
64 March 2005 QUEUE rants: feedback@acmqueue.com

I
n this essay I take what might seem a paradoxical posi-
tion. I endorse the techniques that some programmers
claim make code self-documenting and encourage the

development of programs that do “automatic documen-
tation.” Yet I also contend that these methods cannot
provide the documentation necessary for reliable and
maintainable code. They are only a rough aid, and even
then help with only one or two aspects of documenta-
tion—not including the most important ones.

Enforcing excellence in documentation of code is on
the frontier of unsolved problems in the management
of software development. Some of the solutions seem
effective, but they are not yet in the culture of program-
ming or programming education. Rare is the program-
ming teacher who will downgrade a properly performing
program because of inadequate documentation.

I discard the radical position taken by proponents of
extreme programming (XP) to get rid of “unnecessary”
documentation. To some programmers, asking for any
documentation is seen as an impediment to getting the
“real work” done. XP in general is nicely skewered by
Matt Stephens and Doug Rosenberg in Extreme Program-
ming Refactored: The Case Against XP (Apress, 2003).

When programmers speak of “self-documenting code,”
they mean that you should use techniques such as clear
and understandable variable names. Instead of n or count,
it is better to use a readable, self-explanatory name such
as numberOfApricotsPickedToDate. This is a minimalist’s
documentation. Nonetheless, it helps—the use of explan-
atory names, whether of variables, modules, objects, or
programs, should be encouraged.

In-line comments are problematical, often useless:

t(i) <= t(i) + 13 /* Add 13 to the ith element of t */

But their real problem is their forced brevity. The impulse
to toss off a comment quickly is enhanced when the
language syntax forces the programmer to be curt: such
comments are confined to a portion of one line. When
indentation is deep, it can be a small portion indeed:

 blix.VK(tofu.haha.cogau) & 00110011B /* mask */

Many become so laconic
that you have to under-
stand the code to be able
to interpret the comment.
Such comments often get
further truncated or lost
altogether as the program
continues to be written

or is updated. They are, therefore, also a maintenance
headache.

I do not use in-line comments, and I discourage their
use by programmers who work with me. If you are going
to write a comment, give yourself at least a full line. Or,
better yet, give yourself as much space as you need. Some
development environments confine comments to a single
line. If you wish to make a multiline comment, you have
to represent it as a set of single lines. This means that
there is no word wrap—to say nothing of many other fea-
tures that the simplest note-taking software provides. You
want to change the comment? You will have to adjust
all the line lengths by hand. This is punitive, discourages
documentation, and should go where GOTOs went.

Any language or system that does not allow full flow-
ing and arbitrarily long comments is seriously behind
the times. That we use escape characters to “escape” from
code to comment is backwards. Ideally, comment should
be the default, with a way to signal the occasional lines
of code.

Automatic documentation generators create flow
charts, inheritance diagrams, tables of contents, indexes,
topic lists, cross-references, and context-sensitive help
entries. One advertised itself as being able “to automati-
cally and continuously update all aspects of the source
code documentation, so that the entire team has all the
necessary information at their fingertips. Using the infor-
mation stored in the dictionary and the source files [it]
can automatically generate source code documentation.”

The obvious problem is that they do it quite badly. As
anybody who has done good documentation knows, gen-
erating even an index is not a straightforward, automatic
task. The less obvious problem is that many coders feel

Comments Are More
Important Than Code

Jef Raskin, Independent Consultant

The thorough use of

INTERNAL DOCUMENTATION

IS ONE OF THE MOST-

OVERLOOKED WAYS OF

IMPROVING SOFTWARE

QUALITY AND SPEEDING

IMPLEMENTATION.

curmudgeon

Continued on page 62

62 March 2005 QUEUE rants: feedback@acmqueue.com

that once they’ve run the documentation builder over
their code, they have documented it. This is the same
as the common syndrome of assuming that a document
is spelled correctly once the spelling checker no longer
flags any words. If you get such “documentation” with
a program and find it far from adequate, remember that
“eye tolled ewe sew.”

But the fundamental reason code cannot ever be self-
documenting and automatic documentation generators
can’t create what is needed is that they can’t explain why
the program is being written, and the rationale for choos-
ing this or that method. They cannot discuss the reasons
certain alternative approaches were taken. For example:

:Comment: A binary search turned out to be slower than
the Boyer-Moore algorithm for the data sets of interest,
thus we have used the more complex, but faster method
even though this problem does not at first seem amenable
to a string search technique. :End Comment:

This comment not only names the technique used, but
also explains why a simpler approach was not taken.

Good documentation should be readable on its own,
with bits of code showing how the design is implemented

(and making it run, of course). Reconstructing code from
good documentation is far easier than trying to create
documentation given the code. Indeed, it is impossible to
take code and create the documentation that should have
been written as the code was being developed.

Donald Knuth’s work is gospel (except for his writing
on religion) for all serious programmers. His essay “Liter-
ate Programming” (Computer Journal, May 1984; reprinted

in Knuth, D. CSLI Lecture Notes 27: Literate Programming,
Stanford, 1992) is must reading. I do not think we need
all of his mechanism, but the essential concept of writ-
ing the documentation first, creating the methods in
natural language, and describing the thinking behind
them is a key to high-quality commercial programming. I
emphasize commercial because we all know the high cost
of customer dissatisfaction and the even higher cost of
handling avoidable customer calls. The use of internal
documentation is one of the most-overlooked ways of

curmudgeon

Continued from page 64

Comment should be the
default, with a way to signal the
occasional lines of code.

 QUEUE March 2005 63 more queue: www.acmqueue.com

improving software and speeding implementation.
An example of the kind of documentation I speak of

appears as part of an interview I did for Susan Lammers’s
Programmers at Work: Interviews (Microsoft Press, 1986).
The caption reads, “This program demonstrates how
Raskin embeds executable code into text that is produced
by a word processor.” It is also an example of using an
escape method for the code instead of the comments.

It is important not to be doctrinaire about this. I can
imagine a programming manager reading this and Knuth,
and saying “The answer to my problems!” and mandating
that all work be done this way. As Frederick Brooks tells
us in The Mythical Man-Month (Addison Wesley, 1995),
“There is no silver bullet.” A competent programmer who
has learned the documentation-first style will sometimes
think of a solution in terms of code, write that first, and
then document, or will apply a mixed strategy—especially
when no convoluted algorithm design is involved. This
should not be discouraged so long as the programmer
generally adheres to (and sincerely supports) the docu-
mentation-first approach.

Do not believe any programmer, manager, or sales-
person who claims that code can be self-documenting or
automatically documented. It ain’t so. Good documenta-
tion includes background and decision information that
cannot be derived from the code. It is hard to imagine any
foreseeable software or robot that could collect this infor-
mation from the people involved with a programming
project—at the very least it must understand natural lan-
guage, which is still the Holy Grail to the AI community.

Prior, clear, and extensive documentation is a key
element in creating software that can survive and adapt.
Documenting to high standards will decrease develop-
ment time, result in better work, and improve the
bottom line. It’s hard to ask for more than that from
any technique. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

JEF RASKIN, professor of computer science at the University
of Chicago, is best known for his book, The Humane Interface
(Addison-Wesley, 2000), and for having created the Macin-
tosh project at Apple. He holds many interface patents,
consults for companies around the world, and is often called
upon as a speaker at conferences, seminars, and universi-
ties. His current project, The Humane Environment (http://
humane.sourceforge.net/home/index.html), is attracting
interest in both the computer science and business worlds.
© 2005 ACM 1542-7730/05/0300 $5.00

UNIVERSITY OF ARKANSAS AT LITTLE ROCK

DEPARTMENT OF COMPUTER SCIENCE

The University of Arkansas at Little Rock (UALR) invites application for the

position of Chair of the Department of Computer Science. The position will

begin on July 1, 2005.

The department chair is a member of the department faculty and serves a

term of three years, with the possibility of renewal. The department chair

provides leadership in accomplishing the department’s mission, encourag-

ing an environment of collegiality and consultation, presides at meetings

of the department, supervises support staff, serves as the channel of official

communication between the department faculty and the administration, and

represents the department on and off campus. The department chair is also

responsible for managing the department’s budget, managing department

resources, developing class schedules, and assigning teaching responsibilities.

The Computer Science Department offers an ABET/CAC-accredited B.S

degree in Computer Science, an M.S. in Computer Science, and its faculty

members serve as dissertation advisors for the Ph.D. in Applied Science with

an emphasis in either Applied Computing or Computational Science offered

through the graduate Department of Applied Science at UALR. There are

currently ten full-time faculty members, one laboratory manager, and an

administrative secretary.

The Department is a part of the Donaghey College of Information Science

and Systems Engineering (Cyber College). The College offers several degree

programs through its departments of Applied Science, Construction Manage-

ment, Computer Science, Engineering Technology, Information Science, and

Systems Engineering. These programs afford ample opportunity for grant and

consulting work with several information technology companies and govern-

ment agencies in the Little Rock area.

UALR is a comprehensive urban university serving a diverse student body of

approximately 12,000 students. It is the second largest university in the Uni-

versity of Arkansas System, and is located on a beautiful 150-acre campus a

few miles from downtown Little Rock. Little Rock, the geographic, economic,

demographic, and political center of the state, is a pleasant cosmopolitan

city of 175,000, and affords ample cultural and recreational opportunities

year-round. It is a short drive from some of the most scenic areas to be found

anywhere. Little Rock is also the home of Fortune 500 knowledge-based com-

panies such as Acxiom and Alltel. This creates opportunities for faculty mem-

bers to engage in research and consulting activities with these firms. It has

a thriving art, music, and theater scene. Outdoor and recreational activities

abound in the nearby Ouachita and Ozark National Forest, Buffalo National

River, Hot Springs National Park, and many other locations of interest.

Qualifications: Candidates must have

• an earned doctorate in Computer Science

• an outstanding record of accomplishments in teaching, funded

research, and public service to qualify for the rank of associate

professor or professor with the possibility of tenure

• demonstrated strong leadership

• detailed knowledge of assessment and accreditation issues

Please send cover letter, vitae and at least three letters of recommendation to

Search Committee

Department of Computer Science

University of Arkansas at Little Rock

2801 South University Avenue

Little Rock, AR 72204-1099

Phone: (501) 569-8130

Email: csdept@ualr.edu

Review of applications will begin immediately and will continue until the

position is filled. The University of Arkansas at Little Rock is an equal opportu-

nity, affirmative action employer and actively seeks the candidacy of minori-

ties, women and persons with disabilities. Under Arkansas law, all applications

are subject to disclosure. Persons hired must have proof of legal authority to

work in the United States.

