
Components of Software Development Risk:
How to Address Them?

A Project Manager Survey
Janne Ropponen and Kalle Lyytinen

AbstractÐSoftware risk management can be defined as an attempt to formalize risk oriented correlates of development success into

a readily applicable set of principles and practices. By using a survey instrument we investigate this claim further. The investigation

addresses the following questions: 1) What are the components of software development risk? 2) how does risk management mitigate

risk components, and 3) what environmental factors if any influence them? Using principal component analysis we identify six software

risk components: 1) scheduling and timing risks, 2) functionality risks, 3) subcontracting risks, 4) requirements management,

5) resource usage and performance risks, and 6) personnel management risks. By using one-way ANOVA with multiple comparisons

we examine how risk management (or the lack of it) and environmental factors (such as development methods, manager's experience)

influence each risk component. The analysis shows that awareness of the importance of risk management and systematic practices to

manage risks have an effect on scheduling risks, requirements management risks, and personnel management risks. Environmental

contingencies were observed to affect all risk components. This suggests that software risks can be best managed by combining

specific risk management considerations with a detailed understanding of the environmental context and with sound managerial

practices, such as relying on experienced and well-educated project managers and launching correctly sized projects.

Index TermsÐSoftware risk, risk management, software development, project management, system failures, process improvement.

æ

1 INTRODUCTION

SOFTWARE development suffers chronically from cost
overruns, project delays, unmet user needs, and unused

systems ([12], [32]). This has continued despite huge
advances in development techniques, tools, and software
technologies ([20]). Since the early 80s, these difficulties
have been alleviated through software risk management
([38], [7]). Software risk management can be defined as
ªan attempt to formalize risk oriented correlates of
success into a readily applicable set of principles and
practicesº ([8, p. 33]). It embraces techniques and guide-
lines to identify, analyze, and tackle software risks items.
A risk item denotes a particular aspect or property of a
development task, process, or environment, which, if is
ignored, will increase the likelihood of a project failure,
e.g., threats to successful software operation, major
sources of software rework, implementation difficulty, or
delay ([34]). Overall, software risk management has raised
considerable hopes for improving system development ([1],
[7], [8], [10], [13], [37], [20]).

Even though practitioners have increasingly followed
guidelines suggested by the proponents of software risk
management, information about the impact of software risk

management has been sparse and anecdotal. There are only
a few empirical studies about the commonality and type of
software development risks. In particular, there is little
empirical evidence that shows which types of positive
effects software risk management can have. In this paper,
our goal is to expand our knowledge in this area. Using a
survey instrument, we empirically delineate six compo-
nents of software development risk:

1. scheduling and timing risks,
2. system functionality risks,
3. subcontracting risks,
4. requirement management risks,
5. resource usage and performance risks, and
6. personnel management risks.

Furthermore, we examine how factors related to risk

management and environment correlate with successful

management of these components. These findings are

derived from a survey covering more than 80 project

managers. The survey instrument is based on Boehm's ([7],

[8]) work on top 10 software risks and risk management

techniques. The paper is organized as follows: First, we

discuss earlier research, formulate the research problem,

and describe the research method. Next, using principal

component analysis, we derive six components of software

development risk. In the fourth section, we examine which

risk management practices and environmental contingen-

cies influence these components. We conclude by suggest-

ing some principles for successful software risk

management and identifying topics that invite future

research.

98 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

. J. Ropponen is with the Finnish Evangelical Lutheran Mission,
TaÈhtitorninkatu 18, PO Box 1554, FIN-00003, Helsinki, Finland.
E-mail: janne.ropponen@mission.fi.

. K. Lyytinen is with the Department of Computer Science and Information
Systems, University of JyvaÈskylaÈ, Seminaarinkatu 15, PO Box 35, FIN-
40351, JyvaÈskylaÈ, Finland. E-mail: kalle@cs.jyu.fi.

Manuscript received 1 Apr. 1997; revised 27 June 1998; accepted 11 Sept.
1998.
Recommended for acceptance by D.R. Jeffery.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 104751.

0098-5589/00/$10.00 ß 2000 IEEE

2 RESEARCH PROBLEM AND DESIGN

2.1 Related Research

The majority of risk management studies deals with
normative techniques of managing risk ([7], [8], [10], [38],
[13]). A few studies have classified software risk items ([2],
[7], [44], [43], [45]). These studies consider software risks
along several dimensions and have provided some empiri-
cally founded insights of typical software risks and their
variation. Some empirical studies have tried to understand
how one can effectively manage software risk. They
discussÐnormally by using case study data1Ðwhich risk
management principles were (not) followed and try to learn
about their (non)use. Overall, these studies provide
illuminating insights into risk management deliberations,
but are weak in explaining the true impact of risk manage-
ment in generalizing from observations. A few studies have
gone further to establish systematic models of risk manage-
ment ([7], [13], [33], [37]). They all conclude that risk
management efforts reduce the exposure to software risk
and can thereby increase software quality and improve
software development. Some studies focus solely on project
delays ([19]) or deal only indirectly with software risks
([47]). Overall, our understanding of how software risk
management can improve software development has
remained fragmented and largely anecdotal.

2.2 Research Problem

In this paper, we investigate the impact of risk management
practices on software development. We examine the

following questions: 1) What are the components of
software development risk? 2) What risk management
practices and environmental contingencies help to address
these components? The study is exploratory in nature and
focuses on generation, rather than testing of, hypotheses
because of the lack of well-established research models. In
addressing these questions, we assume that software
development risk can be decomposed into several distinct
dimensions. Second, we postulate that various risk manage-
ment methods and practices can influence different compo-
nents of the software risk. In the same vein, we assume that
there exists a connection between environmental contin-
gencies and the capability to handle software risk. Fig. 1
summarizes the postulated connections in the research
model. Each model component will be discussed next.

2.3 Research Model

2.3.1 Components of Software Development Risk

We define a risk as a state or property of a development
task or environment, which, if ignored, will increase the
likelihood of project failure. As measuring development
failure is rife with both conceptual and instrumental
problems ([21], [12]), we sought to measure development
risk by identifying those items that have been recognized in
the literature as software development pitfalls. The ques-
tions in the survey instrument (see Appendix 2 and [42] for
details) were derived using the top 10 risk list of Boehm (7]).
Boehm's list has been compiled by probing several large
software projects and their common risks and is thus
empirically grounded. It is extensive in terms of possible
sources of risks ([34]) and it reflects a project manager's

ROPPONEN AND LYYTINEN: COMPONENTS OF SOFTWARE DEVELOPMENT RISK: HOW TO ADDRESS THEM? A PROJECT MANAGER... 99

1. These studies have been either single site case studies ([10], [39], [36]),
or multiple site case studies ([48]).

Fig. 1. The research model.

broad perspective on software risk (see Appendix 1). The
list is also well-known and has been widely applied in
practice to orchestrate risk management plans ([8], [10]).
Hence, Boehm's list was chosen as it allowed us to
investigate the level of exposure to various software risks.

In spite of its popularity and simplicity, Boehm's list
forms an inductively derived collection of risk items and
thus lacks a theoretical foundation ([34] [2]). It has multiple
items which refer to the same phenomenon (like require-
ments related risks). It is also unclear how many distinct
aspects of software risk it captures as many listed items
covary with several risk management methods and also
with one another ([34]). This suggests that the original list
should be consolidated, in particular when some risk
management techniques tackle several risk items. The
benefit of this would be that a large set of risk items could
be summarized into one independent component of soft-
ware risk ([2]). This would provide a simpler basis for
developing instruments to measure software risk. Ob-
viously, this has a direct bearing on software risks manage-
ment practicesÐespecially on risk assessment.

We operationalized the software risk by listing a set of
statements where each statement represents a claim with
respect to how well this specific risk ªitemº has been
managed in past projects. As advised by the project
managers and experts in our pilot study (see Appendix 3),
we extended Boehm's list with new risk items (e.g.,
deadline effect, completion in time, project cancellation,
and managing project complexity). In the end, the survey
instrument included 20 Likert scale items that measured
risk levels associated with the extended Boehm's top 10 list
(see Appendix 2). The questions presented are translated
from Finnish. We used principal component analysis to
reduce the number of chosen items into a smaller set of
independent software components, as will be explained
below.

2.3.2 Risk Management Practices

While investigating the use of risk management methods
we utilized Boehm's (7]) classification of risk management
methods.2 We also inquired about respondents' general
commitment to risk management by asking how extensively
risk management methods had been used, whether the use
was voluntary, and what the experiences of using methods
were. These items were included because we postulated
that organizations with a wider experience base have
learned to apply risk management methods more effec-
tively. We also asked about the amount of resources that
had been allocated to manage risks.

2.3.3 Environmental Contingencies

We postulated that the capability to cope with the
development risk is also contingent upon several external
factors ([34], [10]). These include: 1) organizational char-
acteristics, 2) technology characteristics, and 3) individual
characteristics. Organizational characteristics cover items
like organizational size, industry, type of system being
developed (business systems/embedded systems), and

contractual arrangements ([4], 5]). Technology characteris-
tics include items like the newness of technology and the
complexity and novelty of the required technological
solutions ([38], [13], [48]). We also assumed that process
technologies like development tools and methods affect the
ability to manage risks (see [23], [47]). We also expected
that project managers' characteristics and experiences (with
projects of varying size and complexity) were one important
predictor to successfully manage risks ([47], [29]). Similarly,
software engineering educationÐboth in computing and
project managementÐwas expected to affect the capability
to handle software risks.

2.4 Data Set and Data Analysis

We collected a representative data set using a survey
instrument by mailing the developed questionnaire to a
selected sample of the members of the Finnish Information
Processing Association (1991) whose job title was project
manager or equivalent, e.g., development manager, and
who had also managed projects in Finland.3 For simplicity,
we shall call all respondents project managers. In order to
avoid a bias, we sent the questionnaire to at most two
persons in one company. Where more than two project
managers were listed for one company, the required two
project managers were selected randomly. In this way, we
obtained 248 people from our sample and mailed the
questionnaire to them. The final data set consisted of
responses from 83 project managers (response rate =
33.5 percent). The response rate was satisfactory and over
the generally accepted rate (e.g., [24]). Overall, our sample
included project managers both from internal IS depart-
ments and from software houses of varying size. The
respondents in our sample had experiences of nearly 1,100
software projects. MIS applications covered approximately
76 percent of all projects included in the sample. The
majority of their development projects were relatively
small. The largest reported project was 672 man months.
The average size of their last completed project was 15.24
man months (N = 75, STD 11.4).

The analysis of the data set obtained was conducted in
several steps. First, we identified major software risk
components by using principal component analysis (PCA)
([22]). PCA4 is widely used to examine the underlying
patterns for a large number of variables and to determine if
the information (variance) can be summarized in a smaller
set of factors or components for subsequent correlation or

100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

2. Altogether, we derived 14 questions from this list. These were selected
to cover those methods mentioned in Boehm's list.

3. This appeared to be a good decision as we got responses from
67 persons whose job title was exactly project manager. In addition to that,
we got responses from nine development managers, five system develop-
ment managers, one project director, and one project planner. All of them
had experience in managing software projects.

4. In PCA, a correlation matrix is computed of all items included in the
analysis, with unities inserted in the diagonal. Using factor analysis
technique (with or without rotation), one extracts, for prediction purposes,
as few as possible components (factors) that represent the variation of the
original variables as much as possible. The resulting factor matrix displays
the factor loadings (correlations) of the original items with the new
extracted component. The cutting level for a statistically significant loading
is at the lowest, 0.30, when sample sizes are 50 and over (as suggested by
[22]). We applied a more precautionary cutting level of approximately 0.40
(two entries with loadings 0.38082 and 0.39192 were accepted). Our research
setting met the criteria to use principal component analysisÐprediction,
finding a minimum number of factors to account for a maximum portion of
variance, and the expected low unique and error variance as a portion of the
total variance.

regression analysis. PCA analyzes the covariation of a set of
variables and condenses the variation into a smaller number
of underlying (latent) components. Second, we used
ANOVA5 with multiple comparisons to examine how risk
management practices or environmental contingencies
influence the management of identified software risk
components. In most tests (if not otherwise described), we
used a statistical significance level of a = 0.05. We also
analyzed the validity and reliability of the survey instru-
ment, as explained in Appendix 3.

3 COMPONENTS OF SOFTWARE DEVELOPMENT

RISK

By using PCA (eigenvalue 1.0, VARIMAX-rotation with

Kaiser-normalization), we extracted six components from

our original data set, which resulted in the best explanatory

model (Table 1). These six components explained 63.2 per-

cent of the total variation of the original variables, which

can be regarded as well beyond sufficient ([22]). Moreover,

13 of the items loaded on only one factor and five items on

two factors; overall, this resulted in a reasonably clean and

easy to interpret model. Only one itemÐestimates for

personnel needsÐloaded on three factors. Few variables

loadings on more than one factor indicate the clarity of the

ROPPONEN AND LYYTINEN: COMPONENTS OF SOFTWARE DEVELOPMENT RISK: HOW TO ADDRESS THEM? A PROJECT MANAGER... 101

TABLE 1
Factor Matrix on Software Risks

Legend of the table: Grayed entries denote the entries that loaded, i.e., have a high correlation with the factors defined in the column.

5. The basic requirements of using variance analysis ([16])Ðnormal
distribution (Kolmogorov-Smirnov), independence of test groups, the
homogeneity of variances (Levene, � � 0:01)Ðwere checked and the data
was found appropriate for the analyses.

resulted model. One variable (project canceling) was
dropped from the final analysis since it did not load to
any of the components.6 Overall, the result is statistically
acceptable and represents a conservative number of factors
(risk dimensions). The clarity of the model also makes its
interpretation relatively straightforward. The six extracted
risk components are:

1. scheduling and timing risks,
2. system functionality risks,
3. subcontracting risks,
4. requirement management risks,
5. resource usage and performance risks, and
6. personnel management risks.

We name the first factor ªScheduling and timing risksº
since variables loading strongly to this factor relate to
difficulties in scheduling the project correctly: problems in
timetable, actual costs vs. estimated costs, changes in
timetable (cf. ªschedule riskº in [25]). All other items
relating to this factorÐwrong size estimates, managing
project complexity, and estimates for personnel needsÐare
obvious reasons or consequences for problems in schedul-
ing and timing. The second factor summarizes risk
associated with getting the ªSystem functionalityº right. All
variables loading deal with getting the system functionality
correctly either from the user or from the technical point of
view (satisfaction with the user interface, core functions and
properties correct, and the estimation of hardware and
software capabilities cf. ªtechnical riskº [25]). It is also
understandable that managing estimates of personnel needs
relates to correct system functionality.

The third factor we call ªSubcontractingº risks because
success in managing externally performed tasks and short-
falls in externally furnished components both loaded
strongly to this factor. Succeeding in estimating personnel
needs seems to be connected to proper management of
subcontracting. This is no wonder as poor management of
subcontracting easily results and increased personnel
needs. The fourth factor we call ªRequirements management.º
This risk component deals with project managers' capability
to manage the requirement change and avoid, e.g., gold
plating. Both these items loaded strongly to the fourth
factor. Continuous and uncontrolled changes in require-
ments lead to changes in timetables and make it difficult to
keep resource consumption steady.

The fifth factor deals with ªResource usage and performanceº
risks. The variable loading highest to this factor is concerned
with resource usage and deadline effect. The other items
loading to this factor are: evaluation of performance require-
ments, managing project complexity, and estimation of
hardware and software capabilities. Poor management of
these goes together with a late and uncontrolled peak in
project resource usage, i.e., the dead line effect (see, for
example, [6]). The sixth factor we name ªPersonnel manage-
mentº risks since the item loading most strongly deals with
personnel risks (personnel shortfalls, cf. also ªpersonnelº in

[25]). Also, other items, like insufficient expertise and
unrealistic expectations of the personnel's abilities, deal with
the personnel. Obviously, poor mastering of performance
requirements typically puts personnel under major stress in
the late stages of a project and thereby increases personnel
risks. It is also understandable that keeping project resource
consumption (i.e., personnel load) steady relates to personnel
management risks.

When we compare these six risk components with the
five risk factors established in Barki et al. [2], the following
can be observed. Only one of them, personnel management
(which Barki et al. denote the lack of expertise), is common.
The five other risk dimensions recognized in our study deal
with operational project management aspects, i.e., those
which a project manager can and must influence through-
out the project trajectory. In contrast, Barki et al. observed
risk dimensions that are beyond managers' operational
control and which managers can and must recognize only
before the project setup. These include the novelty of the
project, the application size, or the organizational environ-
ment. It appears that our list extracts inherent risk
dimensions of operative project management, whereas
Barki et al.'s list extracts dimensions of IT investment risk
in general.

The new list of six risk dimensions represents a more
systematic set of risk components than Boehm's original
list from the point of view of a project manager. Overall,
the dimensions span process management aspects
(components 1, 5), task related risks (2, 4), actor related
risks (6), and structure/actor related risks (3) (cf. [34]).
One interesting point is that none of these components is
solely technical. Instead, technological aspects are em-
bedded into software risk components (system function-
ality, subcontracting, and resource usage and performance).
The result also demonstrates that software development
risk items can be presented in a shorter and more compact
set. Yet, each item in Boehm's original list can be mapped
onto and presented with one component of the software
development risk (see Appendix 1). For example, continu-
ing requirement changes and gold plating are now linked to
requirements management risks (see Appendix 1). The
derived components also introduce new aspects of software
risks (cf. resource usage and performance risks).

4 WHAT INFLUENCES SOFTWARE RISK

COMPONENTS

A summary of how risk management influences software
risk components is shown in Table 2. Similarly, a summary
of how environmental variables influence the management
of software risk components is given in Table 3. These
results were obtained using ANOVA with multiple com-
parisons. Next, we shall discuss the impact of both types of
variables on each risk component.

4.1 Scheduling and Timing Risks

Mitigation of scheduling and timing risks necessitates the
consideration of both risk management practices and
environmental contingencies. We identified six factors
altogether that influence the management of scheduling
and timing risks. These were:

102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

6. This seems to reflect the fact that project abandonment is not an item
which is under the control of project managers and, therefore, it behaves in
a radically different manner (see [28]).

1. experience in risk management methods,
2. regular use of risk management methods,
3. the size of the last completed project,
4. project manager's experience,
5. the industry, and
6. the type of the developed application.

Scheduling and timing risks seem to decrease linearly as
more experience in using risk management methods is
gathered. The group of project managers who had applied
risk management methods in more than four projects
performed significantly better than those who had less
experience. Also, those who applied risk management
methods continuously managed scheduling and timing
risks significantly better than those who preferred to apply
them only a few (four or less) times during a project. This
finding is in line with the advice of published textbooks on
the topic, i.e., risk identification ªshould be performed on a
regular basis throughout the projectº ([41]). Performance
with scheduling and timing risks seems to improve with
general project experience, as highlighted by the linearly
increasing score of those project managers who have a
larger experience base. When measured by the number of
all managed projects, those project managers with only a
few (one to four) projects scored significantly lower than
those with 11 or more projects. If the person was managing
only small projects (from six to 24 man months), an increase
in scores was observed already after three projects.

The size of the project seems to significantly determine
the ability to manage scheduling and timing risks. This is
in line with earlier studies that smaller projects introduce
less complexity and have a higher likelihood of having
early problem recognition ([38], 12]). Measured by three
different variablesÐduration, man months, and actual
costs of the last completed projectsÐwe observed that the
largest projects (longer than 21 months, larger than 50
man months, and costing more than 500,000 USD)
performed significantly worse than the smaller ones. This

can be formulated as a risk management strategy: Keep
the project size as small as possible or decompose the
project into smaller units.

We also observed that project managers operating
within retail business, accommodation, and nutrition
services managed schedule and timing risks significantly
better than those in other industries. This is due to
differentÐpresumably simpler and more standardized
Ðapplication types used in these industries (cf. system
functionality risks and retail business) and differences in
IT maturity. An interesting finding is that scheduling and
timing risks were handled significantly worse by those
managing projects working on interactive systems than
those working with systems involving little interactivity.
We assume that this reflects the low uncertainty of
specifying functionality and accordingly estimating sche-
dules while developing batch type systems. Overall, the
results suggest that projects' scheduling risk is mitigated
by using experienced project managers, controlling the
size of the projects, and by instituting risk management
methods that direct organizations to conduct project
reviews before and during the project execution.

4.2 System Functionality Risks

System functionality risks were influenced by the use of risk
management methods, as well as environmental character-
istics. The influencing factors are:

1. analysis of key decisions,
2. standardization level of risk management methods,
3. standardized linkages between risk management

methods and other development methods,
4. industry,
5. project managers training, and
6. project manager's experience.

These results suggest that risk management can help
substantially in managing functionality risks. In particular,
the results suggest that project managers should learn to

ROPPONEN AND LYYTINEN: COMPONENTS OF SOFTWARE DEVELOPMENT RISK: HOW TO ADDRESS THEM? A PROJECT MANAGER... 103

TABLE 2
Software Risk Components Affected by Risk Management Practices

Legend of the table: The asterisked entries denote the different significance levels observed (* .05, ** .01, *** .001). Note also that the lower number
of observations (19) is not due to missing data. Instead, the related questions were asked only of those respondents (19) who responded that they
were following a risk management plan.

frequently analyze key decisions, apply and standardize the

use of risk management methods in projects, and link risk

management methods to become an inherent part of the

overall development method (i.e., the process model or

project management strategy). The findings can be ex-

plained as follows: Key decisions are often made separately

without thinking of the actual software design. However,

selecting hardware, choosing subcontractors, and setting

timetables and budgets can have a tremendous effect on the

ability to develop user-friendly and functional systems. This

also indicates the importance of integrating risk manage-

ment activities to other systems development methods and

introducing risk management as a standardized process

innovation.

Not surprisingly, the industry in which systems were

developed also influenced the management of system

functionality risks. Telecommunications, transportation,

and retail business fared significantly better than other

industries. We conjecture that this finding can be explained

by the types of systems being developed within these

industries. For example, systems in the retail business (e.g.,

point of sales systems) often represent standard solutions

whose functionality is well-known. This makes the manage-

ment of system functionality risks easier. Similarly, the

telecommunication industry often develops systems based

on well-structured and detailed standards and, therefore,

these industries have developed more standardized ways of

managing functionality risks due to the product-like nature

of project outcomes.

104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

TABLE 3
Software Risk Components Affected by Environmental Characteristics

Legend of the table: the asterisked entries denote the different significance levels observed (* .05, ** .01, *** .001). aLevene test for homogeneity of
variances with 2.6767 with p-value 0.059. bLevene test for homogeneity of variancs 5.2007 with p-value 0.025. cLevene test for homogeneity of
variances 4.5897 with p-value 0.013. 7This acronym referes to whether the environmental item relates to individual characteristics (I),
environment (O), or technology (T).

The study also suggests that the project manager's
characteristics affect the exposure to system functionality
risk. Extensive project experience seems to positively
influence the mitigation of functionality risk. Those project
managers who had managed more than 10 projects
mastered system functionality risks significantly better than
those with less experience. In addition, a project manager's
level of education in computing had a clear impact on this
risk. According to the results, project managers scored
better if they had more education in computing. In
particular, we identified a statistically significant difference
between best scoring individuals, who had a major in
computing, and the lowest scoring individuals, who had
only on-site training. We assume that these findings
demonstrate that extensive education is able to equip
students with more systematic methods to deal with system
functionality. Overall, the management of functionality
risks can be improved by installing risk management
methods (in particular, analysis of key decisions), integrat-
ing standardized risk management methods with normal
development guidelines, and by hiring experienced and
well-educated project managers.

4.3 Subcontracting Risks

Three environmental factors influenced the management of
subcontracting risks: 1) the amount of project management
training, 2) experience in managing large projects, and 3) the
size of the software organization. Note that, surprisingly,
none of the risk management practices directly influenced
the control of subcontracting risk. This can signal a
weakness in the coverage of the risk management methods
used. Interestingly, general project management training
did not help in mitigating subcontracting risks. In fact, for
some reason, those who had almost no training scored best.
However, their scores differed statistically significantly only
from those with some training (not those with plenty of
training). Nevertheless, this may indicate that problems of
subcontracting are not widely covered in project manage-
ment training. Extensive project management experience
helped best to cope with the subcontracting risks, as those
who had managed more than 20 projects scored signifi-
cantly better than those with less experience. Improvements
with subcontracting risks were related to the organizational
size: project managers within middle-sized enterprises
(turnover from $1,750,000 to $5,250,000) scored best. Their
score also differed significantly from those project man-
agers who worked in larger organizations. This is quite
understandable as larger organizations use more subcon-
tracting and thus face related risks. This risk item is once
again best managed by building on the experience in
managing projects. Another approach to consider is to
explicitly improve practices around controlling contracted
software management (like including it in project manage-
ment training).

4.4 Requirement Management Risks

Two risk management aspects and four environmental
factors help mitigate requirements management risks. This
finding is interesting as requirements management has been
identified as one of the most critical aspects in software
development ([15], [17], [31], [43], [28]). Managing

requirements are improved by a commitment to apply risk
management methods and by focusingÐfrequently, rather
than seldomÐon analyzing poorly defined parts of a project
plan or specifications. Interestingly, Boehm ([8]) does not
relate the analysis of poorly defined parts to managing
requirements changes. Instead, Boehm suggests high change
threshold, information hiding, and incremental development
as means to manage requirements changes. Nevertheless,
ignored project factors that result from the lack of under-
standing obtained from a detailed decomposition of project
plans and system functionality cause unwanted surprises
and uncontrolled requirements changes.

Environmental factors influencing the requirement risks
were

1. project management systems,
2. use of development methods,
3. hardware architecture, and
4. application type.

Interestingly, those respondents who had developed their
own project management system scored significantly better
in requirements management than those with a commercial
project management system (MS Project, PMW, or other
commercial tool). These findings can be understood as an
outcome of ªeverything in controlº illusion created by the
fancy graphical illustrations found in some project manage-
ment tools. In this way, they can hide requirements
management problems, e.g., poorly defined parts of
developed system. Moreover, an organization's own project
management system may have an inherently better fit with
that organization's requirements management process.
Project managers employed by organizations mandating
the use of development methods also scored significantly
better than others. This confirms Humphrey's ([23])
observations that a disciplined systems environment helps
control development processes. Project managers working
with centralized architectures managed requirements risks
significantly better than those developing systems with
distributed architectures. Distributed systems offer more
ªbells and whistlesº to develop fancy user interfaces and,
consequently, less managerial control can be exercised.
Managers working with interactive systems managed
requirements better in comparison to those engaged with
less interactive batch oriented software (statistical differ-
ence between groups with high and moderate interactivity).
The better scores in applications with high interactivity are
probably an outcome of a faster feedback loop when the
development environment supports interface prototyping.

To summarize, management of requirements change can
be improved by paying early attention to poorly defined
parts and system functionality, standardizing the use of risk
management methods, and structuring the development
process. Decisions about target architectures and the type of
system functionality also affect the risk component.

4.5 Resource Usage and Performance Risks

Three factors can influence resource usage and performance
risks: 1) experience with risk management methods, 2) the
industry, and 3) the size of the software organization.
Management of resource usage and performance risks was
improved with the experience of using risk management

ROPPONEN AND LYYTINEN: COMPONENTS OF SOFTWARE DEVELOPMENT RISK: HOW TO ADDRESS THEM? A PROJECT MANAGER... 105

methods. The group of project managers who had applied
risk management methods in more than four projects
performed significantly better than those who had less
experience. This highlights the importance of investing in
gaining experience and developing an organizational
experience base (cf. [3]). This seems to be true in particular
of managing resource usage and performance risks. These
risks especially troubled organizations delivering software
to the wood and pulp industry, the public sector, and the
defense industry. This may be due to the high performance
requirements and complexity typical to these industries
(process control and military systems).7

The results show that project managers within smaller
organizations (turnover $1,750,000 or less) manage resource
usage risks significantly better than those in larger
organizations (turnover $5,250,000 or more). Larger organi-
zations usually develop more complex and performance
intensive systems with which this risk forms an issue.

4.6 Personnel Management Risks

Personnel risks correlate with seven different factors:

1. extent of applying risk management methods,
2. degree of standardization of risk management

methods,
3. industry,
4. project managers' education,
5. hardware architecture,
6. use of analysis and design methods, and
7. the type of project management system.

Two risk management aspects relate to managing personnel
risks: The wider the use of risk management methods, the
better personnel risks are managed. Organizations where
nearly all personnel utilized risk management methods
performed significantly better than those where only one or
a few applied them. Similarly, the scores were better if the
risk management methods were standardized. In particular,
we observed a statistically significant difference between
project managers who reported voluntary use of risk
management in contrast to those reporting obligatory use.
Thus, general risk awareness is likely to increase the
propensity to evaluate personnel risks in that it enables
the identification of risks that are often organizationally
sensitive. It demands more courage to air such risks if
organizationally accepted risk management procedures are
not available.

Interestingly, managers who worked with central com-
puter architectures managed personnel risks better. This
result reflects the greater uncertainty related to distributed
systems. Complex innovations like distributed systems and
client-server architectures, just becoming popular at the
time of the survey, will increase unrealistic expectations of
personnel's skills and the lack of expertise is a result of this.
Not surprisingly, personnel risks were better managed by
organizations that applied disciplined analysis and design
procedures (see, e.g., [23]). Those project managers for
whom the use of analysis and design methods was

obligatory performed significantly better than those for
whom the use was voluntary or recommended. Mature
software organizations can better involve concerns related
to personnel risk into their development practices. In
addition, personnel management risks were better managed
by those who used a tailored project management system. A
significant difference was observed when comparing
project managers with no project management system with
those using PMW and those using another commercial
system (other than MS Project). The explanation of this
finding is straightforward: A tailored project management
system seems to fit better to organizational needs and is
thus more easily accepted and used. Hence, these systems
are more likely to indicate insufficient expertise, unrealistic
expectations of personnel's skills, etc.

In addition, the level of a project manager's computing
education had a significant impact on the management of
personnel risk. In general project managers scored better
the more computing education they had. We identified a
statistically significant difference between the best scoring
individuals who had a major in computing in university
and the lowest scoring individuals who had only on-site
training. We observed also that the industry type influences
the management of personnel risks. Organizations in the
construction industry were weak in managing personnel
risks. We assume that this relates to the types of systems
being developed, sensitivity to market fluctuations, and
development strategies employed.

5 SUMMARY AND CONCLUSIONS

In this paper, we have sought answers to two questions
concerning software risk management: 1) What are the
components of software development risk? and 2) what
factors influence these components of risk? Using self-
reported data from 83 project managers (covering nearly
1,100 projects), we derived six software risk components.
These are:

1. scheduling and timing risks,
2. system functionality risks,
3. subcontracting risks,
4. requirements management risks,
5. resource usage and performance risks, and
6. personnel management risks.

The components embody essential dimensions of software
risk and thus suggest a more manageable set of aspects that
need to be heeded in software projects. The study also
provides encouraging evidence of how the use of risk
management methods can address some of these risks
when properly aligned with other organizational proce-
dures. At the same time, the study recommends that
software organizations must tailor their risk management
efforts to their development environment. The multiple
comparison ANOVA analysis with the identified compo-
nents reveals that risk management methods can help in
managing several risk components. However, fewer rela-
tionships were detected between risk management and risk
components than expected. For example, techniques that
draw upon the traditional risk concept (risk exposure, risk
reduction leverage) did not significantly reduce any risk

106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

7. Strong market fluctuations typical to the wood and pulp industry can
make resource allocation difficult. Difficulties with resource usage and
performance risks in the public sector are eloquently exemplified by
Beynon-Davis ([6]).

component.8 This finding is analogous with empirical
studies of management behavior ([35], [11]). Furthermore,
no risk management measure affected subcontracting risks.
Two widely used risk management techniques, analysis of
key decisions and decomposition analysis, were found to be
effective in mitigating system functionality and require-
ments management risks. Moreover, general awareness of
software risks and their management was found to reduce
requirements management risks. In addition, we observed
that some features of risk management practices, like
cumulated experience, organizational scope, their fre-
quency of use, standardization, and linkages with other
organizational procedures, had an effect. Hence, software
risk management offers one important area for developing
an organizational experience base ([3]).

All three environmental aspects influence the manage-
ment of risk components. The analysis results suggest that
software risk management is affected by the selection of
target platforms, the use of disciplined development
process, leveraging on experience, hiring well-educated
people, and proper scoping of projects. These characteristics
significantly influenced all risk components. An interesting
observation is that technological attributes did not influence
resource usage and performance risks in any way. This
finding appears contradictory and should, therefore, espe-
cially be confirmed in future research. Another interesting
finding is that the project size and domain did not relate to
managing requirements risks. Overall, these results vividly
illustrate the importance of understanding how environ-
mental issues affect system development risk and lend
strong support for contingency oriented systems develop-
ment practices ([17], [30]).

Our advice for project managers can be formulated in
simple terms. We encourage project managers to carefully
identify and manage the six software risk components
derived in this study. We also encourage project managers
to take risk management methods seriously and develop an
experience base of their use. Our results show that project
managers in experienced software development organiza-
tions fared better in managing software risks. Project
managers should also keep in mind that a variety of
environmental contingencies affect the management of
these risks. In this study, we identified several such
organizational, technological, and individual characteris-
tics. Some of these may not be in the direct control of the
project manager (e.g., setting project deadlines, making
decisions concerning subcontracting, or introducing im-
provements in the overall software process). They are,
however, crucial issues to pay attention to and to take
actions to reduce risks related to them.

Our findings need to be interpreted with caution. First,
the selection of items in Boehm's original study on ªtop 10º
risks may be biased due to the emphasis placed on large
contracted software projects in the defense industry ([43]).
Unfortunately, there is not much documentation of how the
list was derived and how the risk items were ranked.
Boehm only mentions that the list is ªbased on a survey of
several experienced project managersº ([8, p. 35]) that

covered interview data and project databases ([9]). As
found during our pilot study, Boehm's list does not include
all risk items which project managers mentioned to be
important (see Appendix 3) and it was therefore expanded.
We should also be aware that our study focuses exclusively
on project managers' perceptions of managing project
related software risks and ignores important risk items that
relate to the broader management environment, including
political risks, business risks, and implementation risks
([34], [45]).9

There are also some limitations related to the research
method used. First, the study was solely based on project
managers' self-reports. In future, we need to supplement
these perceptual measures with factual behavioral and
economic measures. The second problem is a possible
sampling bias in using data from one country, though our
sample was representative in terms of industries covered and
types of systems developed. Third, our study shares the
limitations of survey studies in establishing causal inferen-
ceÐit was a single period study without a control group
([21]). Moreover, the organization of the survey did not give
us a mechanism to control the impact of historical incidents
(both the personal history and a project phase) on respon-
dent's responses. Therefore, respondents' evaluations may be
biased due to anchoring effects and bias in viewing personal
history. Changes in software risk management practices do,
unfortunately, take place slowly. Therefore, we assume that
sufficiently reliable measures of risk management perfor-
mance were obtained. Based on statistical validity measures,
we can assume that the obtained responses reflect the
perceptions of project managers on overall risk management
performance relatively well. The results obtained can thus be
viewed as indications of causal connections.

The validity and generalizability of our findings can be
improved in the future by using designs that can remove the
limitations. We need to improve the instrumentation, use
several measurement points (before and after the use of risk
management methods), extend the study to other environ-
ments, and introduce quasi-experimental research designs
(by controlling environmental variation). We invite both
researchers and project managers to utilize our results when
suggesting new measures to address components of soft-
ware risk.

APPENDIX 1

Table 4 shows Boehm's top 10 risk list and the stakeholder
perspectives concerned.

APPENDIX 2

Table 5 shows part of the questionaire used to create our
measurement for risk management performance. Respon-
dents were given the following directions:

In the following, we present a list of statements
descriving your projects. Mark an appropriate alternative
for each statement based on your experience. Choose one
alternative based on how often the described situation
occurs.

ROPPONEN AND LYYTINEN: COMPONENTS OF SOFTWARE DEVELOPMENT RISK: HOW TO ADDRESS THEM? A PROJECT MANAGER... 107

8. This can be due to the fact that the we had very few observations from
organizations that used such methods.

9. For example, self-induced risks, such as those observed during project
escalation ([26]).

APPENDIX 3

Validation of the Survey Instrument and Control of
Sampling Bias

Using Straub's ([46]) list of questions, we describe how the

instrument was validated.

Content Validity

This question addresses whether instrument measures are

drawn from all possible measures of the properties under

investigation, i.e., are questions drawn from a representative

universal pool. Because software risk measurement and

software risk management performance are not well-under-

stood areas, the issue of content validity is a serious one. We

examined the available literature on software risk manage-

ment, thus soliciting our questions from a representative

sample. Boehm's list provided a good starting point due to its
popularity and its wide empirical coverage (cf. [34]). Also,
Boehm's study focused on a sample similar to that in our
study. Boehm's list became our primary source as we
discovered no other published studies on software risk items
by the time of designing and implementing the research. We
interviewed five experienced project managers and qualified
researchers to find out how representative our set of
questions was. This led to adding some new items to the risk
management performance part as they were not captured by
Boehm's notion. These related to managing process aspects
such as deadline effect, project cancellation, stable time
consumption, project complexity, and constant schedule
changes (for details, refer to Appendices 1 and 2). Some of
these items have also been identified elsewhere: cf. task and
application complexity in Barki et al. ([2]), project escalation

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

TABLE 4
Boehm's Top 10 Risk List and Stakeholder Perspectives Concerned

11Stakeholder groups by Boehm and Ross [10]; subordinates and bosses denote those of a project manager.

in Keil and Mixon ([27]), ªwere put under pressure to

complete system quicklyº by Beynon-Davis ([6, p. 1,162]),

and artificial deadlines in Schmidt et al. ([45]).

Construct Validity

This question addresses whether the measures show

stability across methodologies, i.e., that the data is a

reflection of true scores or artifacts of the kind of instrument

chosen. We sought to improve construct validity with

several measures. First, we compared the data from our

project manager interviews to the questionnaire data to

resolve possible bias ([42]). Second, we conducted pilot tests
which led to modifications in the questionnaire which
improved both the content and construct validity. More-
over, during pilot testing, we asked the respondents to
make suggestions to improve the questionnaire, e.g., by
removing some items and adding new ones. This step
introduced some amendments (for details, refer to Appen-
dices 1 and 2). We also analyzed the possible discrepancies
or variations in answers, but found none. The principal
components analysis performed and reported in this paper
provides itself a measure of the construct validity. As can be

ROPPONEN AND LYYTINEN: COMPONENTS OF SOFTWARE DEVELOPMENT RISK: HOW TO ADDRESS THEM? A PROJECT MANAGER... 109

TABLE 5
Measurement for Risk Management Performance

12This column has been added here to clarify how to match the items with original Boehm's list of top 10 risk items presented in Appendix 1. Numbers
relate to associated Boehm's risk items. The questions marked with numbers in brackets denote entries that were identified in the pilot study, but do
more or less relate to a risk item in Boehm's list. Dashed entries were identified in the pilot study, but do not relate to Boehm's list.

seen in Table 1, variables relating to each other loaded on
the same factors, constituting six different constructs of
software development risk. Hence, the construct validity
can be regarded as sufficient.

Reliability

This question shows the measures' stability across the units
of the observation, i.e., that a respondent answers the same
or approximately the same questions the same way each
time. The idea in improving reliability is to decrease the
possibility that the measure is due to misunderstanding,
error, or mistake, but instead reveals the true score. We
utilized pilot tests to improve the reliability of our survey
instrument. In particular, we carefully tested that all
interviewees could understand the questionnaire items so
that they could provide an unambiguous answer to each
question. In order to improve this, technical terms (such as
gold plating) were explained in the questionnaire. More-
over, we reduced potential misunderstanding by para-
phrasing the questions concerning the use of specific risk
management methods in a manner where a respondent did
not know that he is being asked the use of a risk
management method. This was done purposefully because
many project managers do not necessarily know the
technical terms of ªrisk identification, risk assessmentº
([7]). Usually, high correlations between alternative mea-
sures or large Cronbach alphas are signs that measures are
reliable ([14]). We computed Cronbach alphas for each
component of software development risk (dependent
variables in our study) by including the loading variables
into the computation. The resulting Cronbach alphas for
each component of software development risk are either
close to or well over 0.60 (see Table 6) and we consider them
satisfactory for our exploratory research setting (cf. [40]).
The measures were also tested for homogeneity of variance
(Levene test) and normal distribution (Kolmogorov-Smir-
nov test), which were all met. This shows that no ªfloorº or
ªceilingº effects were observed due to misunderstanding or
measurement reactivity.

Sampling Bias

We also carefully investigated reasons for not responding
by calling 24 persons who had not replied. No bias in
reasons for not responding was revealed. In fact, more bias
would have been observed because 25 percent of non-
respondents contacted had no experience in project man-
agement or their current job was not related to project
management. Moreover, the investigation revealed that
about 13 percent of the addresses used were out dated and
we could not reach the person. The investigation also
reveals that 55 percent of persons did not respond due to
the fact that they had too little time or they never responded
to any surveys. Similarly, one person considered the
necessary background information (e.g., turnover figures)
too hard to find. One person did not reply because the
questions were inappropriate for his task. These findings
suggest that some bias may be related to our results (e.g., an
overly positive status of managing software development
risks). However, we have a reasonable amount of evidence
to warrant our claim that missing responses would have not
considerably improved the reliability of our results.

ACKNOWLEDGMENTS

We thank the associate editor and the four anonymous

reviewers for comments that considerably helped to improve

the manuscript and the analysis. We are also grateful to Esko

Leskinen and Kari Heikkinen for their advice on statistical

analyses. Thanks go also to Mark Keil and Lars Mathiassen

for their comments to earlier drafts of the paper and Steven

Kelly, who improved the language of the paper. Finally, we

are indebted to project managers who voluntarily helped to

validate the instrument and used their valuable time.

REFERENCES

[1] S. Alter and M. Ginzberg, ªManaging Uncertainty in MIS
Implementation,º Sloan Management Review, pp. 23-31, Fall 1978.

[2] H. Barki, S. Rivard, and J. Talbot, ªToward an Assessment of
Software Development Risk,º J. Management Information Systems,
vol. 10, no. 2, pp. 203-225, Fall 1993.

[3] V.R. Basili and J.D. Musa, ªThe Future Engineering of
Software: A Management Perspective,º Computer, pp. 90-96,
Sept. 1991.

[4] C.M. Beath, ªStrategies for Managing MIS Projects: A Transaction
Cost Approach,º Proc. Fourth Int'l Conf. Information Systems,
pp. 133-147, Dec. 1983.

110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

TABLE 6
Cronbach Coefficient Alphas for the Components of Software

Development Risk

13The alphas presented for each loading variable denote the resulting
Cronbach alphas when this particular variable has been deleted.

[5] C.M. Beath, ªManaging the User Relationship in Information
Systems Development Projects: A Transaction Governance Ap-
proach,º Proc. Eighth Int'l Conf. Information Systems, pp. 415-427,
Dec. 1987.

[6] P. Beynon-Davis, ªInformation Systems `Failure' and Risk Asses-
ment: The Case of London Ambulance Service Computer Aided
Despatch Systemº Proc. Third European Conf. Information Systems,
pp. 1,153-1,170, June 1995.

[7] B.W. Boehm, Software Risk Management, Tutorial. IEEE CS Press,
1989.

[8] B.W. Boehm, ªSoftware Risk Management: Principles and
Practices,º IEEE Software, pp. 32-41, Jan. 1991.

[9] B.W. Boehm personal communication, Univ. of Technology,
Helsinki, Finland, June 1995.

[10] B.W. Boehm and R. Ross, ªTheory-W Software Project Manage-
ment: Principles and Examples,º IEEE Trans. Software Eng., vol. 15,
no. 7, pp. 902-916, July 1989.

[11] P. Bromiley and S. Curley, ªIndividual Differences in Risk
Taking,º Risk Taking Behavior, J.F. Yates, ed., pp. 87-132,
Chichester: Wiley, 1992.

[12] F. Brooks, The Mythical Man-Month: Essays on Software Engineering.
London: Addison-Wesley, Prentice Hall, 1975.

[13] R.N. Charette, Software Engineering Risk Analysis and Management.
Intertext Publications McGraw-Hill Book Co., 1989.

[14] L.J. Cronbach, ªCoefficient Alpha and the Internal Structure of
Tests,º Psychometrika, vol. 16, no. 3, pp. 297-334, 1951.

[15] B. Curtis, H. Krasner, and N. Iscoe, ªA Field Study of the Software
Design Process or Large Systems,º Comm. ACM, vol. 31, no. 11,
pp. 68-87, Nov. 1988.

[16] R.P. Cody and J.K. Smith, Applied Statistics and the SAS Program-
ming Language, second ed. Elsevier Science, 1987.

[17] G.B. Davis, ªStrategies for Information Requirements Determina-
tion,º IBM Systems J., vol. 21, no. 1, pp. 4-30, 1982.

[18] Finnish Information Processing Assoc. ªDirectory of Individual
Business Members of the Organization,ºOsto-opas Tietotekniikka
91: ATK-vuosikirja, KustannusosakeyhtioÈ Otava, Keuruu, Fin-
land, 1991.

[19] M. van Genuchten, ªWhy is Software Late? An Empirical Study of
Reasons for Delay in Software Development,º IEEE Transactions
Software Eng., vol. 17, no. 6, pp. 582-590, June 1991.

[20] M. Griffith and M. Newman, ªSoftware Development Risk
Management, a Special Issue,º J. Information Technology, vol. 12,
no. 4, 1996.

[21] W. Haga and M. Zviran, ªInformation Systems Effectiveness:
Research Design for Causal Inference,º Information System J., vol. 4,
no. 2, pp. 141-166, 1994.

[22] J. Hair, R. Anderson, R. Tatham, and B. Grablowsky, Multivariate
Data Analysis. Tulsa, Okla.: PPC Books, 1979.

[23] W.S. Humphrey, Managing the Software Process. Software Eng.
Inst., The SEI Series in Software Eng., Addison-Wesley, 1989.

[24] M. Igbaria, J.H. Greenhaus, and S. Parasuraman, ªCareer
Orientations of MIS Employees: An Empirical Analysis,º MIS
Quarterly, vol. 15, no. 2, pp. 151-169, June 1991.

[25] D.W. Karolak, Software Engineering Risk Management. Los Alami-
tos, Calif.: IEEE CS Press, 1996.

[26] M. Keil, ªPulling the Plug: Software Project Management and the
Problem of Project Escalation,º MIS Quarterly, vol. 19, no. 4, pp. 421-
447, 1995.

[27] M. Keil and R. Mixon, ªUnderstanding Runaway IT Projects:
Preliminary Results from a Program of Research Based on
Escalation Theory,º GSU CIS Working Paper, CIS-93-16, Dept.
of Computer Information Systems, College of Business Adminis-
tration, Georgia State Univ., 1993.

[28] M. Keil, P. Cule, K. Lyytinen, and R. Schmidt, ªAgainst All Odds:
A New Framework for Identifying and Managing Software Project
Risks,º Comm. ACM, vol. 41, no. 11, pp. 77-83, 1998.

[29] H. Kerzner, ªIn Search of Excellence in Project Management,º
J. Systems Management, vol. 38, no. 2, pp. 30-39, Feb. 1987.

[30] K. Lyytinen, ªDifferent Perspectives on Information Systems:
Problems and Their Solutions,º ACM Computing Surveys, vol. 19,
no. 1, pp. 5-44, 1987.

[31] K. Lyytinen, ªExpectation Failure Concept and Systems
Analyst's View of Information System Failures: Results of an
Exploratory Study,º Information & Management, vol. 14, no. 1,
pp. 45-56, Jan. 1988.

[32] K. Lyytinen and R. Hirschheim, ªInformation Systems Fail-
uresÐA Survey and Classification of the Empirical Literature,º
Oxford Surveys in Information Technology, Oxford Univ. Press, vol. 4,
pp. 257-309, 1987.

[33] K. Lyytinen, L. Mathiassen, and J. Ropponen, ªA Framework for
Software Risk Management,º J. Information Technology, vol. 11,
no. 4, pp. 275-285, 1996.

[34] K. Lyytinen, L. Mathiassen, and J. Ropponen, ªAttention Shaping
and Software RiskÐA Categorical Analysis of Four Classical
Approaches,º Information Systems Research, vol. 9, no. 3, pp. 233-
255, Sept. 1998.

[35] J. March and Z. Shapira, ªManagerial Perspectives on Risk and
Risk-Taking,º Management Science, vol. 33, pp. 1,404-1,418, 1987.

[36] L. Markus and M. Keil, ªIf We Build It, They will Come:
Designing Information Systems that Users Want to Use,º Sloan
Management Review, pp. 11-25, Summer 1994.

[37] L. Mathiassen, T. Seewaldt, and J. Stage, ªPrototyping and
Specifying: Principles and Practices of a Mixed Approach,º
Scandinavian J. Information Systems, vol. 7, no. 1, pp. 55-72, Apr.
1995.

[38] W. McFarlan, ªPortfolio Approach to Information Systems,º
J. Systems Management, pp. 12-19, Jan. 1982.

[39] B.S. Neo and S.L. Kwong, ªManaging Risks in Information
Technology Projects: A Case Study of TradeNet,º J. Information
Technology Management, May 1994.

[40] J.C. Nunnally, Psychometric Theory. New York: McGraw-Hill, 1978.
[41] Project Management Inst., ªA Guide to the Project Management

Body of Knowledge,ºPMI Standards Committee, Project Manage-
ment Institute, Upper Darby, Pa., 1996.

[42] J. Ropponen, ªRisk Management in Information System Develop-
ment,º Technical Report TR-3, Dept. of Computer Science and
Information Systems, Univ. of JyvaÈskylaÈ, Finland., Lic thesis, 1993.

[43] J. Ropponen, ªSoftware Development Risks and Management
Practices: A Project Manager Survey,º Beyond The IT Productivity
ParadoxÐAssessment Issues, L. Willcocks, ed., to be published by
John Wiley.

[44] J. Ropponen and K. Lyytinen, ªCan Software Risk Management
Improve System Development: An Exploratory Study,º European
J. Information Systems, vol. 6, pp. 41-50, 1997.

[45] R. Schmidt, K. Lyytinen, M. Keil, and P. Cule, ªIdentifying
Software Project RisksÐAn International Delphi Study,º Hong
Kong Univ. of Science and Technology, unpublished working
paper, 1998.

[46] D.W. Straub, ªValidating Instruments in MIS Research,º MIS
Quarterly, pp. 147-165, June 1989.

[47] V. van Swede and J. van Vliet, ªConsistent Development: Results
of a First Empirical Study on the Relation between Project
Scenario and Success,º Proc. Sixth CAiSE Conf., G. Wijers and
S. Brinkkemper, eds., 1994.

[48] L. Willcocks and H. Margetts, ªRisk Assessment and Information
Systems,º European J. Information Systems, vol. 3, no. 2, pp. 127-138,
1994.

ROPPONEN AND LYYTINEN: COMPONENTS OF SOFTWARE DEVELOPMENT RISK: HOW TO ADDRESS THEM? A PROJECT MANAGER... 111

Janne Ropponen recently finished his PhD on
risk management. His research interests include
software risk management and process im-
provement. He has published in the European
Journal of Information Systems, Information
Systems Research, and the Journal of Informa-
tion Technology. He is currently on leave from
Nokia Telecommunications, where his tasks
include risk management and process improve-
ment. He also works as a commercial pilot

working under the Mission Aviation Fellowship.

Kalle Lyytinen is a full professor in computer
science (information systems) and currently the
Dean of the Faculty of Information Technology
at the University of JyvaÈskylaÈ , Finland. He
received his PhD from computer science in
University of JyvaÈskylaÈ . His research interests
include risk management, requirements engi-
neering, CASE and method engineering, CSCW
applications, diffusion of complex networked
technologies, and electronic commerce. He

has published more than 70 articles in leading refereed journals and
conferences, including Communications of the ACM, IEEE Transactions
on Software Engineering, Information Systems Research, MIS Quar-
terly, and ACM Computing Surveys. He is the senior editor of MIS
Quarterly and he serves on the editorial boards of Information Systems
Research, Information Systems Journal, Requirements Engineering,
Journal of Strategic Information Systems, and Information and
Organization.

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

