
june 2011 | vol. 54 | no. 6 | communications of the acm 31

V
viewpoints

Fa
d

e
d

 P
o

l
a

r
o

id

 c
o

u
r

t
e

s
y

 o
f

 D
a

v
id

 L

o
r

g
e

 P
a

r
n

a
s

S
oftware development suf-

fers from an infirmity best
called Premature Termi-
nation; the symptoms are
that developers begin to do

something useful but stop too soon. The
result is something that is not only not
very useful, but often harmful. There are
four obvious causes for this illness:

˲˲ The work that is done before ter-
mination is the easy part of the task;
what remains undone would require
tedious, detailed work.

˲˲ Those doing the work have not been
taught how to do the job correctly or
how to determine when it is complete.

˲˲ Those who review the work, or
purchase the product, do not insist on
proper completion of the key tasks.

˲˲ There is pressure to meet deadlines
and get a product “out the door.”

Premature termination can be ob-
served throughout the development,
deployment, and post-deployment im-
provement of software products. The
problem is also present when experts
advocate and describe a software de-
velopment process. In this column, I
describe some of the disease’s mani-
festations in requirements documen-
tation, diagrammatic description of
software, interface documentation,
and quality control.

Requirements Elicitation
and Documentation
Nowhere is premature termination
more evident than in the field some-
times called “Requirements Engineer-

ing” (RE). In RE, developers identify
properties they want a system to have
and assemble a list of these wishes.
Often, some wishes conflict; they are
almost always too vague to tell the pro-
gramming team what to build. Require-
ments lists include statements such as:

˲˲ The system must be easy for clerks
to use.

˲˲ The system must contain an UNDO
command.

˲˲ The product shall allow users to
work in their native languages.

Each of these examples leaves many

questions unanswered. Among them:
˲˲ What will be the training of the

clerks that will use the system? What in-
formation will they have at hand? What
characteristics of the interface would
make the system easy for them to use?

˲˲ How many past actions should
one be able to undo? Does the require-
ment apply to all commands or only to
a proper subset of those commands?
If a subset, which subset? Should you
be able to undo the most recent com-
mand if the file was closed after it was
executed and then reopened? Should

doi:10.1145/1953122.1953136	 David Lorge Parnas

Inside Risks
The Risks of
Stopping Too Soon
Good software design is never easy, but stopping
too soon makes the job more difficult.

Primitive buzz-diagram sighted in the wild (the meaning of the diagram eluded capture).

32 communications of the acm | June 2011 | vol. 54 | no. 6

viewpoints

you be able to undo a command with-
out undoing the subsequent com-
mands first?

˲˲ What languages (and variants)
should be offered? Should it be easy
for a user to add languages? Should
the keyboard interpretation change
when a user switches languages?
Should hyphenation rules change
with the language?

If the requirements document does
not answer such questions, it will
be the programmers who determine
what the system does. Programmers
are chosen for their ability to design
good algorithms and data structures
as well as their knowledge of specific
programming languages and sup-
port environments. They should not
be expected to understand the needs
and characteristics of the future users.
Often, a programmer makes incorrect
guesses about the detailed require-
ments and, consequently, extensive
revisions are required (either before
deployment or after users complain).

A list of wishes like the examples
here is not adequate as a requirements
document. Even if the aforementioned
questions are answered, there is no
way to check that there are no other
relevant questions. The completeness
and consistency of such a list cannot
be verified. There are always things left
unstated. Such lists are a good start but
considerable work must be done be-
fore one has resolved the conflicts and
ambiguity in such a list to produce a
complete and precise software require-
ments document, one that tells the
programmers what they must build to
satisfy the agreed wishes. It isn’t wrong
to produce a wish list but it is wrong to
hand it over to the programmers as a re-
quirements document.

Drawing Pictures of Programs
The debate over whether pictures are
a useful way to document programs
is an old one that never seems to get
resolved. The issue came up again in
a recent column by Grady Booch,1 in
which he observes that most of the ar-
chitecture pictures shown to him do
not communicate well; he then goes
on to describe a process of improve-
ment through discussion. One is left
to wonder exactly what is wrong with
those pictures and what would make
a good one.

Booch’s plea for better pictures re-
minded me of a presentation by the
late Edsger Wybe Dijkstra around
1975. At a meeting of IFIP W.G.2.3,
a working group on programming
methods, he advised against drawing
pictures saying, “Every time someone
draws a picture to explain a program,
it is a sign that something is not under-
stood.” I found this surprising; during
my education in electrical engineer-
ing, we were often shown how to use
a diagram when designing or when
analyzing a proposed design. Those
diagrams were sufficiently meaningful
that one could derive equations from
them. On the other hand, I could not
find a diagram that was intended to be
a program description that did not raise
more questions than it answered. All
were so vague that it was very likely that
two people would look at a diagram and
interpret it differently. Most raise more
questions in my mind than they answer.

Dijkstra’s observation struck me
as so thought provoking that, when
I returned to my group in Germany, I
repeated it to them. One of my associ-
ates, Wolfram Bartussek, responded
immediately with a German version.
However, in his “translation” he
changed the statement’s emphasis.
“Yes,” he said, “drawing a picture is
what you do when you are trying to un-
derstand a program or trying to help
someone else understand it.”a Reflect-
ing on this, I found it was true. A pic-
ture is often very helpful when trying
to understand a complex problem.
Bartussek had not contradicted Dijks-
tra’s observation but he had explained
why Dijkstra’s advice (not to draw dia-
grams) was wrong. Diagrams can be a
good starting point.

Subsequent experience with soft-
ware documents deepened my un-
derstanding of the problem with dia-
grams of software systems. A few years
later, I was asked to review a project
that had repeatedly missed deadlines.
In a series of meetings with key de-
signers, I began by asking each one
to draw a diagram that explained the
workings of the system. I used a Pola-
roid camera to take a picture of each
drawing. When each meeting began,
the new expert studied the diagram on

a	 This is an informal translation, not Bartus-
sek’s exact words.

the board from the previous meeting
and said, “That’s an interesting pic-
ture but it’s not our system.” I showed
each one the pictures I had accumu-
lated but they found those no better.
Each asked to erase some or all of the
existing diagram so they could draw
another one.

Those photos are faded now, but it
is still clear that the diagrams are all
different, all are vague, and none of
them contains enough information to
allow someone to understand what its
creator meant. In a few cases, an expert
reused part of the previous picture but
the discussion revealed he was inter-
preting it differently from the person
who had originally drawn it.

When I am presented with “box
and line” diagrams that are open
to many interpretations, I ask that
the picture be completed by adding
a legend, that is, an explanation of
what property something must have
to be represented by a box and what
relation must exist between two box-
es if there is a line connecting them.
When the pictures come back, they
have been altered to have several
distinct box shapes and types of ar-
rows. When the authors were trying
to create the legend, they realized
that they were using one symbol to
represent several different kinds
of objects or relations. The original
picture had been a “buzz-diagram”;b
the new one is always better than the
first but usually not good enough.
It takes many iterations before a re-
viewer can understand what the au-
thor is trying to convey; only then can
we begin to discuss the design. When
we do discuss it, more changes are
made to the diagram. Some of those
changes are design changes but others
are adding components and connec-
tions that were part of the design that
had been overlooked when the diagram
was prepared.

Often, when the necessary informa-
tion is added, the diagram becomes
so cluttered and complex that it no
longer helps people to understand
the system. In such situations, the
authors convert the diagram to some

b	 A buzz-diagram, like a buzzword, has the prop-
erty that most people think they understand it
but are unable explain it clearly when asked to
do so.

viewpoints

june 2011 | vol. 54 | no. 6 | communications of the acm 33

other representation of the informa-
tion (often tables). The resulting docu-
ment becomes an essential basis for
subsequent work on the product.

The lesson should be clear; a pic-
ture is a good way to begin to under-
stand something but most software
developers stop too soon. They work
on the picture until it means some-
thing to them but then stop; they stop
even if the diagram does not contain
all of the needed information or does
not communicate clearly to others. If
they do add information to a diagram,
another representation of its content
may eventually replace the picture.

Talking About “the Architecture”
Related to the problem of pictures is
talking about “the architecture” of the
system. That phrase suggests there is
a single structure that can be so iden-
tified. In fact, as has been discussed in
Klein and Weiss2 and Parnas3 there are
many distinct, separately designable,
structures. For example, the “uses”
structure identified in those papers
can be quite different from the mod-
ule or component structures. Keeping
the two structures separate eliminates
many apparent conflicts. Booch calls
for clearer descriptions of a system’s
architecture; if each of the structures
mentioned in Klein and Weiss2 and
Parnas3 is diagrammed separately, the
results would probably be much more
to Booch’s liking.

Software Documentation
Problems caused by premature termi-
nation are found in all kinds of soft-
ware documentation. For example, Java
library documentation is often cited as
an example of good documentation.
However, if you read the descriptions of
methods in a Java library, you can usu-
ally identify questions that can be an-
swered only by experimenting with an
implementation or reading the code.
So-called “odd cases” are either not
covered or ambiguously covered. One
often finds a list of exceptions a class
will “throw” but it is not clear if cases
such as zero length string arguments
are exceptions or what happens when
two of the listed exceptions could be
“thrown.” Generally, it appears the
documenter started to write down a de-
scription but quit when they got to the
tedious details.

Testing and Inspection
We can also recognize the problem of
premature termination in testing and
inspection. The constant stream of
“updates” (usually a euphemism for
corrections) that we are asked to install
is evidence that the developers stopped
their testing and inspecting too soon.
Inspections are often considered fin-
ished when the participants are able to
estimate the number of remaining er-
rors and the estimate is small. One hon-
est tester answered my question, “How
do you know when to stop testing?”
with “When the schedule says there is
no more time.” Another replied, “When
my boss says to stop.” These events can
occur long before the software is trust-
worthy enough to merit release.

Incomplete Advice
It is particularly vexing that the prob-
lem of premature termination is also
found in the articles and talks by peo-
ple who claim to be telling practitio-
ners how to do their job better. Many
books and papers describe develop-
ment processes by giving good advice
such as “determine the characteristics
of the users,” but they stop without ex-
plaining how to do it, how to document
the information, or how to know when
you have completed the task. Most of
the books and papers use buzz-dia-
grams to describe a process and give
examples of work products that are
themselves incomplete and unclear.
Many of these “gurus” exhort people to
do better, and assure them they can do
better, but eschew anything that looks
like tedious “dog work” or has even a
hint of mathematics.1

“Stopping Too Soon” Never Stops
The disease of premature termination
seems to be immune to itself; it never

stops. There are some obvious reasons
for this.

˲˲ Physicist Wolfgang Pauli is said to
have commented on papers by saying,
“This is so bad it’s not even wrong!” It
is often difficult to detect premature
termination because the work is not
wrong; it is just not enough.

˲˲ Many managers don’t demand
disciplined, careful, complete work.
Cost and schedule are their primary
concern. Short-term cost is easy to
measure; long-term cost is unknown
and won’t affect their next pay raise.

˲˲ When selling methods, gurus are
so eager to gain converts (and cus-
tomers) that they try to make their ap-
proach seem easy and fun. The work
that is not described has neither of
those characteristics.

˲˲ Educators in universities are so
eager to give a complete survey of the
available methods that they are (un-
avoidably) shallow. Rather than pick
a strong method and teach it thor-
oughly, they teach a little about each of
many methods. Some also avoid any-
thing that looks like “theory.” Others
make a point of teaching students how
things are currently done in indus-
try and avoid teaching methods that
would be improvements.

There are methods for doing each
of the tasks mentioned (requirements
elicitation and documentation, archi-
tecture documentation, testing, and
inspection) that make it possible to
know when the job is complete (but not
necessarily correct). All require the use
of basic mathematics and discipline
and are a sharp departure from cur-
rent practice. Good software design is
never easy; stopping too soon, while
easy in the short run, makes the job
harder in the long run.	

References
1.	 Booch, G. Draw me a picture. IEEE Software 28, 1

(Jan./Feb. 2011).
2.	 Klein, J. and Weiss, D. What is architecture?, Chapter

1 of Beautiful Architecture, Spinellis & Gousios, Eds.,
O’Reilly, 2009.

3.	 Parnas, D.L., On a ‘buzzword’: Hierarchical structure.
IFIP Congress ‘74, North Holland Publishing Company,
1974, 336–339. Reprinted as Chapter 8 in Hoffman,
D.M. and Weiss, D.M., Eds., Software Fundamentals:
Collected Papers by David L. Parnas, Addison-
Wesley, 2001. Reprinted in M. Broy and E. Denert,
Eds., Software Pioneers: Contributions to Software
Engineering, Springer Verlag, Berlin-Heidelberg, 2002.

David Lorge Parnas is President of Middle Road Software
as well as Professor Emeritus at McMaster University and
the University of Limerick.

Copyright held by author.

The disease
of premature
termination seems
to be immune to
itself; it never stops.

