
Programming 
Techniques 

S. L. Graham, R. L. Rivest 
Editors 

A Controlled 
Experiment in 
Program Testing and 
Code Walkthroughs/ 
Inspections 
Glenford J. Myers 
IBM Systems Research Institute 

This paper describes an experiment in program 
testing, employing 59 highly experienced data 
processing professionals using seven methods to test a 
small PL/I program. The results show that the popular 
code walkthrough/inspection method was as effective 
as other computer-based methods in finding errors and 
that the most effective methods (in terms of errors 
found and cost) employed pairs of subjects who tested 
the program independently and then pooled their 
findings. The study also shows that there is a 
tremendous amount of variability among subjects and 
that the ability to detect certain types of errors varies 
from method to method. 

Key Words and Phrases: software reliability, 
program verification, debugging, testing, code 
walkthroughs, code inspections, personnel selection 

CR Categories: 4.6 

Permission to copy without fee all or part of  this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of  the 
publication and its date appear, and notice is given that copying is by 
permission of  the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or  specific permission. 

Author's Address: 219 East 42nd Street, New York City, NY, 
10017. 
© 1978 ACM 0001-0782/78/0900-0760 $00.75 

760 

I. Introduction 

The introduction of new programming methodolo- 
gies and tools over the last few years has greatly outpaced 
our efforts to experiment with alternatives in order to 
analyze their differences and assess their benefits. One 
frequently finds statements in the literature such as 
"Method A was found to increase productivity by 39 
percent over method B," but when one attempts to 
analyze the underlying evidence, one normally sees that 
methods A and B were used on two different projects 
with different people, different objectives, and literally 
hundreds of other differing characteristics. In other 
words, the statement is derived in many instances from 
a completely uncontrolled environment, rendering it at 
best misleading. 

Unfortunately, controlled experiments in the area of 
software development tend to be costly and time consum- 
ing. Researchers have attempted to circumvent this by 
performing experiments using "cheap" labor (e.g. the 
captive audience in an introductory computer science 
course). However, although much of this work has pro- 
vided useful insights, there exists the question of whether 
one can extrapolate, to a typical industrial environment, 
experimental results obtained from trainee programmers 
or programmers with only a few years of experience. 

A third problem is the lack of data on program- 
testing methods, which is particularly alarming in light 
of the fact that program testing consumes approximately 
half of most organizations' development budgets. For 
instance, the idea of code walkthroughs or inspections 
[l] (a semiformal, noncomputer-based method of pro- 
gram testing performed by a team of individuals) has 
become popular, but no controlled data are available 
establishing that this method is more effective than tra- 
ditional computer-based testing. As another example, 
there are differences of opinion as to whether a program 
tester should derive test cases based on an examination 
of the program's logic flow (e.g., to ensure that each 
conditional transfer has been exercised in all possible 
directions), but little data exist on which to base these 
opinions. 

This paper presents results of an ongoing research 
project to answer some of these questions. The purpose 
of this research is to study, using controlled experiments 
with highly experienced programmers, the process of 
program testing, including the relative effectiveness and 
economics of different testing techniques and the factors 
that influence a programmer's testing effectiveness. This 
paper describes the results of an experiment in testing a 
PL/I program using three approaches and variations 
thereof: 1) Computer-based testing where the tester has 
access to only the program's specification, 2) computer- 
based testing where the tester has access to the program's 
specification and source-language listing, and 3) non- 
computer-based testing by teams of programmers em- 
ploying the walkthrough/inspection method. 

As mentioned earlier, research in this area has been 

Communications September 1978 
of  Volume 21 
ACM Number 9 



rather limited. The majority of the existing controlled 
experiments have been in the areas of programming- 
language design and the use of interactive versus batch- 
processing systems; the author of [11] reviews many of 
these efforts. The work of [6] is closely related to the 
experiment described herein: his experiment employed 
39 subjects testing three PL/I programs using three 
methods: Testing by using only the specification, testing 
by using the specification and the program listing, and 
individual desk checking. However, his subjects were 
mostly students with little programming experience (an 
average of three years). Among other things, his work 
showed that the first two methods were equally effective 
and that the third method was significantly inferior. 

Another relevant experiment [5] employed 18 inex- 
perienced programmers testing five Cobol programs. 
The intent of the experiment was to determine if pro- 
grammers were more effective in testing only one pro- 
gram at a time, or two or three programs. A small five- 
programmer experiment was conducted on the Safe- 
guard Project [8], where errors were seeded into a pro- 
gram and individual code reading was used to locate the 
errors. The work of [3, 4] is also relevant, although it is 
in the area of debugging rather than testing. (Debugging 
is distinguished from testing in that testing is the process 
of showing that a program contains errors, but debugging 
is the process of finding the precise location of the error 
within the program [9].) Their experiments used ten 
moderately experienced Fortran programmers. The sub- 
jects were given four Fortran subroutines, told that each 
contained a one-statement error, and asked to locate the 
error using several debugging aids. Although their ex- 
periments produced several interesting observations, the 
applicability of their findings is questionable, since de- 
buggers do not start with the knowledge that a program 
contains only a single one-statement error. Finally [7] 
has reported encouraging results in the use of symbolic 
execution as a testing technique. 

2. The Experiment 

The experiment discussed in this paper employed 59 
highly experienced data processing professionals. The 
subjects' goal was to test (identify errors in) a small text- 
formatting program written in PL/I. The subjects were 
divided into three categories. Subjects in category A were 
asked to test the program by using a terminal and having 
only the specification from which to derive test cases. 
Subjects in category B operated in the same environment, 
but they were also given a copy of the program's listing 
from which they could derive additional test Cases. The 
subjects were asked to work independently. 

The subjects in category C were grouped into three- 
person teams. Each team was given the specification and 
listing of the program and asked to test the program 
using the manual walkthrough/inspection method. 

In general, no time constraints were placed on the 

subjects. They were asked to test the program until they 
felt that they found all of the errors (if any). The subjects 
had no prior knowledge of the number or nature of the 
errors; they were simply told of a "suspicion that the 
program is not perfect." The only time constraint was 
that the walkthrough/inspection sessions were limited to 
90 minutes, although the participants were given the 
materials in advance and could choose the amount of 
time to be spent in preparing for the session. Other than 
constraining the methods by the documentation given as 
described above, all participants were free to choose their 
testing strategies and methods. For instance, the people 
in category C were permitted to decide upon the inspec- 
tion techniques to be used. Most used a combination of 
mentally walking test-cases through the program's logic 
and checking the logic for common errors. 

Although the three methods were evaluated compet- 
itively, one should not draw the conclusion that the 
purpose of the experiment is to discourage use of the 
"less than best" methods. Indeed, given the magnitude 
of today's software reliability problem, as many different 
error-detection techniques as is feasible should be em- 
ployed. In addition, one should be cautious in inter- 
preting the results. For instance, the idea of code walk- 
throughs/inspections is generally recognized as a cost- 
effective technique in that the earlier that errors can be 
detected in a project, the lower the cost of repairing the 
errors and the higher the probability of repairing the 
errors correctly. This experiment does not address these 
broad issues; rather, it is a microscopic analysis of the 
relative effectiveness of the techniques. 

2.1 The Subjects 
The 59 subjects were students in a course on software 

reliability at the IBM Systems Research Institute. Their 
average number of years of experience in the computing 
field was I l; the range was from 7 to 20 years. Of the 59 
participants, 49 were employed as programmers or pro- 
gram testers. The remaining 10 had programming expe- 
rience, but were not considered to be "professional pro- 
grammers"; their primary jobs were systems engineers, 
project managers, documentation writers, and electrical 
engineers. The subjects were considered to be above- 
average employees (a requisite for admission to the 
Systems Research Institute) and were judged to be highly 
motivated during the experiment. The motivation 
stemmed from the competitive nature of the situation 
and the knowledge that someone (the author) knew of 
the total number of errors in the program. 

2.2 The Experimental Design 
The crucial part of any experiment is, of course, 

designing the experiment to avoid biases in the outcome. 
The technique used in this experiment was to pretest the 
subjects. Part of the pretesting was done by question- 
naire. Each subject was asked to rank his or her prior 
testing experience on a scale from 1 to 4 (1 = have never 
tested a program, 2 = have tested programs infrequently, 

761 Communications September 1978 
of Volume 21 
ACM Number 9 



3 -- have tested programs frequently, 4 = primary job is 
program testing); knowledge of PL/I  on a scale from 1 
to 3 (l = could not understand a simple PL/ I  program, 
2 = could understand a simple PL/ I  program, 3 = very 
experienced in PL/I); and experience with walk- 
through/inspection techniques (0 = none, l = some). 
The subjects were also pretested by giving them a spec- 
ification for an extremely simple progra m and asking 
them to write test cases for it. Their test cases were 
analyzed with respect to a set of errors in the program to 
obtain another measure of their testing abilities. 

The goal was to place the subjects into the three 
categories such that no category was biased in terms of 
the above variables. Such placement proved to be in-  
feasible because all subjects in categories B and C needed 
a PL/ I  rating of at least 2 (in order to read the program), 
but there were not enough subjects with this rating to 
balance all three categories. (Although they averaged 1 l 
years of experience, many of the participants were For- 
tran, Cobol, APL, RPG, and assembly language pro- 
grammers.) Also only 22 of the subjects reported prior 
walkthrough/inspection experience, but it was deemed 
necessary that each category-C team contain at least one 
subject with this experience. 

The resultant design was to partition people into the 
three categories such that each category had the same 
average testing experience (based on both the question- 
naire response and the performance on the pretest pro- 
gram). People with a PL/ I  rating of I were automatically 
placed into category A, and the teams in category C were 
organized such that each team contained at least one 
PL/ I  expert and one person with prior experience in 
walkthroughs. Hence the known biases were that cate- 
gory C had an average PL/I  rating of 2.4, B a rating of 
2.1, and A a rating of 1.5, and category C had an average 
walkthrough-experience rating of 0.6, B a rating of 0.3, 
and A a rating of 0.2. A smoothing effect came from the 
fact that the experiment was performed toward the end 
of the course using [9] as a text, and several lectures had 
been presented on program testing. 

2.3 The Program 

The PL/ I  program was based on an Algol program 
written, using techniques of program-correctness proofs, 
by Naur [10] and in which six errors were later discovered 
by Goodenough and Gerhart [2]. (They claim to have 
found seven, but their sixth error appears to be a dupli- 
cate of their third and fifth errors.) The program was 
translated into a three-procedure structured PL/ I  pro- 
gram totalling 63 statements, and a few changes were 
made to the original specification. The last four original 
errors were retained in the PL/I  program, a few addi- 
tional original errors were found, several errors were 
made during the conversion to PL/I ,  and a few typical 
errors ("typical" based on the experience of the author) 
were seeded into the program, bringing the total to 15 
known errors. (None of the participants found any 

762 

heretofore unknown errors.) The program is illustrated 
in Figure I. 

Each subject was given a specification of the pro- 
gram, and subjects in categories B and C were given a 
copy of the program listing (a compiler listing). The 
subjects were not told how many errors existed in the 
program or that the program had any errors. They were 
asked to find discrepancies (if any) between the program 
and its specification and to keep track of  any errors 
found and the time expended. Subjects in categories A 
and B were also given instructions on how to invoke the 
program from a terminal. The author was present during 
the walkthrough/inspection sessions to play the role of 
the original programmer (i.e., the teams could ask ques- 
tions about the program). The specification that was 
used is as follows. 

Specification 
Given an input text consisting of words separated by 

blanks or new-line characters, the program formats it 
into a line-by-line form such that 1) each output line has 
a maximum of 30 characters, 2) a word in the input text 
is placed on a single output line, and 3) each output line 
is filled with as many words as possible. 

The input text is a stream of characters, where the 
characters are categorized as break or nonbreak charac- 
ters. A break character is a blank, a new-line character 
(&), or an end-of-text character (/). New-line characters 
have no special significance; they are treated as blanks 
by the program. & and / should not appear in the output. 

A word is defined as a nonempty sequence of  non- 
break characters. A break is a sequence of one or more 
break characters. A break in the input is reduced to a 
single blank or start of  a new line in the output. 

The input text is a single line entered from a terminal 
similar to an IBM 2741 having a carriage width of 130 
characters. When the program is invoked, it prompts the 
terminal user for a line of  input by typing a colon and 
then skipping to the next line and unlocking the key- 
board. The user types the input line, followed by a / 
(end-of-text) and a carriage return. The program then 
formats the text and types it on the terminal. 

If  the input text contains a word that is too long to fit 
on a single output line, an error message is typed and 
the program terminates. If  the end-of-text character is 
missing, an error message is issued and the user is again 
prompted for input with a colon. (End of specification.) 

The 15 known errors in the program are listed in 
Table I. 

2.4 Data Collection 
A questionnaire was distributed at the end of the 

experiment asking each participant to describe the errors 
found and to list the time spent in preparing for the test 
(e.g. studying the specification and designing test cases) 
and the time spent performing the test (i.e. executing and 
verifying test runs or participating in the walkthrough 
session). The raw data from each category is shown in 

Communications September 1978 
of Volume 2 l 
ACM Number 9 



Fig. 1. 

FORM: PROCEDURE OPTIONS (MAIN); 
% DECLARE LINESIZE FIXED; 
% LINESIZE = 31; 
DECLARE (K, BUFPOS, FILL) FIXED DECIMAL (9), 

MAXPOS FIXED DECIMAL (9) INIT (LINESIZE), 
CW CHAR, 
BLANK CHAR INIT (' '), 
LINEFEED CHAR 1NIT ('$'), 
EOTEXT CHAR INIT ( '/ ') ,  
MOREINPUT BIT INIT ('I'B), 
BUFFER (LINESIZE) CHAR; 

BUFPOS = 0; 
FILL = 0; 
DO WHILE (MOREINPUT); 

CALL GCHAR (CW); 
IF (CW = BLANK)I(CW = LINEFEED)I(CW = EOTEXT) 

THEN DO; 
IF (CW = EOTEXT) THEN MOREINPUT = '0'B; 
IF ((FILL + 1 + BUFPOS) < = MAXPOS) 

THEN DO; 
CALL PCHAR (BLANK); 
FILL = FILL + 1; 

END; 
ELSE DO; 

CALL PCHAR (LINEFEED); 
FILL = 0; 

END; 
DO K = 1 TO BUFPOS BY 1; 

CALL PCHAR (BUFFER (K)); 
END; 
FILL = FILL + BUFPOS; 
BUFPOS = 0; 
END; 

ELSE IF BUFPOS = MAXPOS 
THEN DO; 

MOREINPUT = '0'B; 
DISPLAY ( 'WORD TO LONG'); 

END; 
ELSE DO; 

BUFPOS = BUFPOS + 1; 
BUFFER (BUFPOS) = CW; 

END; 
END; 
CALL PCHAR (LINEFEED); 
GCHAR: PROCEDURE (C); 
DECLARE C CHAR, 

BUFFER (130) STATIC CHAR INIT ('Z'), 
INBUF CHAR (130), 
BCOUNT FIXED DECIMAL (3) STATIC INIT (1); 

DECLARE SINPUT FILE STREAM; 
IF (BUFFER (1) = 'Z') 

THEN DO; 
GET FILE (SINPUT) EDIT (INBUF) (A (130)); 
IF (INDEX (INBUF, EOTEXT) = 0) 

THEN DO; 
DISPLAY ( 'NO END OF TEXT MARK'); 
BUFFER (2) = EOTEXT; 

END; 
ELSE STRING (BUFFER) = INBUF; 

END; 
ELSE; 

C = BUFFER (BCOUNT); 
BCOUNT = BCOUNT + 1; 
END; 
PCHAR: PROCEDURE (C); 
DECLARE C CHAR, 

OUTLINE (LINESIZE) CHAR STATIC INIT ((LINES1ZE) 
(' ')), 

I FIXED DECIMAL (3) STATIC INIT (1); 
DECLARE SOUTPUT FILE STREAM; 
IF (C = LINEFEED) 

THEN DO; 
PUT FlEE (SOUTPUT) SKIP EDIT (STRING (OUTLINE)) 

(A (LINESIZE)); 
OUTLINE = ' '; 
I = ! ;  

END; 
ELSE DO; 

OUTLINE (I) = C; 
I = I +  1; 

END; 
END; 
END; 

Tables II-IV. Categories A and B had 16 subjects each; 
category C consisted of  nine teams of  three people each. 
A "X" in a column means that that subject (or team) 
found the corresponding error. 

Table V lists the time expended by each subject (or 
team of subjects for category C). The three numbers 
listed are the preparation, test, and total times in minutes. 

3. Data Analysis 

Before turning to statistics, several observations are 
apparent as a result of  inspecting Tables II-IV. These 
are: 
1. There is a tremendous amount of  variability in the 

individual results. For instance, two people in cate- 
gory A found only one error, but five people found 
seven errors. The variability among student program- 
mers is generally well known, but the high variability 
among these highly experienced subjects was some- 
what surprising. 

2. There is a tremendous amount o f  variability in the 
errors detected, particularly in categories A and B. 
Excepting errors 1, 2, 3, and 5, which were detected 
with some degree of  regularity, the detection of  indi- 
vidual types of  errors varies widely from individual to 
individual. 

3. The walkthrough method (category C) exhibits less 
variability, particularly in terms of  the individual 
errors found. This suggests that this method is more 
predictable than the other methods. 

4. The overall results are rather dismal; an observation 
that should not be surprising to anyone in the software 
engineering field. The mean number of  errors found 
by all efforts was 5.1, or approximately a third of the 
known errors. 

5. The inability to detect some of  the seemingly obvious 
errors is alarming. For instance, error 1 (blank char- 
acter at the beginning of  the first line) was not detected 
by everyone. The probable reasons are either failing 
to inspect the output carefully or incorrectly assuming 
that the condition is not an error. One might expect 
errors 2, 3, and 5 to be caught by everyone, since these 

763 Communications September 1978 
of Volume 21 
ACM Number 9 



Table I. Known errors in the text-formatting program. 

Error Symptom 

1 A blank is printed before the first word on the first line 
unless the first word is 30-characters* long. 

2 The program assumes that $ (not &) is the new-line char- 
acter. 

3 The program assumes that the line size is 31 characters, not 
30 as stated in the specification. 

4 If the first character of  an input line is "Z", the line is 
ignored by the program. 

5 The program does not condense successive new-line and 
blank characters. 

6 The use of  tab characters in the input text causes the 30- 
character* line limit to be exceeded. 

7 A leading blank line is printed when the first word in the 
input text is 30 characters* long. 

8 If an input line is entered without an end-of-text mark, the 
program prints a message and prompts for input. How- 
ever, after the new input line is entered with an end-of- 
text mark, the program changes the first character in the 
output to "Z". 

9 Spelling error in the message "WORD TO LONG." 
10 After two successive omissions of  end-of-text marks, the 

program prints a "Z" and terminates. 
11 After issuing the word-too-long message, the program also 

prints whatever is residing in its output buffer. 
12 Same situation.,as number 8, but if the second input line 

consists of  only an end-of-text mark, the program prints 
5 blank lines and the word-too-long message. 

13 If  a too-long word is used, the error message is printed in 
inconsistent places. For example, if the word would not 
appear in the first output line, the message is printed at 
the end of  the previous output line, thus exceeding the 
maximum line size. 

14 The program formats underscored words correctly, but it 
treats each underscored character as three characters when 
computing the line length. 

15 The program's terminal buffer holds only 130 characters, 
but it is possible to enter a terminal line of  more than 130 
characters (e.g., by using the backspace key). 

* Because of error 3, read as 31 instead of 30. 

conditions are emphasized in the specification, but 
the expectations prove false. Not detecting error 9 is 
an example of the "eye seeing what it wants to see"; 
it is likely that everyone used a test case that caused 
this message to be issued, but most people failed to 
recognize the incorrect spelling in the message. 

3.1 Comparing the Three Methods 
Table VI summarizes some comparative statistics of 

the three methods. The first row (mean number of errors 
found) is the most important, but the nonparametric 
Kruskal-Wallis test indicates that there is no difference 
between the three methods (i.e., it is incorrect to conclude 
that method A is the worst). Rows 2-5 also indicate no 
large differences among the three methods. As a note, 
since the idea of group walkthroughs or inspections is 
relatively new, implying that people have less experience 
with this than with traditional testing methods, it is 
encouraging to see that this method held its own against 
the other methods. 

In addition to this observation, two conclusions can 
be drawn from Table VI. One is that n o n e  of the methods, 
when used alone, is very good, since they detected only 
about a third of the errors in this small and simple 
program. An implication here is that the 
walkthrough/inspection technique should be viewed as 
a supplement to, rather than a replacement for, tradi- 
tional testing methods. Another conclusion is that 
method C has a higher labor cost. The Kruskal-Wallis 
test shows that the difference in the mean man-minutes 
per error is highly significant; although the three methods 
were approximately equal in terms of the number of 
errors detected, the labor cost per error was much higher 
for the walkthrough/inspection method. On a macro- 
scopic level, however, such differences in labor costs 
should prove to be insignificant when compared to the 

Table II. Raw Data--Category A (Computer-Based Testing Using the Specification). 

Subjects 

C D E F G H I J K 
X X X X X 
X X X X X X X X 
X X X X X X 

X X X X X 
X 

X X 
X X X X X 
X X X X 
X X X 

A B 
Error ! X X 

2 X 
3 X X 
4 
5 X 
6 
7 
8 X 
9 

10 X 
11 X 
12 
13 X 
14 
15 

Total found 3 7 
PL/I  experience 1 1 
Test experience 3 3 
Walkthrough experi- 0 0 

ence 

X 
X 

l 7 4 7 6 4 3 3 
2 2 2 2 2 2 l l 
2 3 2 4 3 3 2 l 
0 0 1 0 l 0 0 0 

X 

L 

X 

M 
X 
X 

N 
X 
X 
X 

X 

X 

P 
X 
X 
X 

X 

X 
X 

X 

764 Communications 
of  
ACM 

September 1978 
Volume 21 
Number 9 



labor normally expended in later stages (e.g. system test 
and maintenance). Machine time used in methods A and 
B was not considered because 1) it was insignificant in 
this experiment and 2) machine costs are dropping but 
labor costs are rising. As an aside, cost-per-error-found 
is usually an invalid measure when comparing results 
from two programs, because the program with the most 
errors tends to look the best. However, it is a valid 
measure here, since the three methods were used to test 
the same program. 

3.2 Analysis of Individual Variations 
Since the most visible result so far is the wide varia- 

tion in individual performance, an analysis of  the under- 
lying causes is warranted. Correlation coefficients were 

calculated, across all methods and for each individual 
method, between the number of  errors found and the 
subjects' PL/I experience, prior testing experience, per- 
formance on the pretest testing problem, walkthrough 
experience, total testing time, preparation time, test ex- 
ecution time, and the fraction of  time spent in prepara- 
tion. However, because correlation coefficients do not 
necessarily imply cause-effect relationships and they 
have little meaning when computed from small sample 
sizes, and because most of  the calculated coefficients 
were not statistically significant and the significant ones 
were rather small, they provided no useful insight and 
are not included here. 

On the other hand, correlation coefficients are occa- 
sionally useful in pointing out questions for future re- 

Table III. Raw Data--Category B (Computer-Based Testing Using Specification and Code). 

Subjects 

A B C D E F G H 1 J 
Error ! X X X X X X X 

2 X X X X X X X X X 
3 X X X X X X X X X 
4 X X X X 
5 X X X X X X 
6 
7 X 
8 X X 
9 X X X 

10 X X 
11 
12 X X 
13 X 
14 
15 X 

Total found 7 7 9 3 
PL/I  experience 2 2 2 2 
Test experience 3 2 3 3 
Walkthrough experi- 0 0 0 0 

ence 

X 

K L M N O P 
X X X X 
X X X X X X 
X X X 

X 
X X X 

X X X X X 
X 

X X X X X X 
X 

X X 

X X 
X 

4 5 3 8 8 6 5 3 8 
2 2 2 2 3 2 2 2 2 
3 1 3 3 3 3 3 2 2 
0 0 1 1 1 0 0 0 0 

X 
X 

X 

2 2 6 
2 2 3 
2 4 4 
1 ! 0 

Table IV. Raw Data--Category C (Walkthrough/Inspection). 

Subjects 

A B C D E F G H I 
Error 1 X X X X X X 

2 X X X X X X X X X 
3 X X X X X X X X 
4 X X X X X X X X X 
5 X X X X X X X 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Total found 
PL/I  experience 
Test experience 
Walkthrough experience 

X X 
X X 

X 

X 
X 
X 

X 

X 
X 
X 

5 6 4 6 6 5 9 3 7 
322 332 322 322 322 322 322 322 322 
433 333 432 432 332 332 333 433 332 
111 110 100 110 100 100 100 110 100 

765 Communications September 1978 
of Volume 21 
ACM Number 9 



Table V. Times expended. 

Category A Category B Category C 

A 50/50/100 A 60/100/160 
B 20/80/100 B 170/130/300 
C 60/90/150 C 180/120/300 
D 60/90/150 D 80/70/150 
E 30/90/120 E 60/60/120 
F 40/150/190 F 30/10/40 
G 50/40/90 G 75/45/120 
H 90/60/150 H 60/40/100 
I 40/100/140 I 50/30/80 
J 95/60/155 J 120/60/180 
K 20/50/70 K 60/55/115 
L 70/10/80 L 40/40/80 
M 20/20/40 M 120/100/220 
N 30/40/70 N 20/60/80 
O 85/45/130 O 60/60/120 
P 40/50/90 P 45/45/90 

A 180/270/450 
B 190/270/460 
C 45/225/270 
D 30/210/240 
E 40/270/310 
F 140/270/410 
G 180/240/420 
H 210/270/480 
I 150/270/420 

Table VII. Percentage of subjects finding each error type. 

Error Method A Method B Method C All Methods 

1 69 69 67 68 
2 88 94 100 93 
3 69 75 89 76 
4 0* 31 100" 34 
5 56 56 78 61 
6 6 0 0 2* 
7 19 19 11 17" 
8 44 50 44 46 
9 31 25 44 32 

10 31 56* 11" 37 
11 12 6 11 10" 
12 0 25* 0 10" 
13 12 6 11 10" 
14 6 12 0 7* 
15 6 12 0 7* 

* These entries appear to represent significant deviations. 

Table VI. Comparative statistics. 

Method Method Method 
A B C 

Mean no. of errors found 4.5 5.4 5.7 
Variance 4.8 5.5 3.0 
Median no. of errors found 4.5 5.5 6 
Range of errors found 1-7 2-9 3-9 
Cumulative errors found 13 14 11 
Man-minutes per error 37 29 75 

search. One example was a negative correlation (-0.58) 
between subjects' prior walkthrough/inspection experi- 
ence and their performance in using method C. The 
sample is too small to draw conclusions, but further 
research seems warranted to explore the hypothesis that, 
because this method is more mentally taxing than the 
others, people are initially highly motivated but then 
tend to tire of it after multiple experiences. 

3.3 Analysis of Error-Type Variations 
Another way of using the data is to analyze the types 

of errors found by each method. Table VII shows, for 
each of the 15 errors, the percentage of subjects in each 
category that found the error and the percentage of total 
subjects that found each error (counting each category C 
team as one subject). The entries marked with an "*" 
appear to represent significant deviations. 

The marked errors in the last column represent the 
errors that were infrequently detected by anyone. Errors 
6, 14, and 15 would only be detected if the tester explored 
the use of special terminal characters (tab and back- 
space). Even if these special characters were used, error 
15 would only be detected if the tester used the backspace 
character in conjunction with a very long input line. 

Error 7 is only seen on a special input situation (when 
the first word is exactly equal to the output-line length) 
and when the tester carefully inspects the output (to spot 
the leading blank line). Error 11 is difficult to spot, 

766 

because the program's output buffer would contain 
blanks unless the "too long" word was not the first word 
in the input. Error 13 would only be spotted under 
similar conditions. Error 12 involved a special series of 
input conditions, and hence was infrequently detected. 

The conclusion here is that the testers focused too 
much attention on "normal" test cases and insufficient 
attention on erroneous-input and special-case conditions. 
Notice that method C proved to be worse than aver- 
age on these seven errors, implying that the walk- 
through/inspection method focused too heavily on the 
program's logic at the expense of considering its 
input/output anomalies. 

In examining method A, one sees that it did signifi- 
cantly poorer than the average on error 4. The program 
initialized the first character in its input buffer to "Z", 
and used this as an indication that its input buffer was 
empty. The error was relatively easy to spot if one 
examined the code, but it would only be detected by 
method-A subjects as a result of a test case such as 
"Zebras are animals./". 

In examining method B, one finds that it was more 
likely to detect errors 10 and 12 than the other two 
methods. No explanation of this is offered. Method C 
was much more effective than the average in detecting 
error 4 (the "Z"  in the buffer). This follows from the 
rigorous analysis of the program's logic that was per- 
formed by the teams employing method C. Method C 
was significantly poorer than the average on error 10. 
The error is extremely subtle and not likely to be discov- 
ered by reading the program. Since it is triggered by an 
easy-to-make input error, it was probably discovered by 
accident by the subjects using methods A and B. 

4. Variations on the Experiment 

Since the three methods were equally effective in 
finding errors (although method C was more costly), one 
might wish to determine if some combination of the 
methods might be more effective. For instance, is there 

Communications September 1978 
of Volume 21 
ACM Number 9 



Table VIII. Comparative Statistics of Methods A-G. 

Method 

A B C 
Mean no. of errors found 4.5 5.4 5.7 
Variance 4.8 5.5 3.0 
Median no. of errors found 4.5 5.5 6 
Range of errors found 1-7 2-9 3-9 
Cumulative errors found 13 14 11 
Mean man-minutes per error 37 29 75 

D E F G 
7.3 8.3 7.2 7.6 
3.6 2.8 3.4 4.3 
8 8 7.5 8 
4-10 6-11 3-10 5-10 

13 14 15 14 
34 34 37 75 

any benefit from having two people independently test 
the program, using method A, and then pooling the 
errors that they find? 

To study these combinations, four additional meth- 
ods were defined. Method D incorporates two people 
independently testing the program using method A, 
where they pool their results when completed (and, of 
course, duplicate errors are not counted twice). Method 
E is similar, but the independent testers use method B. 
Method F is defined as employing two independent 
testers, one using method A and the other using method 
B. Method G is a combination of methods A and C; 
three people use method C (a walkthrough) and the 
fourth person independently uses method A to test the 
program. 

Rather than running a separate set of experiments, 
data for these four methods were acquired by combining 
data from Tables II-V. That is, eight pairs of subjects 
were simulated for method D by pooling the results of 
the 16 subjects in Table II (pairing them in the order A- 
B, C-D, E-F, G-H, etc.). In a similar fashion, data were 
obtained for eight pairs of subjects using method E, 16 
pairs of subjects using method F, and nine quadruplets 
of subjects using method G (pairing the first nine subjects 
in Table II to the nine groups in Table IV). 

The comparative statistics for all seven methods are 
shown in Table VIII. As is indicated, the pooling of 
independent results (particularly in method E) reduces 
some of the unpredictability and risk (i.e. variance in 
errors found) associated with methods A and B. A Krus- 
kal-Wallis test on the seven mean-number-of-errors- 
found now indicates that we reject the hypothesis that 
the means vary only by chance, implying that methods 
D-G are better than methods A-C. However a test of the 
means for methods D-G does not indicate any difference 
between these four methods, implying that we cannot 
conclude that method E is best. 

Again there is a significant difference in the cost-per- 
error-found statistic; methods A, B, D, E, and F are 
significantly better than methods C and G. The interest- 
ing result, however, is the observation that the labor cost 
of methods D-F is approximately the same as that of 
methods A and B. In other words, the pooling of inde- 
pendent test results was not, as might be expected, more 
costly because of the detection of duplicate errors. The 
explanation for this is the large variability in the types of 
errors found by different individuals. This observation is 
perhaps the most significant result of the experiment, 

767 

because it implies that a more cost-effective way to test 
a program is to employ two testers who work independ- 
ently of one another (and based on a visual inspection of 
Table VIII, one might be swayed toward method E, 
although statistical analysis will not bear this conclusion 
out). 

5. Discussion 

One basic result of the experiment was that the 
walkthrough/inspection method had a higher labor cost 
than the other methods. This deserves further analysis to 
avoid being misconstrued. One reason for the popularity 
of the walkthrough/inspection method is that it gets 
people other than the program's programmer involved 
in the testing process, and there is reason to believe that 
programmers are relatively unsuccessful in testing their 
own programs (see Chapter 10 of [9] for a discussion of 
this). However in this experiment we did not compare 
the walkthrough to a programmer testing his or her 
program, but to a programmer testing someone else's 
program. Thus the walkthrough method is likely to be 
more effective than a programmer testing his or her own 
program, but less effective in terms of labor costs than a 
third party testing the program using computer-based 
methods. 

One observation that was made during the experi- 
ment is that the walkthroughs and inspections focused 
too much on the logic of the program, at the expense of 
focusing attention on the input and output data. Perhaps 
this method could be improved by training programmers 
to focus their attention on the data handled by the 
program, rather than solely on the program's logic. 

Comments were solicited from the participants and 
most of the participants felt that the experiment had a 
high educational value. At the end of the experiment, 
each participant was given a copy of the 15 known errors. 
In the normal environment, one does not have the op- 
portunity to test a program and then receive immediate 
feedback on the errors overlooked, so perhaps exercises 
such as this should be incorporated into programming 
courses. 

When asked to report on their testing techniques, 
most of the participants indicated that they focused their 
efforts on boundary and invalid-input conditions, but 
the results do not indicate that this really happened. The 
two reasons for the relatively poor error-detection rates 

Communications September 1978 
of Volume 2 l 
ACM Number 9 



on this program appear to be: 1) The participants did 
not carefully compare the actual output produced by the 
program to the expected output. Thus many errors that 
were observable on the output listings were overlooked. 
2) The participants focused too much of their attention 
on "normal" input conditions, and not enough on special 
cases and invalid-input situations. 

Lastly, a few participants using the walkthrough 
method suggested that situations arise where it would be 
desirable--during the walkthrough session--to study 
special cases of interest by invoking the program from a 
terminal rather than by simulating them mentally. This 
idea of "computer assisted" walkthroughs seems inter- 
esting and warrants additional study; experiments are 
underway to do so. Likewise, the influence of testing 
tools deserves further study. 

6. Conclusions 

One result of the experiment is that the three original 
methods are equal in terms of error-detection capabili- 
ties, although the walkthrough method was not as cost- 
effective as the computer-based methods in a "unit test- 
ing" environment under the condition that the person 
doing the testing was not the programmer of the pro- 
gram. To repeat an earlier warning, this does not imply 
that the walkthrough technique, in and of itself, is not 
cost-effective; experience has shown the opposite to be 
the case. 

Another result was that independent two-party tests 
tended to find more errors and, because of the large 
variability in errors found by each individual, were 
equally cost-effective as the single-person tests. 

One finding is the significant variability among in- 
dividuals, both in terms of the number and types of 
errors found. Given the high experience level of the 
participants and their participation in a course on soft- 
ware reliability, the variability was higher than expected. 
This variability could not be explained by correlating it 
with prior testing experience and other measured factors. 
As an example, an individual who found eight errors 
was employed as a documentation writer, but another 
individual employed as a program test specialist found 
only two errors. This variability implies that personnel 
selection for program-testing roles is of vital importance, 
but additional experimentation is necessary to determine 
the factors that contribute to high testing abilities. 

Analysis of each of the errors showed that certain 
types of errors were very difficult to detect (independent 
of the method used) and that the ability to detect certain 
types of errors varied somewhat from method to method. 

A possible criticism of the experiment is the small 
size of the program used. However, the results are be- 
lieved to be applicable to larger programs. In particular, 
this experiment is analogous to the "unit testing" of 
individual subroutines or modules in a large program. 

Received March 1977; revised October 1977 

768 

References 
1. Fagan, M.E. Design and code inspections to reduce errors in 
program development. IBM Syst. J. 15, 3 (1976), 182-211. 
2. Goodenough, J.B., and Gerhart, S.L. Toward a theory of test 
data selection. 1EEE Trans. Software Eng. SE-1, 2 (1975), 156-173. 
3. Gould, J.D. Some psychological evidence on how people debug 
computer programs. Int. J. Man-Machine Studies 7, 2 (1975), 
151-182. 
4. Gould, J.D., and Drongowski, P. An exploratory study of 
computer program debugging. Human Factors 16, 3 (1974), 258-277. 
5. Griffith, P.F., and Henry, R.M. An investigatory study into 
human problem solving capabilities as they relate to programmer 
efficiency. Comptr. Personnel 3, 3 (1972), 10--15. 
6. Hetzel, W.C. An experimental analysis of program verification 
methods. Ph.D. Th., U. of North Carolina, Chapel Hill, 1976. 
7. Howden, W.E. Symbolic testing and the DISSECT symbolic 
evaluation system. IEEE Trans. Software Eng. SE-3, 4 (1977), 
266-278. 
8. Jelinski, Z., and Moranda, P.B. Applications of a probability- 
based model to a code reading experiment. Rec. 1973 IEEE Symp. 
Comptr. Software Reliability, IEEE, New York, 1973, pp. 78-81. 
9. Myers, G.J. Software Reliability: Principles and Practices. Wiley- 
Interscience, New York, 1976. 
10. Naur, P. Programming by action clusters. BIT 9, 3 (1969), 
250-258. 
11. Shneiderman, B. Experimental testing in programming 
languages, stylistic considerations and design techniques. Proc. 
AFIPS 1975 NCC, AFIPS Press, Montvale, N.J., 1975, pp. 653--656. 

Communications September 1978 
of Volume 21 
ACM Number 9 


