number rev to it (default: 1.1). The
suffix attribute is derived from the name of the working file and the
access list is initialized to empty. Instead of the log message, descrip-
tive text is requested (see -t below). If the RCS file already exists, an
error message is printed.

—r{rev] assigns the revision number rev to the checked-in revision, releases
the corresponding lock, and deletes the working file. This is also the
default,

If rev is omitted, c¢i derives the new revision number from the caller's
last lock. If the caller has locked the tip revision of a branch, the new
revision is appended te that branch. The new revision number is
cbtained by incrementing the tip revision number. If the caller locked
a non-tip revision, a new branch is started at that revision by incre-
menting the highest branch number at that revision, The default ini-
tial branch and level numbers are 1. If the caller has no lock and is the
owner of the flle, the new revision is appended to the trunk.

Purdue University March 25, 1982 1

Ci(1) - UNIX Programmer's Manual CI(1}

If rev indicetes a revision nurnber, it must be higher than the latest
one on the branch to which rev belongs, or must start a new branch.

If rev indicates a branch instead of a revision, the new revision is
appended Lo that branch. The level number is obtained by increment-
ing the tip revision number of that branch. If rev indicates a non-
existing branch, that branch is created with the initial revision num-
bered rev. 1.

Exception: On the trunk, revisions can only be appended to the end.
bul not inserted inside the trunk.

—1{rev] works like r, except it locks the new revision after checkin and does
not delete the working file. This is useful for saving a revision without
having to do another checkout.

—q[rev] quite mode; no diagnostic outpul is printed. Rev is assigned to the
checked-in revision. The log message must be provided wilh Lthe -m
option.

—mmsg uses the string msg as the log message for all revisions checked in.

—nname assigns the symbolic name name to the number of the checked-in revi-
sion. (% prints an error message if name is already assigned to another
number.

—Nname same as -n, except that it overrides a previous assignment of neme,

—ssfate sels the state of the checked-in revision to the string specified by
stafe. The default is £zp.

—t] trtfile)
Tziftle is the name of a text file containing descriptive text. If the 4
option is present and the text file is not given, ¢i prompts the user for
lext supplied from the std. input, terminated with a line containing a
single '." or control-D. If the RCS file already exists and the Lext file is
supplied, ¢t replaces the existing texlL with Lthe new one. If the RCS file
exists and the -t option is given without the text file, ci erases the
existing text and replaces it with text supplied from the std. input.

DIAGNOSTICS
For each checked in revision, c¢i prints the RCS file, the working file, and the

revision number.

AUTHOR
Walter I'. Tichy

FILES
The caller of the command must have read/write permission te the directories

containing Lhe RCS flle and Lhe working file, and to the RCS file itself. A numbey
of temporary files are created. A semaphore file is created in the directory con-
taining the RCS flle. &% always creates a new RCS file and unlinks the old one.
This makes links to RCS files useless.

SEE ALSO
co (1), ident(1), res {1}, rlog {1)

BUGS
ci - does not update the keywords in the working file. -

Purdue University March 25, 19682 2

co(1i) UNIX Programmer's Manual Co(1)

NANME
co — check out RCS revisions

SYNOPSIS
co [options] file ...

DESCRIPTION
Co retrieves revisions from RCS flles, Each fllename ending in “.v’ is taken to be
an RCS flle. All other files are assumed to be working files. (b retrieves a revi-
sion from each RCS flie and stores it into the corresponding working file.

Pairs of RCS files and working files may be specified in 3 ways (see also the
example section).

1) Both the RCS file and the working file are given. The RCS file is of the form
pathl/file.v or pathl/file.sfz.v and the working file is of the form pathé.Jfile.sfz,
where pathi/ and path2/ are (possibly different or empty) paths, file is the the
fllename stem commeon to both flles. and .sfz is a (possibly empty) suffix.

2) Only the RCS file is given. Then the corresponding working file is file.sfz in the
current directory.

3) Only the working file is given. Then the corresponding RCS file is of the form
file.sfx.v or file.v, and co tries to find it first in the directory . /HCS, and then in
the current directory.

If file.sfz is stored in file.w, then .sfz of the working file may be omitted; co will
add it if nonempty.

Revisions of an RCS file may be checked out locked or unlocked. Locking a revi-
sion avoids overlapping updates. A revision checked out for reading or process-
ing (e.g. compiling) should not be locked. A revision checked out for editing and
later checkin must normally be locked. Locking a revision currently locked by
another user is illegal. (A lock may be broken with the ci or the rcs ¢command.)
Co with locking requires the caller to be on the access list of the RCS file, unless
he ig the owner of the file or the superuser, or the access list is empty. There
are no accesslist restrictions for co without locking.

A revision is selected by number, creation date, author, or state. If none of these
options is specified, the latest revision on the trunk is retrieved. When the
options are applied in combination, the latest revision that satisfies all of them
is retrieved. An error message results if the opticns cannot be satisfied. A revi-
sion nurnber rmay be attached to either of the options -1, -u, -p, q, or . A co
command applied to an RCS file with no revisions ereates a zero-length file. Co
always performs keyword substitution (see below).

—f7ev] locks the checked out revision for the caller. See option -r for han-
dling of the revision number rew.

—u[rev] does not lock the checked out revision. This option is the default.
Besides for reading, it is needed if the caller intends to edit the revi-
sion and place it on a different branch. See oplion r for revision
number rev.

—p[rev] prints the retrieved revision on the std. output rather than storing it
in a file. This option is useful when the co command is part of a pipe.

—q[7ev] quiet mode; diagnostics are not printed.

—ddate retrieves the latest revision whose date is less than or equal to date.
The standard form of a date has six digit fields separated by periods
(July 12, 1982, 6:11:05 pm is written as B2.7.12.18.11.05). Trailing
fields and the year may be omitted. (Ex.: "co -d7.12" retrieves the

Purdue University :arch 24, 1982) 1

Co(1) UNIX Programmer's Manual CO(:1}

newest release created on or before 82.7.12.23.59,59, if the year is
1982.) Most popular forms of dates and times are recegnized, but
must be quoted if they contain spaces. (Ex.: "8/12 00:01 am", "iB
Aug.”)

—Trev retrieves the latest revision whose number is less than or equal to 7ev.
If 7ev indicates a branch rather than a revision, the latest revision on
that branch is retrieved. Kev is composed of one or more nurmeric or
symbolic fields separated by ‘.’. The numeric equivalent of a symbolic
field is specified with the -n option of the commands ¢i and res.

~ssiafe retrieves the latesl revision whose state is set to sfate.

~w(login] retrieves the latest revision written by the user with login name {ogin.
If the argument lagin is omitted, the callers login is assumed.

~jjoinlist generales a new revision which is the join of the revisions on joinlist.
Joinlist is a comma-separaled list of pairs of the form rev2Teus,
where rev2 and rev3 are (symbolic or numeric) revision numbers. For
the initial such pair, rev? denotes the revision selccled by the options

-1, ..., -w. For all other pairs, rev? denotes the revision generated by
the previous pair. (Thus, the output of one join becomes the input te
the next.)

For each pair, ce joins revisions rev! and rev2 with respect to rev3
This means that all changes that transform rev3 into rev2 are applied
to 7ev . This is particularly uselul if rev? and 7ev.2 are the ends of Lwo
branches that have rev3 as a common ancestor. If rew2 > reu3d > revl
on the same branch, joining has the effect of undoing the changes that
lead from rev3 to rev2in revl.

If reu3 is omitted, the youngest common ancestor is assurned. If any
of the arguments indicate branches, the latest revisions on those
branches are assumed. If the option - is present, the initial rev? is
locked.

KEYWORD SUBSTITUTION

Strings of the form Skeyword® and Skeyword:...$ embedded in the text are
replaced with strings of the form $keyword: value8, where keyword and value
are pairs listed below. Keywords may be embedded in literal strings or com-
ments to identify a revision.

Initially, the user enters strings of the form S$keyword® and checks in the file.
After the first checkout, these strings are replaced with Bkeyword: valuef. If
this revision is modified and checked back in, the value fleld is no longer
correct. However, on a subsequent checkout, co again replaces strings of the
form Skeyword:,..§ with the correct Skeyword: velue8. Thus, the keyword values
are automatically updated. Warning: Do not tamper with expanded keywords
except for deleting them.

Keywords and their corresponding values:
BAuther$ The login name of the user who checked in the revision.

gDated The date and time the revision was cheeked in, in the format
YY MM.DD.hh.mm.ss.

8Header$ A standard header containing the RCS file name, the revision number,
the date, the author, and the state.

BLogd The log message supplied during checkin, preceded by a header con-
taining the RCS file name, the revision number, the author, and the

ra

Purdue University March 24, 1982

Co(1t) UNIX Programmer's Manual Co(1)

date. Existing log messages are NOT replaced. Instead, the new log
message is inserted after &log...8 This is useful for accumulating a
complete change log in a source file,

BRevision$
The revision number assigned to the revision.

3Sourced The RCS flle name.
State$ The state assigned to the revision with recs -5 or oi -s.
83uffix? The suflix recorded with res -z or ¢i <4,

DIAGNOSTICS
The RCS flle name, the working file name, and the revision number retrieved are

written te the diagnostic output.

EXANPLES
Suppose the current directory contains a subdirectory ‘RCS’ with a RCS file
‘io.v", Then all of the [ollowing commands retrieve the latest revision from
‘RCS/i0.v" and store it into 'io.c’, provided 'RCS/io.v' has its suffix attribute set
to '¢’.
co io; co io.ec; eco RCS/iowv
co io RCS/io.v; co RCS/io.v io;
co RCS/ie.v io.c; co io.e RCS/iov

AUTHOR
Walter F. Tichy

FILES
The caller of the command must have write permission in the working directory
and either read permission (for reading) or read/write permission (for locking)
in the directeory which contains the RCS file.

A number of temporary files are created. A semaphore file is ereated in the
directory of the RCS file to prevent simultaneous update.

SEE ALSO
ci (1), ident (1}, res (1), rlog (1)

BUGS
The option -j does not. work for revisions larger than 64K bytes.

Purdue University March 24, 1982 3

IDENT{ 1} UNIX Programmer's Manun! IDENT(1i}

NAME
jdent — identify flles

SYNOPSIS
ident file ...

DESCRIPTION
/dent searches the named files for all cccurrences of the pattern Seyword:... 3,
where keyword is one of

Author
Date
Header
Log
Revision
Source
State
Suffix

These patterns are normally inserted automaticaily by the RCS command co (1),

but can alsc be inserted manually.

{dent works on text files as well as object files. For example. if the C program in
file f.c contains

char resid[] = "8Header: Header information$™:
and {.c is compiled into f.0, then the cornmand
ident f.c f.0
will print
f.e:
BHeader: Header information®

f.o:
8Header: Header information$

AUTHOR
Walter F. Tichy

SEE ALSD
ei (1), eo (1), res (1), rlog (1).

BUGS

Purdue University March 25, 1982 1

RCS(1) UNIX Programmer's Manual RC3(1)

NAMF,
res — create RCS flles or change RCS file attributes
SYNOPSIS
res [options] flle ...
DESCRIFTION

Fes creates new RCS files or changes attributes of existing ones. An RCS file

contains multiple revisions of text, an access list, a change log, descriptive text,

and some control attributes. For rcs Lo work, the caller's login name must be on
the access list, except if the access list is empty, the caller is the owner of the
file or the superuser, or the -i option is present.

Files ending in ‘.v’ are RCS flles, all others are working files. If a working file is

given, rcs tries to find the corresponding RCS flie first in directory ./RCS and

then in the current directory, as explained in co (1).

— creates and initializes a new RCS flle. If the file already exists, an
error message is printed.

—alogins edds the login names appearing in the comma-separated list logins to
the access list of the RCS file.

—Aoldfile replaces the access list of the RCS file with a copy of the access list of
oldfile.

—elogin erases the login names appearing in the comna-separated list logins
from the access list of the RCS file. .

—[7ev] locks the revision with number rev. If a branch is given, the latest
revision on that branch is locked. If rev is omitted, the latest revision
on the trunk is locked. Locking prevents overlapping changes. A lock
is removed with ¢i or rcs -u (see below). The default is to leave the
locks of an existing file unchanged, and to leave a new flle unlocked.

—u[rev] unlocks the revision with number rew. Normally, only the locker of a
revision may unlock it. Somebody else unlocking a revision breaks
the lock. This causes a mail message to be sent to the original locker.
The message contains a commentary solicited from the breaker. The
commentary is terminated with a line containing a single ‘.’ or
control-D.

~nnama(:rev]
associales the symbolic name name with the branch or revision rev. If
rev is omitted, the most recent revision on the main trunk is
assumed. fcs prints an error message if name is already assigned to
another number.

—Nnome[.rev]
same as -n, except that it overrides a previous assignment of name.

—olist deletes ("outdates") the revisions given in the comma-separated list
of revisions and ranges. A range consisting of a branch means all revi-
sions on that branch. A range rewl—rev?2 means revisions rev! to rev?
on the same branch, —rev means from the beginning of the branch
containing re¥ up Lo and including 7ev, and rev— means [rom revision
7ev to the end of the branch containing rev. None of the outdated
revisions may have branches.

—ssiate[:rev]
sets the state attribute of the revision rev to state, If rev is omitted,
the latest revision on the trunk is assurned. Any character string is

Purdue University March 25, 1982 1

RCS({1) UNIX Programmer's Manual RCI (1}

acceptable for stafe. A useful set of states is Fzp (for experimental),
Stab (for stable), and Rel (for released). By default, ci sets the state
of a revision to Fzp.
—t[trtfila]

Trifile is the name of a text flle containing descriptive text, If the 4
option is present and the text file is not given, rcs prompts the user
for text supplied from the std, input, terminated with a line containing
a single *." or control-D. If the RCS flle already exists and the text file
is supplied, rcs replaces the existing text with the new one. If the RCS
file exists and the -t option is given without a text file, r¢s erases the
existing text and replaces it with text supplied from the std. input.

—x{sfz] Sets the suffix attribute ol the RCS file to sfz. Sfx may be any charac-

Ler string allowable in a filename, but without *.’, *,', *;", and - The
suffix is used in the filenames generated by co(1). The defaull is the
empty string.
AUTHOR
YWalter F. Tichy
IFILES

Kes creates a semaphore flle in the same directory as the RCS flle to pravent
simultaneous update. For changes, Tcs always creates a new file. On suceessful
completion, rcs deletes the old one and renames the new one. This strategy
makes links Lo RCS files useless.

SEE AILSO
ci (1), co (1), ident (1), rlog (1).
BUGS
Purdue University March 25, 1982 2

RLOG(1) UNIX Programmer's Manual RLOG{ 1}

NAME
rlog — print log messages and statistics of RCS flles

SYNOFPSIS
riog [—ddates] [—H[lockers]) [—rrevisions] [—sstates] [—wlogins] [-a] [-n] [-t]
file ...

DESCRIPTION
Flog prints information about RCS files. Files ending in ‘.v' are RCS files, all oth-

ers are working files. If a working file is given, rlog tries to find the correspond-

ing RCS file first in directory ./RCS and then in the current direectory, as

explained in co (1).

—ddafes prints information about revisions with creation dates in the ranges
given by the comma-separated list of dafes. A single date means the
range between the floor and ceiling values of the omitted trailing fields.
For example, 81.9 means the range 8§1.6.1.0.0.0~-81,8.30.23.59.5G. A
range of the form di—dZ means the range floor(d1)-ceil(d2). A range
of the form —d means O—ceil(d) (i.e., all revisions deposited on or
before d). A range of the form d— means floor(d)—now, where now is
the current date/time (i.e., all revisions dated d or later). The current
year may be omitted in all dates.

—flockers)
prints information about locked revisions. If the comma-separated list
lockers of login names is given, only the revisions locked by the given
login names are printed. If the list is omitted, all locked revisions are
printed.

—TTevisions

prints information about revisions given in the comma-separated list
revisions of revisions and ranges. & range rev/-rev? means revisions
rev] to revZ on the same branch, —rev means revisions frorn the begin-
ning of the branch up te and including 7ev, and rev— means revisions
starting with rev to the end of the branch containing rev. An argument
that is a branch means all revisions on that branch. A range of
branches means all revisions on the branches in that range.

—sstofes prints information about revisions whose state attributes ratch one of
the states given in the comma-separated list stafes.

—wlogins prints information about revisions written {checked-in) by users with
login narmes appearing in the comma-separated list logins.

For the options d, 4, r. -9, and -u, rlog prints the file name, extension, access

list, symbolie names, and tetal number of revisions, followed by entries for the

revisions in reverse chronological order for each branch. For each revision, rlog

printa revision number, author, date, time, stete, log message, and number of

lines added and deleted. If no oplion is given, information about all revisions is

printed. Combinations of oplicns print the intersection of the revisions selecled

by each cpticn. The opticns below print information that is not associated with

revisiens.

- prints the access list.

-n prints the list of symbelic names.
-t prints the descriptive text.

Purdue University March 25, 1982 1

RLOG(1) UNIX Programmer's Manuatl RLOG(1}

AUTHOR
Walter F. Tichy
SEE ALSO
ci (1), co (1}, ident(1), res (1).
BUGS
Purdue University March 25, 1982 2

RCSFILE(S)

UNIX Programmer's Manual

rcsfile - format of RCS flle

DESCRIPTION

RCSFILE (5)

An RCS flle is an ASCII file. Its contents g described by the grammar below. The
text is free format, i.e., spaces, tabs and new lines have no significance except in
strings. Strings are enclosed by '@ (doublequote). If a string contains a "@', it

must be doubled.

The meta syntax uses the following conventions: ‘|' (bar) separates alternatives:
‘' and '}’ enclose optinal phrases; ‘[' and ‘}|* enclose phrases that may be
repeated zero or more times; '|' and '}+' enclose phrases that must appear at

least once and may be repeated; '<' and '>' enclose nonterminals.

<rcgtext> <admin> {<delta>}* <desc> [<deltatext>}*
<admin> head j<num>i{;
suffix f<id>};
access f<id>]™
sym.bols [<id> :<num>}*;
locks j<id> :<num>}*;
<delta> <nurm>
date <numc;
author <id>;
state [<id>];
branches {[<num>}*%
next j<num>};
<desc> deec <string>
<deltatext> <num:>
log <string>
text <string>
<num> = {<digit>{.}}+
<digit> E 0l1]...]9
<id> u= <letter>|<idcharx>}*
<letter> w= A|B|...|]Z]a|b]|..|z
<idchar> = Any printing ASCI] character except
space, tab, carriage return, new line,
and <special>.
<special> n= i@
<string> = @{any ASCH character, with '@'doubled}*@

Purdue University March 25, 1982 1

RCSFILE(5) UNIX Programmer's Manual RCSFILE(5;

Identifiers are case sensitive. Keywords are in lower case only. The sets of key-
words and identlfiers may overlap.

SEE ALSO
ei {1}, eo (1), res (1), rlog (1).

Purdue University March 25, 1982 2

