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The paper discusses the basic concepts underlying the issue of software reliability, and
argues that programmed exception handling is inappropriate for dealing with suspected software
errors. Instead it is shown, using an example program, how exception handling can be combined
with the recovery block structure. The result is to improve the effectiveness with which

problems due to anticipated faulty input data,

hardware components, etc., are dealt with, while

continuing to provide means for recovering from unanticipated faults, including ones due to

residual software design errors.

1. Introduction

Discussions of software reliability are
frequently marred by misunderstandings arising
from incompatible preconceptions and terminology -
for example some people have equated the terms
'software reliability' and 'program correctness'
while others have assumed that 'software
reliability' encompasses such concerns as the
design of appropriate forms of system response to
invalid input data.

The purpose of the present paper is twofold -
to propose a set of terms and their definitions
which might obviate further misunderstandings, and
to discuss the relevance of programmed 'exception
handling' to the problem of coping with residual
design errors (or 'bugs') in programs.

Our informal, but hopefully precise,
definitions are based closely on those given in
[5]. To avoid needless specialisation the
terminology is defined in general terms, and is
not specific to computer programs. Rather it is
relevant to all types of system, hardware as well
as software. The terminology we use is intended to
correspond broadly to conventional usage, but the
definitions of some of the terms differ from
previous practice, which typically has paid little
attention to design inadequacies as a potential
source of unreliability.

2. Systems and their Failures

We define a system as a set of components
together with their interrelationships, which

system has been designed to provide a specified
service. The components of the system are
themselves systems, and we term their
interrelationships the algorithm of the system.
There is no requirement that a component provide
service to a single system; it may be a component
of several distinct systems. The algorithm of the
system is however specific to each system
individually.

This definition of 'system' with its insistence
that the service provided must be specified (but
not necessarily prespecified), is intended to
exclude systems which are "intelligent" in the
sense of being capable of determining their own
goals and algorithms. At present intelligent
systems are not understood sufficiently to permit
consideration of their reliability.

The internal state of a system is the
aggregation of the external states of all its
components. The external state of a system is the
result of a conceptual abstraction function
applied to its internal state. During a transition
from one external state to another external state,
the system may pass through a number of internal
states for which the abstraction function, and
hence the external state, are not defined. The
specification defines only the external states of
the system, the operations that can be applied to
the system, the results of these operations, and
the transitions between external states caused by
these operations, the internal states being
inaccessible from outside the system.
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The service provided by a system is regarded as
being provided to one or more environments. Within
a particular system, the environment of a given
component consists of those other components with
which it is directly interrelated.

A failure of a system occurs when that system
does not perform its service in the manner
specified, whether because it is unable to perform
the service at all, or because the results and the
external state are not in accordance with the
specifications. A failure is thus an event. There
is however no implication that the event is
actually recognised as having occurred. For
example, if an environment does not make full use
of the specifications of a system (i.e. if what
Parnas [6] terms the environment's 'assumptions'
are a proper subset of the specifications) certain
types of failures will have no effect.

3. Errors and Faults

In contrast to the simple, albeit very broad,
definition of 'failure' given above, the
definitions we now present of 'error' and 'fault'
are not so straightforward. This is because they
aim to capture the element of subjective judgement
which we believe is a necessary aspect of these
concepts, particularly when they relate to
problems which could have been caused by design
inadequacies in the algorithm of a system.

We term an internal state of a system an
erroneous state when that state is such that there
exist circumstances (within the specification of
the use of the system) in which further
processing, by the normal algorithms of the
system, will lead to a failure which we do not
attribute to a subsequent fault. (The subjective
judgement that we wish to associate with the
classification of a state as being an erroneous
one derives from the use of the phrases "normal
algorithms" and "which we do not attribute" in
this definition - however further definitions are
required before these matters can be discussed
properly.)

The term error is used to designate that part
of the state which is "incorrect". An error is
thus an item of information, and the terms error,
error detection and error recovery are used as
casual equivalents for erroneous state, erroneous
state detection and erroneous state recovery.

A fault is the mechanical or algorithmic cause
of an error, while a potential fault is a
mechanical or algorithmic construction within a
system such that (under some circumstances within
the specification of the use of the system) that
construction will cause the system to assume an
erroneous state. It is evident that the failure of
a component of a system is (or rather, may be) a
mechanical fault from the point of view of the
system as a whole.

Hopefully it will now be clear that the
generality of our definitions of failure and fault
has the intended effect that the notion of fault
encompasses such design inadequacies as a mistaken
choice of component, a misunderstood or inadequate
specification (of either the component, or the
service required from the system) or an incorrect
interrelationship amongst components (such as a
wrong or missing interconnection, in the use of
hardware systems, or a program bug in software

systems), as well as, say, hardware component
failure due to ageing.

Note that the definition of an erroneous state
depends on the subdivision of the algorithm of the
system into normal algorithms and abnormal
algorithms. These abnormal algorithms will
typically be the error recovery algorithms. There
are many systems in which that subdivision, and
hence the designation of states as erroneous, is a
matter of judgement.

For example, in a storage system utilising a
Hamming Code, one may regard the correction
circuits as error recovery mechanisms and a single
incorrect bit as an error. Alternatively
(particularly with semiconductor storage) the
correction circuits may be regarded as normal
mechanism, and thus a single incorrect bit would
not be regarded as an error, though two incorrect
bits would be.

Note also that a demonstration that further
processing can lead to a failure of the system
indicates the presence of an error, but does not
suffice to locate a specific item of information
as the error. Consider a system affected by an
algorithmic fault. The sequence of internal states
adopted by this system will diverge from that of
the "correct" system at some point, the
algorithmic fault being the cause of this
transition into an erroneous state. But there can
be no unique correct algorithm. It may be that any
one of several changes to the algorithms of the
system could have precluded the failure. A
subjective judgement as to which of these
algorithms is the intended algorithm determines
the fault, the items of information in error, and
the moment at which the state becomes erroneous.
Some such judgements may of course be more useful
than others.

The significance of the distinction between
faults and errors may be seen by considering the
repair of a data base system. Repair of a fault
may consist of the replacement of a failing
program (or hardware) component by a correctly
functioning one. Repair of an error requires that
the information in the data base be changed from
its currently erroneous state to a state which
will permit the correct operation of the system.
In most systems, recovery from errors is required,
but repair of the faults which cause these errors
although very desirable is not necessarily
essential for continued operation.

4. Fault-Tolerant Computing Systems

A system can be designed to be fault-tolerant
by incorporating into it abnormal algorithms which
attempt to ensure that occurrences of erroneous
states do not result in later system failures. The
degree of fault-tolerance will depend on the
success with which erroneous states corresponding
to likely faults are identified and detected, and
with which such states are repaired.

The software of a computing system serves to
structure that system by expressing how some of
the storage locations are to be set up with
information which represents programs. These will
then control some of the interrelationships
amongst hardware components, for example, that the
potential communication path between two I/0
devices via working store is actually usable. Such



software can of course be designed so that the
computing system as a whole is tolerant of faults
due to certain types of hardware failures.

However the software can itself be viewed as a
system, and its components and their
interrelationships discussed in terms of the
programming language that was used to construct
it. Thus in a block-structured language each block
can be regarded as a component, which is itself
composed out of, and expresses the
interrelationships amongst, smaller components
such as declarations and statements (including
blocks).

The only faults that can be present in a non-
physical system such as a software system are
algorithmic faults. However from the earlier
discussion of such faults, it will be seen that
the term covers much more than 'conventional'
program bugs.

Algorithmic faults arise from unmastered design
complexity, and can of course exist in the
hardware as well as the software of a computing
system. However due to such matters as the
differing relative costs of modifications to
hardware and to software, it is traditional for
very complex design issues to be relegated to the
software area, where they all too often give rise
to algorithmic faults.

The idea of attempting to design computing
systems which can tolerate algorithmic as well as
mechanical faults is fairly novel. There is a
tendency to assume that delivered hardware is free
from algorithmic faults, and that what is needed
is a means of ensuring that the software is also
free from such faults - research to this end
includes that on formal specification and
validation of programs, and on methodologies for
program testing and debugging. (Incidentally, the
general assumption that hardware designs are
correct may well not survive for much longer,
given the ever increasing complexity of function
that is being incorporated into a single LSI
chip:)

In our research at the University of Newcastle
upon Tyne on system reliability [1,4,5,8] we have
adopted as a basic premise that all large scale
computing systems at all times contain multiple
potential faults, and that these will include
algorithmic as well as mechanical ones. There will
be faults in the hardware, in the peripherals and
in the operating system, in the logic design and
in the hardware components, in the basic systems
design, in the applications programs and in the
information stored; in the actions of the
operations staff and the maintenance engineers;
and in the environment of the computer system.
These faults may be due to the wearing out of a
component, to a design inadequacy, to a
statistical uncertainty (noise), to human frailty,
or to an evolution of the requirements on the
system as yet unmatched in the implementation.

We have been investigating the practicability
of incorporating abnormal algorithms into such
computing systems in order that all such types of
fault can be tolerated, so that a system can
provide continuous and trustworthy service to its
environment without the need for any human
intervention. Some of these types of fault are
susceptible to existing techniques for error
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detection and recovery; others are not,
particularly those faults of design inadequacy.
Many approaches to reliable operation depend on
the correct design of the system, together with
complete knowledge of the possible failure modes
of the components of the system. In contrast, we
have chosen to investigate techniques which do not
assume the absolute correctness of the algorithms.
Moreover, since the number of possible failure
modes of a component increases very rapidly as the
component becomes more complex, much more rapidly
than the number of correct modes of operation, we
have felt it impracticable to rely on enumerating
the possible failure modes of components, let
alone design algorithms to detect or accommodate
each possible component failure mode individually.

Thus the techniques of fault-tolerant system
design that we have been developing, such as
recovery blocks and conversations [8], do not
assume correct algorithms or make any assumptions
about the nature of faults. They aim to provide
error detection and recovery strategies which
should be applicable whenever a system fails to
provide its specified service, for whatever
reason.

These techniques do not attempt to diagnose the
fault responsible for the errors which are
detected, or to repair such faults. The error
symptoms of a residual fault may be obscure and
misleading, while the correct diagnosis and repair
is not necessarily unique. Consequently we regard
diagnosis and repair as operations to be performed
off-line, and requiring human intelligence.

We do however assume that the faults to be
recovered from are those residual faults remaining
after reasonable efforts to obtain a reliable
system. In particular we assume that the software
has been designed as well as possible, using well-
chosen design methodologies, together with
validation techniques such as formal proofs of
correctness and systematic testing. It can of
course be argued that such validation techniques,
which using Azivienis' terminology [2] could be
described as the method of "software fault
intolerance", are more productive of software
reliability than attempts such as ours at software
fault tolerance. Our view is that each has its
place.

The argument for this viewpoint is not solely
that of disbelief in the completeness with which a
complex software system can be validated. Rather,
it also concerns the significance that can be
attributed to the experience one obtains from
using such a system. Extensive usage of a hardware
system whose failures are caused by faults arising
from component ageing and the like provides
statistics which can be a useful predictor of the
likely frequency and seriousness of further
failures. In contrast, the statistics gathered of
failures of a software system relate merely to the
history of its modification and usage (i.e. the
particular sets of input data, the relative
timings of input activities, etc.). Over the life
of a system of any complexity whatsoever (e.g. a
64-bit multiplier), only an infinitesimal
proportion of the possible uses can actually
occur. Thus, other than to the extent that future
use will exactly match past use, failure
statistics from a complex software system are not
a useful predictor of the frequency of further



failures. More importantly, particularly if the
designer has relied totally on software fault
intolerance, these statistics will not even
predict the possible seriousness of further
failures.

5. Exceptions

Just as we do not regard our techniques for
tolerating algorithmic faults as a substitute for
efforts to reduce the incidence of such faults in
a system, so also do we not regard them as a
complete substitute for explicit recovery from
errors caused by anticipated faults. In a software
system the sections of the program text that
relate to such explicit recovery actions are
sometimes termed "exception handlers". However the
concept of an "exception" (as for example,
described by Goodenough [3] is by no means
necessarily limited to such use, and is indeed
quite separate from our concepts of error, fault
and failure as the following discussion and
definitions attempt to make clear.

The specified service that a component of a
system is designed to provide might include
activities of widely differing value to its
environments. No matter how undesirable, none that
fall within the specifications will be termed
failures. However the specification can be
structured so as to differentiate between a
standard service, and zero or more exceptional
services. For example, the standard service to be
provided by an adder would be to return the sum of
its inputs, exceptional services to indicate that
an arithmetic overflow has occurred, or that an
input had incorrect parity.

Within a system, a particular exception is said
to have occurred when a component explicitly
provides the corresponding exceptional service.
The algorithm of the system can be made to reflect
these potential occurrences by incorporating
exception handlers for each exception.

These definitions match the intent, but not the
form of the definitions given by Goodenough, who
states:

"Of the conditions detected while attempting to
perform some operation, exception conditions are
those brought to the attention of the operation's
invoker ... In essence, exceptions permit the user
of an operation to extend an operation's domain
(the set of inputs for which effects are defined)
or its range (the effects obtained when certain
inputs are processed)."

However, in contrast to Goodenough, we have
taken care to avoid the use of the word 'failure'
in discussing exceptions. This is not mere
pedantry. Rather it is a consequence of the very
basic view we take of failures, namely as occuring
when and only when a system or component does not
perform as specified. Although a system designer
might choose to treat certain exceptions as
component failures (which he might or might not
provide abnormal algorithms to deal with), we
regard the various schemes for exception handling
(e.g. Parnas [7], Goodenough [3] and Wasserman
[9]) and our technique of recovery blocks as
complementary rather than competitive.

A basic feature of the recovery block scheme is
that, because no attempt is made to diagnose the
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particular fault that caused an error, or to
assess the extent of any other damage the fault
may have caused, recovery actions have to start by
returning the system to a prior state, which it is
hoped precedes the introduction of the error,
before calling an alternate block. Should this
prior state not precede the introduction of the
error, more global error detection, and more
drastic error recovery, is likely to occur later.
(The associated 'recovery cache' mechanisms [1,4]
automate the state saving required for this
scheme.)

When exceptions are treated as component
failures in a software system that uses recovery
blocks, they will lead to the system being backed
up to a prior state and an alternate block being
called. This will be appropriate when the
exception is undesirable, and the system designer
does not wish to provide an individual means of
dealing with it.

Putting this the other way, exceptions can be
introduced into the structure of a system which
uses recovery blocks, in order to cause some of
what would otherwise be regarded as component
failures (leading to automatic back-up) to be
treated as part of the normal algorithm of the
system, by whatever explicit mechanisms the
designer wishes to introduce for this purpose.
Failures might of course still occur, in either
the main part of the algorithm, or in any of the
exception handlers, and if they do they will lead
to automatic back-up. Such introduction of
exceptions can therefore be thought of as a way of
dealing with special or frequently occurring types
of failure, in the knowledge that the recovery
block structure remains available as a "back-
stop".

However we would argue strongly against relying
on exception handling as a means of dealing with
algorithmic faults. Programmed exception handling
involves predicting faults and their consequences,
and providing pre-designed means of on-line fault
diagnosis. Thus although it can be of value in
dealing with foreseen undesirable behaviour by
hardware components, users, operations staff,
etc., it is surely not appropriate for dealing
with software faults - predictable software faults
should be removed rather than tolerated. Indeed
the incorporation of programmed exception handlers
to deal with likely software faults would in all
probability, because of the extra complexity it
would add to the software, be the cause of
introducing further faults, rather than a means of
coping with those that already exist. On the other
hand when used appropriately for anticipated
faults of other types they can provide a useful
means of simplifying the overall structure of the
software, and hence contribute to reducing the
incidence of residual design faults.

As described in [8], the recovery block scheme
can be applied to any programming language in
which a program which is structured into blocks
evokes a process which can be regarded as
structured into operations, where the acts of
entering and leaving each operation are explicit,
and are properly nested in time. The scheme does
not depend on the particular form of block
structuring that is used, or the rules governing
the scopes of variables, methods of parameter
passing, etc. Thus there is no particular



difficulty in combining the scheme with
programming language facilities for exceptions and
exception handlers. By way of illustration, an
example program which uses recovery blocks and
procedure-oriented exception handling [9] is given
in the Appendix.

Conclusions

Exception handling is one of many programming
language design issues which is the subject of
current debate, in this case a debate which has
not been helped by a lack of agreement on a
terminology for discussing the various basic
issues concerning system and software reliability.
The aim of this paper has been to clarify these
issues, and to argue that despite the views that
have been argued to the contrary elsewhere (eg.
Parnas [7] and Wasserman [9]),explicit exception
handling is not an appropriate means for providing
software fault tolerance. Instead we view it as a
potentially valuable adjunct to any viable scheme
for detecting and recovering from software errors,
which could improve the effectiveness with which
anticipated faults due to input data, operators,
hardware components, and the like were dealt with.
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Appendix

Figure 1 shows a section of program text which
incorporates programmed exception handling within
a recovery block structure. The example, and the
form of exception handling shown, are based on
that given by Wasserman [9].

The basic form of the example is

ensure consistent_inventory
by process_updates

else by refuse updates

else error

The implicit assumption is that the program is
maintaining an inventory file whose consistency is
to be checked after each related sequence of
updates, to determine whether this sequence can be
incorporated. The updating process uses the
procedure 'checknum' to read and check the
updates. This procedure provides an exception
handler for some of the exceptions that can be
raised by the 'read' routine, so that the person
providing the inputs can have two chances of
correcting each input.

The procedure 'checknum' is taken directly from
Wasserman [9], but has been simplified to take
account of error recovery facilities provided by
the recovery block structure in which it is used.
More detailed notes on the example follow.

Line 2 The Boolean expression 'consistent
inventory' will be evaluated if and when
'process_updates' reaches its final 'end'. If the
expression is true, the alternate block
‘refuse_updates' will be ignored and the
information stored by the underlying recovery
cache mechanism, in case the effects of
'process_updates' had to be undone, will be
discarded. Otherwise this information will be used
to nullify these effects, before 'refuse updates'
is called, after which the Boolean expression
'consistent_inventory' is checked again.

Line 4 1In Wasserman's scheme a group of separate
exceptions can be gathered together, as here to
define the exception 'goof', using the exceptions
'overflow', 'underflow' or 'conversion'. It is
assumed that all three can be signalled by the
routine 'read' - the first two perhaps being
built-in exceptions that the hardware signals, the
third being implemented by the routine 'read'
itself.

Line 7 The procedure 'message’ is an exception
handler defined within 'checknum'. The first two
occasions on which it is called it used
Wasserman's scheme for retrying the procedure
which raised the exception (see line 14), but on
the next occasion it signals error. (In
Wasserman's version of this routine, 'message’
raised the special exception called 'fail' which
caused the whole program to be aborted. Here we
assume that error just causes the current
alternate block to be abandoned .)

Line 18 Here 'checknum' calls 'read' and arranges
that the exception 'goof' (i.e. the exceptions
'overflow', 'underflow' or 'conversion') will be
handled by the procedure 'message', but that if



'read' signals 'ioerror' this will cause
'proceSS_updates' to be abandoned. In the original
version of the example a further exception handler
was provided, for use when 'ioerror' was
signalled. This exception handler indicated that,
but did not explain how, "any required cleanup"”
was to be 'done.

Line 20 All that is illustrated of the main body
of 'process_updates' is that it counts the number
of updates, which it reads and checks using the

Line 32 The second alternate block
'refuse_updates' is called if the first alternate
block 'process_updates' abandons its task, or
fails to pass the acceptance test, for any reason
(including of course, any residual design error
within its code). If this happens, all changes
that 'process update' has made to the inventory
will be undone, and the integer 'update no' will
be reset. This integer is then used for an
apologetic message to the user.

begin write ("three strikes-

you're out);

signal error

ioerr:error]

update_no + 1;

routine 'checknum'.
1
2 ensure consistent_inventory by
3 process_updates: begin integer num;
4 exception goof = overflow or underflow or conversion;
5 procedure checknum (integer j);
6 global integer count = 0;
7 procedure message;
8 begin count := count +1;
9 write ('please try again");
10 if count> 3 then
11
12
13 end
14 else retry;
15 end message;
16 begin /* body of checknum */
17 e
18 read (j) [goof: message,
19 end checknum;
20 begin /* Start of main body */
21 e
22 while updates_remain do
23 begin update _no :=
24 e
25 checknum(num) ;
26 e
27 end
28 e
29 end main body
30 end process_updates
31 else by
32 refuse updates: begin write ("sorry - last update accepted was number");
33 write (update_ no)
34 end
35 else error
36 ...
Figure 1

AN EXAMPLE OF A PROGRAM WHICH INCORPORATES

PROGRAMMED EXCEPTION HANDLING WITHIN
A RECOVERY BLOCK STRUCTURE
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