
Citation: Marques, N.; Silva, R.R.;

Bernardino, J. Using ChatGPT in

Software Requirements Engineering:

A Comprehensive Review. Future

Internet 2024, 16, 180. https://

doi.org/10.3390/fi16060180

Academic Editor: Gianluigi Ferrari

Received: 15 March 2024

Revised: 10 May 2024

Accepted: 16 May 2024

Published: 21 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Review

Using ChatGPT in Software Requirements Engineering:
A Comprehensive Review
Nuno Marques 1, Rodrigo Rocha Silva 2,3 and Jorge Bernardino 1,2,*

1 Coimbra Institute of Engineering—ISEC, Polytechnic University of Coimbra, Rua Pedro Nunes,
3030-199 Coimbra, Portugal; a21230094@isec.pt

2 Centre for Informatics and Systems of the University of Coimbra (CISUC), Pólo II, Pinhal de Marrocos,
3030-290 Coimbra, Portugal; rrochas@dei.uc.pt

3 FATEC Mogi das Cruzes, São Paulo Technological College, Mogi das Cruzes 08773-600, Brazil
* Correspondence: jorge@isec.pt

Abstract: Large language models (LLMs) have had a significant impact on several domains, including
software engineering. However, a comprehensive understanding of LLMs’ use, impact, and potential
limitations in software engineering is still emerging and remains in its early stages. This paper
analyzes the role of large language models (LLMs), such as ChatGPT-3.5, in software requirements
engineering, a critical area in software engineering experiencing rapid advances due to artificial
intelligence (AI). By analyzing several studies, we systematically evaluate the integration of ChatGPT
into software requirements engineering, focusing on its benefits, challenges, and ethical consider-
ations. This evaluation is based on a comparative analysis that highlights ChatGPT’s efficiency
in eliciting requirements, accuracy in capturing user needs, potential to improve communication
among stakeholders, and impact on the responsibilities of requirements engineers. The selected
studies were analyzed for their insights into the effectiveness of ChatGPT, the importance of human
feedback, prompt engineering techniques, technological limitations, and future research directions in
using LLMs in software requirements engineering. This comprehensive analysis aims to provide a
differentiated perspective on how ChatGPT can reshape software requirements engineering practices
and provides strategic recommendations for leveraging ChatGPT to effectively improve the software
requirements engineering process.

Keywords: ChatGPT; LLMs; software engineering; software requirements; generative AI

1. Introduction

Software requirements engineering is a critical phase in the software development
lifecycle that lays the foundation for successfully delivering software products that meet
stakeholders’ needs and expectations. Traditionally, this process involves eliciting, analyz-
ing, specifying, and validating requirements, often time-consuming, labor-intensive, and
prone to human error and bias. Herein lies the potential for large language models (LLMs)
to increase and streamline these processes by providing efficient and effective solutions for
requirement elicitation, documentation, and validation [1]. An IEEE consolidated definition
for a software requirement is a documented condition or capability that a system or system
component meets or possesses to solve a contractual, standard, specification problem, or
objective [2].

In recent years, advances in natural language processing (NLP) have paved the way for
transformative applications in diverse domains, such as healthcare, finance, e-commerce,
social media, and more. Among these breakthroughs, LLMs have emerged as powerful
tools with the potential to revolutionize software engineering practices, particularly in
software requirements engineering.

LLMs like ChatGPT have unprecedented capabilities for understanding, generating,
and processing natural language text. Their vast pre-trained knowledge and ability to

Future Internet 2024, 16, 180. https://doi.org/10.3390/fi16060180 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16060180
https://doi.org/10.3390/fi16060180
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-5741-6897
https://orcid.org/0000-0001-9660-2011
https://doi.org/10.3390/fi16060180
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16060180?type=check_update&version=1

Future Internet 2024, 16, 180 2 of 21

generate contextually relevant text make them promising candidates to assist and automate
various tasks in software development [3]. However, integrating LLMs into software
requirements engineering presents challenges and concerns.

While LLMs exhibit impressive capabilities in generating coherent and contextually
relevant text, they may also produce inaccuracies, ambiguities, or biased outputs, posing
risks to the reliability and quality of software requirements. Moreover, ethical considera-
tions such as data privacy, model bias, and transparency justify careful examination when
employing LLMs in sensitive domains like software development [4]. A critical aspect
of using LLMs effectively is formulating appropriate prompts—the input text or queries
provided to these models to generate desired outputs [5].

Prompt patterns, defined as structured and systematic approaches to creating prompts
for LLMs, have emerged as critical tools for realizing the full potential of these models.
Researchers and practitioners can guide LLMs to produce outputs that align more closely
with their intended objectives by defining specific patterns or templates for prompts. These
patterns facilitate the generation of coherent and contextually relevant text and enable finer
control over the outputs generated by LLMs [6,7].

This study aims to evaluate the impact of ChatGPT on the software requirements
elicitation process. To achieve this goal, we investigated the benefits and challenges of this
Generative AI (GenAI) based on studies conducted by other authors and provided a critical
analysis of these studies.

The main contributions of this work are the following:

• Understanding the role of GenAI in software requirements;
• Characterizing the benefits and challenges of using ChatGPT to assist with

software requirements;
• Identifying future research directions.

Considering the transformative potential of large language models (LLMs) like Chat-
GPT in software requirements engineering, this research seeks to answer the following
research question:

RQ: How can ChatGPT be used to improve software requirements engineering pro-
cesses, and what are the associated benefits, challenges, and ethical considerations?

To address this question, we conducted a literature review evaluating the application
of ChatGPT in software requirements engineering. Through this analysis, we elucidate the
role of ChatGPT in streamlining requirement elicitation, documentation, and validation
while characterizing the benefits and delineating the challenges of integrating ChatGPT
in this domain. Additionally, we explore the ethical considerations and propose future
research directions to optimize the use of LLMs in software requirements engineering,
providing a foundation for further exploration and development in this area.

The rest of this paper is structured as follows: Section 2 provides some background
about software requirements engineering, LLMs, and an overview of ChatGPT. Section 3
describes the methodology used to conduct the literature review. Section 4 presents the
literature review. Sections 5 and 6 approach the benefits and challenges of using ChatGPT
in software requirements engineering, respectively. Section 7 outlines future research
directions. Finally, Section 8 presents the conclusions.

2. Background

While the application of artificial intelligence/machine learning (AI/ML) in software
engineering research has a long history, the specific use of GenAI is a more recent and
emerging topic. Although the potential of GenAI has been recognized for some time,
research progress in this area has been rapid, particularly since 2020. Despite some earlier
exploration of GPT-2 for code generation, GenAI has recently gained significant attention
in software engineering. Recent advances in these systems, particularly introducing ser-
vices such as GitHub Copilot and ChatGPT-4, have spurred increased research interest
in various disciplines, including software engineering [8]. In this section, we provide

Future Internet 2024, 16, 180 3 of 21

an overview of the basic concepts of software requirements engineering, LLMs, and an
overview of ChatGPT.

2.1. Software Requirements Engineering

Software requirements engineering is a systematic and process-driven approach to
defining, documenting, and maintaining software requirements across the software de-
velopment lifecycle [1]. This multidimensional task requires robust information retrieval,
effective communication with multiple stakeholders, and the creation of detailed textual de-
scriptions. It comprises two main phases: requirements development and management [9]:

• Requirements development: This involves activities such as eliciting, analyzing,
specifying, and validating the requirements.

The requirements elicitation phase involves identifying stakeholders, selecting rep-
resentatives, and determining their needs. It serves as the information-gathering step
in requirements development. Various techniques for requirements elicitation include
stakeholder interviews, focus groups, workshops, observations, questionnaires, document
analysis, and benchmarking.

The requirements analysis step synthesizes and refines information gathered during
requirements elicitation. Stakeholder needs, assumptions, and other information are
integrated and further detailed. This phase involves representing requirements in various
forms, such as prototypes and models, conducting trade-off analysis, setting priorities,
assessing feasibility, and identifying gaps to uncover missing requirements.

A recommended practice for requirements specification is to utilize predefined tem-
plates. These templates enable requirements engineers to concentrate on content rather than
format, reducing the risk of overlooking critical items while documenting requirements.

The final step in the requirements development process is to validate the requirements
to ensure they are well-written, complete, and aligned with customer needs. Validation may
result in iterations of previous steps due to identified defects, gaps, additional information
or analysis requirements, clarification, or other issues.

• Requirements management: This includes the processes for requesting changes to
established requirements, performing impact analysis on those changes, approving or
rejecting them, and then implementing the approved changes.

Requirements management is a continuous process that spans the entire software
development lifecycle. During testing, the software product is validated against its require-
ments to identify and correct defects, ensure that it meets the specified requirements, and
provide confidence in its functionality [9].

2.2. Large Language Model (LLM)

A large language model (LLM) is a deep learning algorithm that can perform a variety
of tasks in natural language processing (NLP). Large language models use transformer
models and are trained using massive datasets. This enables them to recognize, translate,
predict, or generate text or other content [4]. LLMs such as InstructGPT and GPT-4 excel at
in-context learning and generating coherent and contextually relevant responses based on
given prompts. Reinforcement Learning from Human Feedback (RLHF) is a fundamental
technique for LLMs. It consists of incrementally improving the model’s performance by
using human-generated responses as feedback [4].

Large language models (LLMs) are gaining popularity in academia and industry
due to their unprecedented performance in various applications. As LLMs continue to
play an important role in research and daily use, their evaluation becomes increasingly
important, not only at the task level but also at the societal level, to better understand their
potential risks. In recent years, significant efforts have been made to study LLMs from
different perspectives.

A common approach to interacting with large language models (LLMs) is prompt engi-
neering, where users design specific prompts to guide LLMs to generate desired responses

Future Internet 2024, 16, 180 4 of 21

or complete tasks. This approach is widely used in evaluation efforts. Furthermore, users
can interact with LLMs in question-and-answer or dialogue mode, encouraging natural
language conversations.

In summary, LLMs, leveraging transformer architecture, in-context learning, and
Reinforcement Learning from Human Feedback (RLHF), have revolutionized natural
language processing (NLP) and show promise in several applications, such as ChatGPT
and GitHub Copilot [6].

2.3. Overview of ChatGPT

ChatGPT is an AI chatbot built using OpenAI’s large language models (LLMs), such
as GPT-4 and earlier versions [10]. It has set new standards (tasks, metrics, etc.) in artificial
intelligence by demonstrating machines’ ability to understand the intricacies of human
language and communication.

OpenAI unveiled an initial demonstration of ChatGPT on 30 November 2022, sparking
widespread interest on social media as users demonstrated its capabilities. Examples ranged
from travel planning to creating fables to coding computer programs. Within five days, the
chatbot had more than one million users. ChatGPT’s evolution has been one of continuous
improvement, with each version building on the foundation laid by its predecessors.

This evolution is also characterized by an exponential increase in the number of pa-
rameters used to train the model. This increase in parameters generally leads to significant
improvements in the effectiveness of the solutions presented by the models. This is because
models with more parameters have a greater ability to learn and capture complex nuances
and patterns in the training data.

Chat GPT-4, the latest version, continues this trend of exponential improvement with
changes such as improved model alignment, Internet connectivity, better steerability, and
more [10].

The GPT model and software engineering intersect by applying natural language
processing (NLP) techniques to various tasks within the software development lifecycle.
GPT’s language generation capabilities provide valuable support and enhancements to
software engineering processes [11].

ChatGPT can streamline the process of gathering, analyzing, and documenting re-
quirements in the context of software requirements. It uses its extensive knowledge base
and language understanding capabilities to engage stakeholders in conversations, generate
accurate documentation, and provide real-time feedback on requirements. Through its
ability to continuously learn and adapt, ChatGPT improves stakeholder collaboration,
accelerates the requirements gathering process, and ultimately contributes to more efficient
and successful software development outcomes. However, ChatGPT should not be viewed
as a replacement for human expertise and judgment. Instead, ChatGPT should be viewed
as a complement to it [12].

3. Methodology

This section outlines the approach taken in conducting the literature review, which in-
volved synthesizing existing knowledge, critically assessing methodologies, and analyzing
results to compare the use of ChatGPT to improve the quality of software requirements.
The process is illustrated in Figure 1 and explained in the following sections.

Future Internet 2024, 16, 180 5 of 21

Figure 1. The methodology used in the literature research.

3.1. Data Sources

Google Scholar (www.googlescholar.com) has developed over the years and has
become a robust database for scientific literature [13]. Therefore, it was chosen as the
main research tool for the present study. However, we add two other important public
data sources: IEEE Xplore (https://ieeexplore.ieee.org/) and the ACM Digital Library
(https://dl.acm.org/).

3.2. Search Queries

A search in Google Scholar on 19 April 2024, with the query “(ChatGPT OR LLM)
AND (“software requirements”)” returned about 403 results in just 0.04 s. The same query
was used in IEEE Xplore and returned 51 results, and using the ACM Digital Library, we
obtained 59 results (see Figure 1).

3.3. Inclusion Criteria

We considered the year of publication as an inclusion criteria. Because ChatGPT was
launched that year, only research published from 2022 to the present was considered.

This review includes the most relevant papers from each year. Relevance in Google
Scholar refers to the degree to which the search results match the criteria or context of the
query. The sorting algorithm considers several factors to determine the order of the results,
including the presence of search terms and citation counts.

www.googlescholar.com
https://ieeexplore.ieee.org/
https://dl.acm.org/

Future Internet 2024, 16, 180 6 of 21

3.4. Exclusion Criteria

The exclusion criteria were books, internal reports, theses/dissertations, citations,
presentations, abstracts, and appendices. Papers written in languages other than English
were also excluded.

3.5. Characterization of Selected Papers

Figure 1 shows a distribution of the total number of papers retrieved from the ACM
Digital Library (59), IEEE Xplore (51), and Google Scholar (403) as data sources. The earliest
paper dates from 2022, and thus, potentially, 513 papers could be selected.

Applying the exclusion criteria defined in Section 3.4, the total number of papers was
reduced to 314, distributed as follows for each data source: ACM Digital Library (13), IEEE
Xplore (44), and Google Scholar (257).

After removing the papers found in two or more data sources, the final result is 267. A
distribution of these papers retrieved per year is shown in Figure 2. As can be seen, the rise
of GenAI, exemplified by the use of models such as ChatGPT in software requirements, has
catalyzed an exponential increase in research.

Future Internet 2024, 16, x FOR PEER REVIEW 6 of 22

This review includes the most relevant papers from each year. Relevance in Google
Scholar refers to the degree to which the search results match the criteria or context of the
query. The sorting algorithm considers several factors to determine the order of the
results, including the presence of search terms and citation counts.

3.4. Exclusion Criteria
The exclusion criteria were books, internal reports, theses/dissertations, citations,

presentations, abstracts, and appendices. Papers written in languages other than English
were also excluded.

3.5. Characterization of Selected Papers
Figure 1 shows a distribution of the total number of papers retrieved from the ACM

Digital Library (59), IEEE Xplore (51), and Google Scholar (403) as data sources. The
earliest paper dates from 2022, and thus, potentially, 513 papers could be selected.

Applying the exclusion criteria defined in Section 3.4, the total number of papers was
reduced to 314, distributed as follows for each data source: ACM Digital Library (13), IEEE
Xplore (44), and Google Scholar (257).

After removing the papers found in two or more data sources, the final result is 267.
A distribution of these papers retrieved per year is shown in Figure 2. As can be seen, the
rise of GenAI, exemplified by the use of models such as ChatGPT in software
requirements, has catalyzed an exponential increase in research.

From this deduplicated number (267), we selected 22 papers for our analysis. This
selection was based on each paper’s title, abstract, introduction, and conclusions, with the
criteria being those that use the capabilities of LLM, specifically ChatGPT, to improve the
quality of software requirements.

Figure 2. Evolution of research about AI impact on software requirements.

4. Literature Review
This literature review included the most recent scientific literature on the impact of

LLMs in software requirements. As mentioned above, we selected 22 papers, which are
distributed by year as follows: 2022: 1, 2023: 16, and 2024: 5. In this section, the papers are
presented by year, and within each year, they are presented in alphabetical order of
author(s).

Figure 2. Evolution of research about AI impact on software requirements.

From this deduplicated number (267), we selected 22 papers for our analysis. This
selection was based on each paper’s title, abstract, introduction, and conclusions, with the
criteria being those that use the capabilities of LLM, specifically ChatGPT, to improve the
quality of software requirements.

4. Literature Review

This literature review included the most recent scientific literature on the impact of LLMs
in software requirements. As mentioned above, we selected 22 papers, which are distributed by
year as follows: 2022: 1, 2023: 16, and 2024: 5. In this section, the papers are presented by year,
and within each year, they are presented in alphabetical order of author(s).

Liu et al. [2] emphasize the importance of requirements engineering in the software
development lifecycle and discuss the role of artificial intelligence (AI) in improving require-
ments quality. They review recent research on how AI techniques like machine learning
(ML), classification, and natural language processing (NLP) have advanced requirements
engineering. The authors suggest employing appropriate ML and NLP techniques to
meet textual requirements, which can extract deeper meaning and improve requirements
engineering performance. The authors highlight the ability of AI to assist requirements
engineers by automating mundane tasks in the requirements engineering process, allowing
them to focus more on creative aspects. A strength of this study is the identification of the
knowledge gap on how AI should be incorporated into software requirements processes
to ensure high quality requirements representation. Although the text summarizes each

Future Internet 2024, 16, 180 7 of 21

recent study and its impact on the field of requirements engineering, it does not provide
specific details about these results. It would be useful to include a more detailed analysis
of recent studies, highlighting their key findings and how they contribute to advancing the
field of requirements engineering.

Abdelfattah et al. [14] present a method for teaching software engineering using
ChatGPT. This method involves using ChatGPT to create software architecture diagrams,
which can be very useful in generating software requirements. The authors highlight the
simplicity of understanding the basic concepts of requirements engineering through this
approach. In parallel, the study highlights the importance of ChatGPT in capturing software
requirements and demonstrates its application in real cases. Overall, this research confirms
the effectiveness of ChatGPT in understanding and eliciting software requirements, thus
consolidating the growing relevance of this tool in the field of software engineering. A
strong point of the study is the emphasis on understanding requirements engineering. This
emphasis is supported by the creation of practical exercises that focus on understanding
the basic principles of requirements engineering, a crucial aspect of software development.
The step-by-step approach to user interaction with ChatGPT in creating diagrams also
facilitates understanding of the process, making it another strong research point. However,
the lack of examples of requirements generated as a result of the experiments may raise
doubts about the effectiveness of this method. Including concrete examples of software
requirements generated by ChatGPT during the experiments could provide a more tangible
validation of the usefulness and relevance of the proposed method.

Arora et al. [15] propose a SWOT analysis for research and development using LLMs
for requirements engineering, focusing on the potential for requirements elicitation, anal-
ysis, specification, and validation. The authors evaluate ChatGPT’s performance in clas-
sifying requirements. By analyzing the results obtained, they provide a comprehensive
understanding of the effectiveness of this approach and add credibility to their conclusions.
However, they suggest a cautiously optimistic outlook on the role of AI in elicitation and
validation processes. Balancing the benefits of LLMs with the need for rigorous validation,
ethical compliance, and human oversight is suggested to realize their full potential in
requirements engineering.

Belzner et al. [16] discuss the potential benefits and challenges of using large language
models (LLMs) in software engineering. They discuss the opportunities in requirements
engineering, system design, code generation, test generation, code reviews, and software
processes. It also thoroughly reviews current state-of-the-art methods for using LLMs
in software engineering. However, a significant gap is the lack of explanation of how
ChatGPT makes its decisions to achieve the desired results. This lack of transparency in
decision-making can undermine developers’ confidence in ChatGPT. Without understand-
ing how the model arrives at its answers, developers are reluctant to adopt or fully trust
ChatGPT’s recommendations.

Bencheik et al. [1] highlight the effectiveness of ChatGPT in generating software re-
quirements and the role of human input. Moreover, the study acknowledged the time
efficiency of ChatGPT but noted that experienced human participants tend to produce more
thorough requirements. They highlight the importance of using AI tools to complement
human expertise in requirements engineering. Although the output generated by ChatGPT
is efficient, the user still needs to verify its integrity. The authors emphasized ChatGPT’s
capability to mimic human expertise while underscoring the critical role of human feedback
in improving requirements quality. However, the lack of detail about the practical chal-
lenges in implementing GenAI tools can impact the quality of the requirements generated.
A deeper understanding of the obstacles faced in the practical application of GenAI is
crucial to ensure that the proposed solutions are effective and appropriate to the needs of
software development.

Cheng et al. [17] provided a study focused on integrating AI assistant prototypes into
established programming environments, emphasizing systematizing methodologies and
proposing design principles for AI-assisted programming. The results indicate that the

Future Internet 2024, 16, 180 8 of 21

user interface of the AI assistant within the integrated development environment (IDE)
significantly impacts the tool’s effectiveness, underscoring the importance of careful design
considerations. The authors introduce Prompt Sapper, a block-style visual programming
tool that enables AI chain engineers, including non-technical users, to compose prompt-
based AI services using foundation models through chat-based requirements analysis
and visual programming. Sapper includes two views, with LLM co-pilots to help elicit
requirements, generate code skeleton, and run/test the AI service. This tool allows AI
chain engineers to create prompt-based services on top of foundation models, using chat-
based requirements analysis and visual programming. This makes it easier for users to
understand how to use these tools. However, a weakness of this study is the lack of
explanation of the principles and practices incorporated into this methodology. A more
detailed description of the principles and practices underlying the Prompt Sapper tool
would be beneficial to readers.

El-Hajjami et al. [18] empirically evaluated two ChatGPT models (GPT-3.5-turbo and
GPT-4) for requirements classification and compared them with traditional classification
methods such as support vector machines (SVM) and long short-term memory (LSTM).
They concluded that there is no single best technique for all requirements classifications
because the best technique varies depending on the specific requirement classification. By
analyzing the results obtained, they provide a comprehensive understanding of the effec-
tiveness of this approach and add credibility to their conclusions. However, a significant
gap is the lack of explanation of how ChatGPT makes its decisions to achieve the desired re-
sults. This lack of transparency in decision-making can undermine developers’ confidence
in ChatGPT. Developers are reluctant to adopt or fully trust ChatGPT’s recommendations
without understanding how the model arrives at its answers.

Kutzner et al. [19] conducted a study that provided insights into the potential and
challenges of generating texts for requirements specification in software development using
AI. The authors highlighted the need for humans to control the process, regardless of AI’s
accuracy and effectiveness in software tasks. Also, implementing AI text generation to
create requirements and functional specifications has facilitated documentation creation.
The study’s strength is recognizing the crucial role of requirements and functional specifi-
cations in the software development process. These specifications are key to facilitating
communication and promoting effective understanding between stakeholders and soft-
ware developers. The focus of research on improving the efficiency and accuracy of the
transition from functional and non-functional requirements to functional specifications
further raises the importance of these aspects. However, the failure to validate the results
obtained through testing in real software development projects to assess their practical
usefulness and effectiveness can be considered a limitation of the study. This practical
validation is crucial to understanding the complexities and challenges encountered in
professional contexts.

Qian et al. [20] propose ChatDev, a chat-based software development framework
that leverages large language models (LLMs) throughout the entire software development
process, streamlining and unifying key processes through natural language communica-
tion, thereby eliminating the need for specialized models at each phase. The research
highlights the improvement of the desired output by decomposing the software develop-
ment process into sequential subtasks. The results are optimistic, praising the efficiency
and cost-effectiveness of the software development process using ChatDev. The most
significant implication is the approach and exploration of the use of large-scale language
models (LLMs) throughout the software development process, thus eliminating the need
for specialized models for each phase. This approach promises to reduce complexity and
make communication between developers more efficient, contributing to a more fluid and
cohesive integration of the various stages of software development. However, a weak point
of this study is the lack of empirical experiments to support the results obtained. The lack
of concrete evidence from empirical experience may reduce the credibility and confidence
of the conclusions presented in the study.

Future Internet 2024, 16, 180 9 of 21

Ronanki et al. [3] investigated the potential of ChatGPT to support software require-
ments. Six requirements elicitation questions were formulated, and interview-based sur-
veys were conducted with requirements engineering experts. The results showed that
ChatGPT-generated requirements scored higher than human-generated requirements on
several quality attributes. They highlight the need for further research to effectively use
LLMs in natural language-based requirements engineering activities. One of the strengths
of this study is the active participation of requirements engineering experts, which con-
tributes to increasing the reliability of the results. However, it is important to note that this
evaluation is based exclusively on the opinions of experts, which can introduce bias into the
analysis. Incorporating additional validation techniques could increase the effectiveness of
the evaluation of the requirements generated.

Rasheed et al. [21] explored how multiple GPT agents can perform various software
engineering tasks, requirements analysis, design, code generation, debugging, and manag-
ing software maintenance autonomously. The results show a reduction in development
time and advanced code generation methods, reinforcing the potential of AI-driven soft-
ware engineering practices to make software development more efficient, accessible, and
innovative. The strength of this study is the experimental analysis that demonstrates the
capabilities of ChatGPT during the various phases of software requirements. Another
strong point is the creation of a roadmap for future work, highlighting the intention to
improve ChatGPT’s capabilities. However, it is important to emphasize that the study is
based on an experimental analysis performed on simple software projects. This may limit
the generalization of the results to more complex projects in software engineering practice,
which is a weakness of this study.

Sridhara et al. [12] used ChatGPT to investigate everyday software engineering tasks
such as resolving ambiguity in software requirements, suggesting method names, pri-
oritizing test cases, reviewing code, and summarizing logs. They compared responses
generated by ChatGPT with corresponding outputs from human experts. They conclude
that ChatGPT does very well for specific tasks but not so well for others that it cannot
provide answers. They concluded that ChatGPT can be employed independently or as an
auxiliary tool for software engineering tasks.

The study conducted by Subahi [22] presents a mechanism for mapping software
requirements using the BERT language model in conjunction with a large dataset. Four
main criteria were considered to evaluate the model’s effectiveness: precision, accuracy,
recall, and F1 score. After a series of tests, the model proved to be a significant advance in
understanding software requirements, achieving high performance in all the criteria evalu-
ated. However, despite the model’s promising potential, the author highlights the need for
adjustments depending on the importance attributed to each criterion. This adjustment
aims to balance precision and recall, ensuring a more complete and practical approach
to software requirements analysis. A significant shortcoming of this work is the lack of
consideration of functional requirements in the dataset used in the experiment. Functional
requirements play a crucial role in software development, describing the specific function-
alities that the system must provide to meet users’ needs. By not including functional
requirements in the experiment dataset, the analysis may be incomplete and not fully reflect
the complexity and real challenges faced in the requirements engineering process.

Wang et al. [23] introduced a framework called Chatcoder to refine the requirements
by chatting with LLMs. They design a chat scheme in which the LLMs will guide the
human users to refine their expression of requirements to be more precise, unambiguous,
and complete than before. It then presents the refined arguments back to the users in an
understandable way. This represents a significant advance, as it provides requirements
engineering professionals with a practical tool for improving the quality of software re-
quirements. Another important contribution is the recognition of the importance of human
supervision and intervention in ensuring the quality and relevance of requirements. The
involvement of human users in reviewing and editing the requirements generated by LLM
is fundamental to ensuring that they meet the needs and expectations of the stakeholders.

Future Internet 2024, 16, 180 10 of 21

However, a weakness of this study is the limited experimental scope. Although the experi-
ment showed positive results regarding the effectiveness of LLM in refining requirements,
the scope of the experiments may be limited to specific domains or data sets. This may
affect the generalizability of the results to broader contexts or real-world applications,
requiring additional validation and testing in different contexts to ensure the robustness
and applicability of the results.

White et al. [6,7] provided a catalog of prompt engineering design patterns for various
software engineering tasks, including requirements elicitation. A list of requirements
elicitation patterns is presented to aid in creating software requirements and exploring
their completeness with respect to desired system capabilities and accuracy: requirements
simulator, specification disambiguation, and change request simulation. All these patterns
were tested with the ChatGPT. The systematic classification provides quick access to
solutions for specific challenges, thereby increasing efficiency and productivity. However,
this work lacks an in-depth exploration of practical implementations of the prompt patterns
to thoroughly assess their effectiveness.

Zhang et al. [24] developed an approach to empirically evaluate ChatGPT’s ability to
retrieve information about requirements. This framework performed a preliminary eval-
uation of ChatGPT’s zero-shot requirements retrieval performance on two requirements
analysis tasks over four datasets. The evaluation results show that ChatGPT can retrieve the
relevant information about requirements (high recall). However, its ability to retrieve more
specific requirements information is limited (low precision). One of the most significant
implications of the study is that their experiments provide valuable information on the effec-
tiveness of various prompting strategies in interacting with ChatGPT. However, a weakness
of this study is the lack of discussion about the benefits and challenges of using ChatGPT
in software requirements gathering. This lack of analysis can lead developers to over-rely
on ChatGPT, which may not be advisable. Without a comprehensive understanding of
the benefits and challenges associated with using ChatGPT in the requirements elicitation
process, developers may not be fully prepared to deal with its limitations and nuances.

Fantechi et al. [25] analyze the potential usefulness of extended language models
(LLMs) for detecting requirements variability in natural language (NL) requirements doc-
uments using GPT-3.5 and Microsoft Bing. To investigate this issue, the authors carried
out a preliminary experiment. They used two NL requirements documents as examples.
They compared the variability detection capabilities of LLM-based chatbots with those of
human experts and a rule-based natural language processing (NLP) tool. The comparative
study carried out by the authors is a strength because the results obtained provide valuable
information on the performance of the different approaches to variability detection. This
comparison allows readers to gain insight into each approach’s advantages and limitations,
helping them choose the best tool according to their needs. The selection of natural lan-
guage (NL) requirements documents can be considered a weakness identified in this study.
The effectiveness of LLM-based tools in detecting variability can vary significantly depend-
ing on the characteristics and complexity of the NL requirements documents selected. A
less comprehensive or representative selection of these documents may raise questions
about the generalizability and reliability of the results obtained.

Luitel et al. [26] focused on requirements completeness and used BERT’s masked
language model (MLM) to generate predictions for filling masked slots in requirements.
The authors used 40 requirements specifications from the PURE dataset to determine the
model’s accuracy. The predictions are characterized according to the following criteria:
performance, efficiency, stability, accuracy, and reliability. Despite the positive results pre-
sented, the authors recognize that the lack of collaboration between software engineering
experts can incorrectly identify cases of incompleteness in the requirements and conse-
quently lead to false effectiveness. Detecting incomplete requirements is a major challenge
in the field of requirements engineering, as incomplete requirements can lead to significant
errors during the software development process. A strong point of the research is the
emphasis on this crucial challenge. The relevance of this study is backed up by an empirical

Future Internet 2024, 16, 180 11 of 21

evaluation that references real requirements specifications from the PURE dataset. The
results shown demonstrate the effectiveness of the proposed approach in dealing with the
detection of incomplete requirements. However, it is important to note that the experiment
was conducted using only half of the PURE dataset, which may limit the generalizability of
the results to the full dataset.

Oswal et al. [27] highlight the importance of agile methodologies in software develop-
ment, especially the concept of user stories. They emphasize that the manual generation
of these stories from unstructured requirements is laborious and challenging. To solve
this problem, an AI-based approach is proposed, using the GPT-3.5 language model to
transform requirements texts into structured user stories efficiently. In their conclusions, the
authors highlight the reduction in time and effort required to obtain user stories while also
minimizing the risk of human error. They also emphasize the opportunity for professionals
to focus on more valuable tasks. A strong point is the use of a real-world scenario, which
effectively demonstrates how agile approaches can successfully produce software solutions.
This approach gives readers a deeper understanding of the process and how it can be
applied in practice. However, one weakness is the lack of validation of the results through
user testing or case studies.

Waseem et al. [28] presented a study investigating the effectiveness of ChatGPT as
a software development bot in different phases of the software development lifecycle,
particularly projects led by students. The results highlighted skill deficits among students
and a remarkable enthusiasm for AI. ChatGPT demonstrated its value as a supportive tool,
fostering efficiency and collaboration. The impact demonstrated by this study on the use of
ChatGPT in the academic environment is evident. However, one gap observed is the lack of
an in-depth discussion of the specific advantages and limitations of using ChatGPT in the
various phases of software requirements. Each phase of the software development process
presents unique challenges and requirements, and understanding how ChatGPT can be
most effective in each of these phases is crucial to its adoption and practical application.

Yeow et al. [29] explore the potential of ChatGPT-3.5 for automating software require-
ments engineering tasks by performing an analysis and evaluation of the questions gener-
ated by ChatGPT-3.5 for eliciting software requirements. The evaluation criteria include
the questions’ legibility, clarity, relevance, and completeness. The authors also identify
the challenges and limitations of using ChatGPT-3.5 for software requirements gathering.
The results of the experiments indicate a performance that meets university educational
standards regarding legibility. Although the generated questions show above-average
results in other criteria, the authors point out that there is still room for improvement
in the approach and structure of this method. We have identified two strengths. Firstly,
the authors offer a comprehensive analysis of the capabilities, limitations, and potential
applications of ChatGPT-3.5 in requirements engineering, allowing the reader to gain a
more effective understanding of these aspects. Secondly, they present concrete recommen-
dations for future research focused on integrating ChatGPT-3.5 into software requirements
engineering. However, a weakness of this study is the lack of an in-depth analysis of
how the prompts used in the experiments were constructed. The quality of the prompt
directly influences the effectiveness of the output generated by ChatGPT-3.5. Therefore, a
more detailed analysis of the prompts used could provide additional insights into how to
optimize the performance of ChatGPT-3.5 in generating software requirements.

We concluded that only a few papers describe in detail the benefits of ChatGPT in
software requirements. Therefore, we aim to fill this gap and further explore these benefits.

Table 1 presents a comparison of the analyzed works, listing the fundamental aspects
that we consider for a comprehensive analysis of scientific works that aim to discuss the use
of ChatGPT for requirements generation. We attempt to provide a nuanced overview of the
current research landscape by examining key features such as the effectiveness of ChatGPT
in generating requirements, the indispensable role of human feedback, the exploration of
prompt engineering, and the challenges and limitations of AI, as well as future research
directions. This analysis sheds light on the symbiotic relationship between human insight

Future Internet 2024, 16, 180 12 of 21

and artificial intelligence in software requirements engineering and navigates through the
contributions, conclusions, and future directions suggested by the selected studies. Below,
we highlight the importance of each aspect analyzed and provide a rationale as to why that
aspect is essential to be analyzed in the context of this work:

1. Effectiveness in Generating Requirements: Evaluating ChatGPT’s effectiveness in
generating software requirements. We considered this characteristic to assess Chat-
GPT’s ability to automate and optimize the elicitation and specification of require-
ments, which is traditionally an arduous process in terms of time and human effort.

2. Role of Human Input: Human input is fundamental to guiding and improving
the quality of the requirements generated by ChatGPT. Human supervision and
feedback are essential for the tools to produce requirements that are aligned with
stakeholder needs.

3. Exploring Prompt Engineering: Input to language models is fundamental for ade-
quate results. We understand that evaluating this aspect significantly influences the
quality and relevance of ChatGPT responses in requirements engineering.

4. AI Challenges and Limitations: When considering generative AI for requirements
specification, it is fundamental to recognize the challenges and limitations of tools
such as ChatGPT. For example, issues such as bias, the possibility of generating hallu-
cinations, and a lack of detail can affect the integrity of the generated requirements.

5. Future Research Directions: Any scientific work that proposes practical approaches
should identify potential areas for future research and how studies can advance the
use of ChatGPT in requirements engineering.

6. Comparative Human Expertise: Comparing human expertise is essential to un-
derstanding how ChatGPT aligns with or complements the knowledge and skills of
human requirements engineers. This is particularly important because, although Chat-
GPT can automate specific processes, human expertise remains irreplaceable in under-
standing and analyzing the complex and contextual requirements of software projects.

Table 1. Comparative analysis of ChatGPT’s impact on software requirements.

Study Reference
(Author)

Publication
Year

Effectiveness
in Generating
Requirements

Role of
Human
Input

Exploration of
Prompt

Engineering

AI Challenges
and

Limitations

Future
Research

Directions

Comparative
Human

Expertise

Liu et al. [2] 2022 ✔ ✔

Abdelfattah et al. [14] 2023 ✔ ✔

Arora et al. [15] 2023 ✔ ✔

Belzner et al. [16] 2023 ✔ ✔

Bencheik et al. [1] 2023 ✔ ✔ ✔

Cheng et al. [17] 2023 ✔ ✔

El-Hajjami et al. [18] 2023 ✔

Kutzner et al. [19] 2023 ✔ ✔

Qian et al. [20] 2023 ✔ ✔ ✔

Ronanki et al. [3] 2023 ✔ ✔ ✔

Rasheed et al. [21] 2023 ✔ ✔ ✔

Sridhara et al. [12] 2023 ✔
Subahi [22] 2023 ✔

Wang et al. [23] 2023 ✔ ✔ ✔

White et al. [6,7] 2023 ✔ ✔

Zhang et al. [24] 2023 ✔ ✔ ✔

Future Internet 2024, 16, 180 13 of 21

Table 1. Cont.

Study Reference
(Author)

Publication
Year

Effectiveness
in Generating
Requirements

Role of
Human
Input

Exploration of
Prompt

Engineering

AI Challenges
and

Limitations

Future
Research

Directions

Comparative
Human

Expertise

Fantechi et al. [25] 2024 ✔ ✔ ✔

Luitel et al. [26] 2024 ✔ ✔

Oswal et al. [27] 2024 ✔ ✔ ✔

Waseem et al. [28] 2024 ✔ ✔ ✔

Yeow et al. [29] 2024 ✔ ✔ ✔

The highlighted issues are included because they provide a holistic view of using Chat-
GPT and other similar tools for requirements bidding, taking into account the benefits and
potential challenges of this approach. Understanding these issues is critical to optimizing
the use of ChatGPT to achieve requirements specifications.

5. Potential Benefits of Using ChatGPT

Based on the literature review, this section and the following one answer our Research
Question: “How can ChatGPT be used to improve software requirements engineering
processes, and what are the associated benefits, challenges, and ethical considerations?”.
From a requirements engineer’s point of view, several potential benefits offered by ChatGPT
have been identified. Table 2 lists these benefits and identifies each of the papers in the
literature review where they are mentioned. In the following sections, we will discuss each
of these in more detail.

Table 2. Potential benefits identified in the literature review.

Benefits Paper

Improving Brainstorming and Idea Exploration Bencheik et al. [1]

Continuous Learning Abdelfattah et al. [14], Arora et al. [15], Belzner et al. [16], Rasheed et al. [21]

Minimize Human Error Rasheed et al. [21]

Costs Savings Rasheed et al. [21], Wang et al. [23]

Efficiency and Accuracy Bencheik et al. [1], Waseem et al. [28]

Enhanced Productivity Bencheik et al. [1], Liu et al. [2], Rasheed et al. [21], Yeow et al. [29]

5.1. Improving Brainstorming and Idea Exploration

Improving brainstorming is a significant benefit of incorporating ChatGPT into soft-
ware requirements processes. ChatGPT helps generate a wide range of ideas and sug-
gestions, stimulating creativity and exploring different possibilities. It offers different
perspectives and draws from its extensive knowledge base, enriching the brainstorming
process with new insights [1].

ChatGPT demonstrates proficiency in creative writing tasks by refining its output
through various stages, such as brainstorming, creating stories or poems, and generating
speeches. This means that ChatGPT is able to perfect brainstorming techniques to generate
more creative and effective ideas for writing tasks [1].

ChatGPT inspires solutions and facilitates collaboration among team members with
its ability to synthesize shared perceptions. Through iterative dialogue, ChatGPT allows
ideas to be refined over time, resulting in broader requirements. In addition, ChatGPT
provides real-time feedback on proposed ideas, helping to make informed decisions and
ensure alignment with project goals.

Future Internet 2024, 16, 180 14 of 21

5.2. Continuous Learning

Continuous learning is a valuable benefit of integrating ChatGPT into software require-
ments processes. ChatGPT continuously learns from interactions and feedback, adapting
and improving to effectively capture evolving requirements. With access to vast sources of
information, ChatGPT expands its knowledge base and provides more informed responses.

The use of real-time user feedback is a practice that contributes significantly to improving
the quality of the software requirements refined by ChatGPT. Users can quickly correct errors
or inaccuracies in the output generated by ChatGPT by immediately commenting on it. They
can also provide additional details to further clarify the requirements [21]. Moreover, this
real-time feedback can be used to enrich ChatGPT’s training data. By exposing the model
to a variety of interactions and corrections, the model can learn from this information and
improve its ability to generate refined software requirements in the future [15].

In this iterative learning process, ChatGPT incorporates user feedback, which con-
tributes to better documentation requirements by improving quality and accuracy. It
develops an in-depth knowledge of specific domains and terminologies, leading to more
appropriate responses to context-based information needs. These incremental learning
practices positively impact the effectiveness of capturing and processing requirements re-
quests, resulting in faster turnaround times. In addition, by staying current with emerging
software industry trends and changing project needs, ChatGPT maintains its relevance as a
helpful software requirements tool.

5.3. Minimize Human Error

The integration of ChatGPT into the software requirements engineering process sig-
nificantly mitigates the risk of human error. ChatGPT’s automation of documentation
helps to reduce errors associated with manual transcription and interpretation. ChatGPT
ensures a consistent approach to requirements documentation by conforming to established
rules and standards, thereby minimizing variation due to human factors. The ChatGPT’s
ability to generate documentation with unambiguous and precise requirements avoids
misunderstandings [7]. During the quality assurance phase, the model plays a critical role
in identifying and resolving discrepancies and inconsistencies within the requirements,
facilitating the correction of errors before they propagate through the development process.

Through cross-referencing and validation, ChatGPT ensures policy compliance and
reduces the risk of errors. ChatGPT helps prevent errors from spreading throughout the
requirements documentation by prompting for additional information or clarification when
needed. Integrating ChatGPT results in more accurate and reliable documentation, easier
software development, and fewer costly errors.

Thus, automating the process of creating software requirements can help reduce hu-
man error. In this way, ChatGPT’s ability to detect inconsistencies in software requirements
reduces the likelihood of human error in the requirements creation process [21].

5.4. Cost Savings

Gathering initial requirements for software projects involves stakeholder engagement,
where ChatGPT interacts with stakeholders. Based on these interactions, it creates docu-
mentation of the software requirements. It’s important to note that this is an example of
how ChatGPT can help analyze and prioritize requirements. Processing large data volumes
and identifying inconsistencies or gaps in the specification can be instrumental in ensuring
quality assurance activities. Using ChatGPT for software requirements can save costs by
streamlining the requirements gathering and analysis process, improving documentation
quality, and increasing overall project management efficiency. These contributions result in
cost savings in man-hours and reduced manual effort [21].

Also, ChatGPT helps generate code snippets from natural language descriptions in soft-
ware engineering, increasing developer efficiency and allowing focus on higher-level design.
Furthermore, it assists in debugging by detecting errors and providing suggestions for fixing
them, speeding up the debugging process, and reducing some of the development time [30].

Future Internet 2024, 16, 180 15 of 21

ChatGPT’s software requirements generation process automation allows developers
to focus on higher value tasks. At the same time, users only need to review the software
requirements generated, which increases developer productivity. These factors help reduce
development and labor costs [21,23].

5.5. Efficiency and Accuracy

One of the key benefits of integrating ChatGPT into software requirements processes
is efficiency and accuracy. Stakeholder engagement, customer interviews, and feedback
analysis are some use cases where ChatGPT allows faster and more comprehensive re-
quirements gathering than traditional labor-intensive methods. Documentation helps with
automation, leading to better accuracy and completeness while saving time and helping
reduce human error. Another benefit of using ChatGPT is the ability to quickly analyze
large amounts of data to identify patterns, inconsistencies, and gaps to ensure requirements
are complete and meet stakeholder needs.

With its ability to identify inconsistencies and ambiguities in quality assurance, Chat-
GPT provides immediate suggestions for resolving them by ensuring that responses are
concise, accurate, and relevant. Reducing the level of rework by preventing misunderstand-
ings or omissions in software development projects contributes to improved efficiency and
resource utilization throughout all phases [31].

The effectiveness and accuracy of ChatGPT throughout the software development
process are very positive [28]. This is evidenced by the quality of the software requirements
generated by ChatGPT, which are comparable to those generated by humans. However,
it is important to emphasize the need for human expertise and feedback mechanisms to
improve its performance [1].

5.6. Enhanced Productivity

The potential of ChatGPT to improve productivity in software development, especially
in software requirements generation, has been widely recognized [1,21,29].

ChatGPT automates software engineering processes, including code development,
testing, updating, and documentation, allowing human developers to focus on more
creative problem-solving skills and innovation. This significantly increases the productivity
of software development teams by allowing them to take on larger and more challenging
projects. In addition, the ability of programmers to quickly turn their thoughts into code
ensures that software is released faster and at a lower cost [2].

6. Limitations and Risks of Using ChatGPT

Despite its potential, the use of ChatGPT in software requirements engineering raises
several concerns. Considering the literature reviewed, some limitations and risks are
identified. Table 3 provides a list of these limitations and risks and identifies each of the
papers in the literature review in which they were discussed. These concerns are presented
in the following sections.

Table 3. Limitations and risks identified in the literature review.

Limitations and Risks Paper

Addressing Bias in GenAI Systems Bencheik et al. [1], El-Hajjami et al. [18], Luitel et al. [26], Ronanki et al. [3]

Information Hallucination Belzner et al. [16], Qian et al. [20], Ronanki et al. [3]

Lack of Explainability and Transparency Ronanki et al. [3]

Susceptibility to Attacks Arora et al. [15]

Reasoning Errors Arora et al. [15], Ronanki et al. [3]

Over-reliance Arora et al. [15], Waseem et al. [28], Yeow et al. [29]

Transparency and Accountability Belzner et al. [16]

Future Internet 2024, 16, 180 16 of 21

6.1. Addressing Bias in GenAI Systems

GenAI systems are susceptible to incorporating biases present in their training data.
This bias can lead to results that perpetuate discrimination or turn out to be misleading
interpretations, which can lead to dissent and public disapproval at the political, social
justice, and legal levels [30]. Manifestations of bias include the following:

• Training data bias: Language models learn from large datasets of human language.
If these datasets contain biases related to race, gender, or socioeconomic status, the
model may internalize these biases and reproduce them in its responses. A classic
example might be that if there is a gender bias in the training data, the model is more
likely to favor a particular gender in its responses.

• User interaction bias: Responses generated by chatbots are influenced by user in-
put. The model can learn and perpetuate these biases if users consistently ask biased
or prejudiced questions. Consequently, if users frequently ask discriminatory ques-
tions that target a particular group, the model may generate responses that reinforce
these biases.

• Algorithmic bias: Bias can arise from the algorithms used to train and run language
models and chatbots. For example, suppose a model is optimized to achieve accuracy
or engagement as its performance metric. In this case, it may favor responses that
meet that metric, even though those responses may also be biased.

• Contextual bias: Contextual bias is possible when chatbots generate responses based
on contextual information provided by the user. The model could generate biased
responses if factors such as language or location are biased. For example, if a user asks
about a particular culture or religion, and the model has not been trained in that partic-
ular context, it could potentially provide biased responses due to limited knowledge.

Although ChatGPT provides good accuracy and efficiency in generating software
requirements, there is still the possibility that the generated results contain biases [26]. Also,
the use of specific data sets to train the model can lead to bias in the results [18]. To help
mitigate these biases, increasing the model’s training data is a viable solution. Furthermore,
developing human supervision mechanisms to identify and correct incorrect requirements
can also be an effective bias mitigation strategy [1,3,26].

It is also important to consider bias in GenAI systems so that the requirements
and specifications generated by tools such as ChatGPT are based on an ethical and
professional context.

6.2. Information Hallucination

ChatGPT can occasionally produce incorrect results, known as “hallucinations”, which
can lead to the generation of false-positive results [16]. Adopting human supervision
mechanisms in the implementation of requirements generated by ChatGPT can help miti-
gate these hallucinations of the model and ensure a correct interpretation of the generated
output [3].

When ChatGPT generates inaccurate and purely fictional information or hallucinations,
these conditions occur when the model lacks sufficient knowledge or information and must
guess and attempt to fill in the missing piece using training examples as reference points.
Incorrect outputs can manifest as hallucinations, causing problems in applications where
accuracy is critical [5].

Research is currently focused on understanding what makes hallucinations possible in
language models. Recent studies have shown that this phenomenon may be multifaceted
and related to factors such as model training techniques, data quality, and architectural
design. Language models may also be biased to produce more “interesting” or well-written
output, increasing the likelihood of hallucinations. Several methods have been proposed to
address this issue, one of which is to use a large dataset that can help reduce the number
of incorrect assumptions made by the model. This method exposes the model to different
contexts and information during training, reducing the risk of hallucination.

Future Internet 2024, 16, 180 17 of 21

Understanding the phenomenon of information hallucination through ChatGPT,
where fictitious data can be generated, helps to establish protocols for fact-checking, which
is essential for the reliability of requirements specifications and, by extension, the robustness
of the resulting software.

The problem of the lack of explainability and transparency is raised in the literature,
where its development is attributed to the lack of verifiability of GenAI systems, which will
be discussed next.

6.3. Lack of Explainability and Transparency

The results of LLMs are more difficult to understand because they often require
additional explanation, making it even more difficult to penetrate their inner meaning and
trace their genesis and fidelity.

Explainability is one of the main limitations of using LLMs due to their immense
number of parameters. For example, systems such as GPT-3 have 175 billion parameters,
creating a highly complex network of interconnected nodes required for their operation.
This complexity poses a significant problem for humans in understanding and interpreting
the decision-making mechanisms implemented by the machine. In addition, training large
language models requires collecting large amounts of data from multiple sources.

The patterns and correlations learned from the data lead to implicit biases and associ-
ations that may not be immediately obvious or interpretable. Accordingly, when a large
language model makes a decision, it is difficult to isolate what caused that decision because
it has many interrelated parts. This difficulty also explains why the results generated by
the model cannot be articulated easily.

The main reason for the lack of explicability is that it may hinder the trust and
full adoption of large language models (LLMs) in security applications. The inability to
understand and decipher the decision-making mechanisms of LLMs may raise doubts
about their trustworthiness, fairness, and potential biases. As a result, stakeholders such as
policymakers, businesses, and users may require a longer period of time before they can
rely on LLMs for essential contexts, prioritizing transparency and accountability [8].

ChatGPT works by using large neural networks that have been trained on large
amounts of data and refined to perform specific natural language processing (NLP) tasks.
Although the software requirements generated by ChatGPT can be similar in quality to
those generated by humans, it can be difficult for users to understand the mechanisms that
led ChatGPT to produce the result [3].

The need for explainability and transparency in LLM models such as ChatGPT is
driving research to make GenAI more interpretable and reliable, which is essential for its
adoption in critical software specification and other software engineering processes.

6.4. Susceptibility to Attacks

Requirements are fundamental for software engineering as they describe the function-
alities, characteristics, and constraints of the system to be developed. They are essential
to guiding the entire development process, from conception to delivery of the final prod-
uct. Furthermore, requirements often contain sensitive information [15]. The disclosure
of this sensitive information in software requirements can be explored with malicious
intent through attacks on the system, raising security and privacy concerns. Therefore, it
is critical to implement robust security measures to protect requirements and ensure the
confidentiality and integrity of sensitive information [32].

Three categories of adversarial attacks could subject ChatGPT to misleading prompt
injection, jailbreak attacks aimed at stealing sensitive information, and data poisoning
methods, which would alter ChatGPT’s output.

The main goal of such adversarial attacks is to disrupt or take control of the output
of a large language model. Such attacks involve deliberately altering the input text at
a small level so that LLM misinterprets it and returns inaccurate or harmful results. A
typical example of an adversarial attack is a text injection attack. The perpetrator attacks by

Future Internet 2024, 16, 180 18 of 21

inserting well-crafted instructions into the input, which the LLM interprets as commands.
For example, such injected text could be “delete all files” fed into an LLM controlling a
computer system. As a result, the LLM could treat this input as a command and delete
everything from the system according to the injected text [32].

The detection and mitigation of adversarial attacks on ChatGPT highlight the need to
strengthen the security of GenAI systems, which is fundamental to ensuring the integrity,
confidentiality, and cohesion of the requirements generated.

6.5. Reasoning Errors

According to [33], even large language models (LLMs) such as ChatGPT are sometimes
misled by ambiguities in the question or poor understanding of complex logical operations.
They need to acquire planning and reasoning skills, and also have limited awareness and
common sense about the world.

When the generation of ambiguous requirements occurs, human intervention is nec-
essary to avoid misinterpretations of these requirements. Ambiguous requirements can
lead to a scenario of uncertainty in the decision-making process, which is undesirable for
developers [3]. Human intervention can help clarify ambiguities, identify gaps, and ensure
that requirements are clearly defined and understood by all parties involved in the software
development process [15].

The detection of reasoning errors by LLMs is driving efforts to improve GenAI’s reason-
ing and logic capabilities, which are essential for the accurate generation of
software requirements.

6.6. Over-Reliance

Replacing human expertise with GenAI tools can overlook critical aspects of require-
ments gathering, such as understanding contextual nuances and implicit needs [15]. Despite
all the different challenges that GenAI faces in its integration into software engineering
requirements, the challenge of trust remains prominent, as highlighted in the research [29].

One of the main pitfalls of using ChatGPT for software requirements is the temptation
to rely too much on the generated text without sufficient verification. This over-reliance
on AI can lead to a lack of trust among stakeholders [15]. While ChatGPT can produce
coherent and seemingly relevant responses, it requires more contextual understanding
and may need to provide more accurate or complete information. To mitigate this lack
of contextual knowledge, users should provide clear and detailed input prompts, offer
contextual information where and when needed, and refine requirements based on ongoing
dialogue and clarification. Therefore, developers must exercise caution and critically
evaluate the suitability and accuracy of the generated content in the context of specific
software requirements [31].

Identifying the risk of over-reliance on ChatGPT highlights the need to combine
artificial intelligence with human expertise, promoting a balance that can lead to more
sophisticated software development practices that are responsive to human needs.

6.7. Transparency and Accountability

Establishing transparency in the use of GenAI technologies, including accountability
for the results produced and the steps taken to avoid bias, is essential. The ChatGPT
algorithm operates as a black box model, providing no visibility or explanation to end users.

The lack of transparency can become an obstacle to responsible oversight, making
it difficult to detect and correct problems such as bias, errors, or adverse outcomes in
output requirements. Mechanisms such as transparency and accountability are essential
for stakeholders to trust and understand, rather than doubt or resist, the decisions made by
ChatGPT [30].

It is important to maintain human responsibility for the results generated. When
the potential consequences of errors resulting from incorrect use of LLMs are significant,
human oversight is critical. While the results generated by automation are not completely

Future Internet 2024, 16, 180 19 of 21

reliable, human analysis and review of these results not only ensures their quality, but also
incorporates human responsibility, adding a crucial layer of accountability and security [16].

Establishing transparency and accountability in the use of GenAI technologies such
as ChatGPT reinforces the importance of ethics in software engineering. It also promotes
technological development that respects human rights and values and considers social and
ethical aspects for each application context.

6.8. Summary of the Limitations and Risks of Using ChatGPT

By addressing these challenges and risks, the scientific community and professionals
in the field can develop more robust and ethically responsible practices for integrating
ChatGPT and other GenAI tools into software requirements engineering. This will improve
the development process and contribute to the evolution of knowledge and practices in
software engineering [30].

7. Future Research Directions

Given the transformative potential and limitations identified in the use of ChatGPT in
software requirements engineering, we propose future research focused on the following
critical areas:

• Prompt generation: New prompt construction techniques suitable for each stage of the
software development lifecycle need to be explored. This will result in clearer and more
comprehensive requirements. Experimentation with different prompt construction
strategies can improve the quality of the generated requirements.

• Mitigate bias and increase equity: Investigate methods for identifying, measuring, and
mitigating bias in ChatGPT-generated software requirements engineering. This in-
cludes developing techniques for training on more balanced datasets and exploring the
implementation of fairness-aware algorithms for software requirements engineering.

• Suggest ways of clarifying the decision-making processes to improve clarity and
transparency: Possible ways include more interpretable models or the development of
tools to provide insight into model reasoning.

• Reliable data handling and processing protocols that address data privacy and security
concerns: Research could explore encryption methods, differential privacy techniques,
and secure mechanisms to ensure the secure storage of sensitive information.

• Improve ChatGPT’s error detection and correction capabilities, focusing more on
logical and factual inaccuracies: This could involve using external knowledge bases,
improved model training techniques, or a human-in-the-loop verification system.

• Strategies to minimize overreliance and maintain a well-orchestrated interaction be-
tween GenAI and human intellect in problem-solving: We suggest defining and setting
standards for the use of ChatGPT in software requirements engineering, how GenAI
can assist in performing specific tasks, and how human oversight can be emphasized.

• Resistance to adversarial attacks: It is necessary to study ways to improve Chat-
GPT’s ability to resist counterattacks and malicious manipulation in order to promote
reliability and consistency in terms of system requirements.

• Ethical and social issues: The use of ChatGPT may raise ethical issues regarding
privacy breaches and redundancy. We recommend in-depth research into the two main
issues causing unemployment and increasing economic inequality, and promoting
equal access to GenAI tools.

8. Conclusions

This paper has evaluated the incorporation of ChatGPT into software requirements
engineering, identifying promising benefits and significant challenges. We also explored
the usefulness of ChatGPT as a facilitator of iterative development and its use in capturing
changing project requirements.

ChatGPT’s ability to enhance brainstorming, reduce human error, save costs, and
improve efficiency and accuracy highlights its potential to transform software requirements

Future Internet 2024, 16, 180 20 of 21

engineering practices. However, critical issues such as bias, information hallucination,
lack of explainability, vulnerability to attacks, reasoning errors, overreliance, and ethical
considerations underscore the need for cautious and informed implementation.

We propose future research to address these challenges in order to responsibly realize
ChatGPT’s full potential. By focusing on mitigating bias, improving explainability, ensuring
data privacy, correcting errors, and understanding ethical implications, we can move
toward a more effective and ethical integration of ChatGPTin software development.

In summary, as we move forward, it is critical to adopt a collaborative approach that
leverages ChatGPT capabilities and human expertise to improve the quality and reliability
of software requirements.

Author Contributions: Conceptualization, R.R.S. and J.B.; methodology, J.B. and R.R.S.; software,
N.M.; validation, J.B., R.R.S. and N.M.; formal analysis, J.B. and R.R.S.; investigation, N.M.; resources,
R.R.S. and J.B.; data curation, N.M.; writing—original draft preparation, N.M.; writing—review
and editing, J.B. and R.R.S.; visualization, J.B., R.R.S. and N.M.; supervision, J.B. and R.R.S.; project
administration, J.B. and R.R.S.; funding acquisition, J.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bencheikh, L.; Höglund, N. Exploring the Efficacy of Chatgpt in Generating Requirements: An Experimental Study. Bachelor’s

Thesis, Chalmers University of Technology, Göteborg, Sweden, 2023.
2. Liu, K.; Reddivari, K. Artificial Intelligence in Software Requirements Engineering: State-of-the-Art. In Proceedings of the IEEE 23rd

International Conference on Information Reuse and Integration for Data Science (IRI), San Diego, CA, USA, 9–11 August 2022.
3. Ronanki, K.; Berger, C.; Horkoff, J. Investigating ChatGPT’s Potential to Assist in Requirements Elicitation Processes. In

Proceedings of the 49th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Durres, Albania,
6–8 September 2023.

4. Chang, Y.; Wang, X.; Wang, J.; Wu, Y.; Yang, L.; Zhu, K.; Chen, H.; Yi, X.; Wang, C.; Wang, Y.; et al. A Survey on Evaluation of
Large Language Models. ACM Trans. Intell. Syst. Technol. 2023, 15, 1–45. [CrossRef]

5. Fan, A.; Gokkaya, B.; Harman, M.; Lyubarskiy, M.; Sengupta, S.; Yoo, S.; Zhang, J.M. Large language models for software
engineering: Survey and open problems. arXiv 2023, arXiv:2310.03533.

6. White, J.; Hays, S.; Fu, Q.; Spencer-Smith, J.; Schmidt, D.C. ChatGPT Prompt Patterns for Improving Code Quality, Refactoring,
Requirements Elicitation, and Software Design. arXiv 2023, arXiv:2303.07839.

7. White, J.; Fu, Q.; Hays, S.; Sandborn, M.; Olea, C.; Gilbert, H.; Elnashar, A.; Spencer-Smith, J.; Schmidt, D.C. A prompt pattern
catalog to enhance prompt engineering with chatgpt. arXiv 2023, arXiv:2302.11382.

8. Nguyen-Duc, A.; Cabrero-Daniel, B.; Przybylek, A.; Arora, C.; Khanna, D.; Herda, T.; Rafiq, U.; Melegati, J.; Guerra, E.;
Kemell, K.K.; et al. Generative Artificial Intelligence for Software Engineering—A Research Agenda. arXiv 2023, arXiv:2310.18648.

9. Westfall, L. Software Requirements Engineering: What, Why, Who, When, and How. Softw. Qual. Prof. 2005, 7, 17.
10. Marr, B. A Short History of ChatGPT: How We Got to Where We Are Today. Available online: https://www.forbes.com/sites/

bernardmarr/2023/05/19/a-short-history-of-chatgpt-how-we-got-to-where-we-are-today/?sh=454c1d75674f (accessed on
1 March 2024).

11. Hörnemalm, A. ChatGPT as a Software Development Tool: The Future of Development. Master’s Thesis, Umeå University, Faculty
of Science and Technology, Umeå, Sweden, 2023. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-209909
(accessed on 1 March 2024).

12. Sridhara, G.; Mazumdar, S. ChatGPT: A Study on its Utility for Ubiquitous Software Engineering Tasks. arXiv 2023,
arXiv:2305.16837.

13. Halevi, G.; Moed, H.; Bar-Ilan, J. Suitability of Google Scholar as a source of scientific information and as a source of data for
scientific evaluation—Review of the Literature. J. Informetr. 2017, 11, 823–834. [CrossRef]

14. Abdelfattah, A.M.; Ali, N.A.; Elaziz, M.A. Roadmap for Software Engineering Education using ChatGPT. In Proceedings of the
2023 International Conference on Artificial Intelligence Science and Applications in Industry and Society (CAISAIS), IEEE, Galala,
Egypt, 3–5 September 2023.

15. Arora, C.; Grundy, J.; Abdelrazek, M. Advancing Requirements Engineering through Generative AI: Assessing the Role of LLMs.
arXiv 2023, arXiv:2310.13976.

https://doi.org/10.1145/3641289
https://www.forbes.com/sites/bernardmarr/2023/05/19/a-short-history-of-chatgpt-how-we-got-to-where-we-are-today/?sh=454c1d75674f
https://www.forbes.com/sites/bernardmarr/2023/05/19/a-short-history-of-chatgpt-how-we-got-to-where-we-are-today/?sh=454c1d75674f
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-209909
https://doi.org/10.1016/j.joi.2017.06.005

Future Internet 2024, 16, 180 21 of 21

16. Belzner, L.; Gabor, T.; Wirsing, M. Large Language Model Assisted Software Engineering: Prospects, Challenges, and a Case Study. In
Proceedings of the International Conference on Bridging the Gap between AI and Reality, Crete, Greece, 23–28 October 2023.

17. Cheng, Y.; Chen, J.; Huang, Q.; Xing, Z.; Xu, X.; Lu, Q. Prompt sapper: A LLM-empowered production tool for building AI chains.
ACM Trans. Softw. Eng. Methodol. 2023. [CrossRef]

18. El-Hajjami, A.; Fafin, N.; Salinesi, C. Which AI Technique Is Better to Classify Requirements? An Experiment with SVM, LSTM,
and ChatGPT. arXiv 2023, arXiv:2311.11547.

19. Kutzner, T.; Gröpler, J. Supporting Students in the Creation of Requirements and Functional Specifications in Interdisciplinary
Software Development Projects with the Help of AI-Based Text Generation Tools. X Jornadas Iberoamericanas de Innovación
Educativa en el Ámbito de las TIC y las TAC. 2023. Available online: https://accedacris.ulpgc.es/bitstream/10553/128281/1
/Supporting_students_creation.pdf (accessed on 19 April 2024).

20. Qian, C.; Cong, X.; Liu, W.; Yang, C.; Chen, W.; Su, Y.; Dang, Y.; Li, J.; Xu, J.; Li, D.; et al. Communicative agents for software
development. arXiv 2023, arXiv:2307.07924.

21. Rasheed, Z.; Waseem, M.; Kemell, K.-K.; Xiaofeng, W.; Duc, A.N.; Systä, K.; Abrahamsson, P. Autonomous Agents in Software
Development: A Vision Paper. arXiv 2023, arXiv:2311.18440.

22. Subahi, A.F. BERT-Based Approach for Greening Software Requirements Engineering Through Non-Functional Requirements.
IEEE Access 2023, 11, 103001–103013. [CrossRef]

23. Wang, Z.; Li, J.; Li, G.; Jin, Z. ChatCoder: Chat-based Refine Requirement Improves LLMs’ Code Generation. arXiv 2023,
arXiv:2311.00272.

24. Zhang, J.; Chen, Y.; Niu, N.; Liu, C. A preliminary evaluation of chatgpt in requirements information retrieval. arXiv 2023,
arXiv:2304.12562.

25. Fantechi, A.; Gnesi, S.; Semini, L. Exploring LLMs’ Ability to Detect Variability in Requirements. In International Working
Conference on Requirements Engineering: Foundation for Software Quality; Springer Nature: Cham, Switzerland, 2024.

26. Luitel, D.; Hassani, S.; Sabetzadeh, M. Improving requirements completeness: Automated assistance through large language
models. Requir. Eng. 2024, 29, 73–95. [CrossRef]

27. Oswal, J.U.; Kanakia, H.T.; Suktel, D. Transforming Software Requirements into User Stories with GPT-3.5-: An AI-Powered
Approach. In Proceedings of the 2024 2nd International Conference on Intelligent Data Communication Technologies and Internet
of Things (IDCIoT), IEEE, Bengaluru, India, 4–6 January 2024.

28. Waseem, M.; Das, T.; Ahmad, A.; Liang, P.; Fahmideh, M.; Mikkonen, T. ChatGPT as a Software Development Bot: A Project-based
Study. arXiv 2024, arXiv:2310.13648.

29. Yeow, J.S.; Rana, M.E.; Majid, N.A.A. An Automated Model of Software Requirement Engineering Using GPT-3.5. In Proceedings
of the 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Al Ekir,
Kingdom of Bahrain, 28–29 January 2024.

30. Fraiwan, M.; Khasawneh, N. A Review of ChatGPT Applications in Education, Marketing, Software Engineering, and Healthcare:
Benefits, Drawbacks, and Research Directions. arXiv 2023, arXiv:2305.00237.

31. Hariri, W. Unlocking the Potential of ChatGPT: A Comprehensive Exploration of its Applications, Advantages, Limitations, and
Future Directions in Natural Language Processing. arXiv 2023, arXiv:2304.02017.

32. Kalla, D.; Kuraku, S. Advantages, Disadvantages and Risks associated with ChatGPT and AI on Cybersecurity. J. Emerg. Technol.
Innov. Res. 2023, 10, h84–h94.

33. Zhang, Q.; Zhang, T.; Zhai, J.; Fang, C.; Yu, B.; Sun, W.; Chen, Z. A Critical Review of Large Language Model on Software
Engineering: An Example from ChatGPT and Automated Program Repair. arXiv 2023, arXiv:2310.08879.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3638247
https://accedacris.ulpgc.es/bitstream/10553/128281/1/Supporting_students_creation.pdf
https://accedacris.ulpgc.es/bitstream/10553/128281/1/Supporting_students_creation.pdf
https://doi.org/10.1109/ACCESS.2023.3317798
https://doi.org/10.1007/s00766-024-00416-3

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

	Introduction
	Background
	Software Requirements Engineering
	Large Language Model (LLM)
	Overview of ChatGPT

	Methodology
	Data Sources
	Search Queries
	Inclusion Criteria
	Exclusion Criteria
	Characterization of Selected Papers

	Literature Review
	Potential Benefits of Using ChatGPT
	Improving Brainstorming and Idea Exploration
	Continuous Learning
	Minimize Human Error
	Cost Savings
	Efficiency and Accuracy
	Enhanced Productivity

	Limitations and Risks of Using ChatGPT
	Addressing Bias in GenAI Systems
	Information Hallucination
	Lack of Explainability and Transparency
	Susceptibility to Attacks
	Reasoning Errors
	Over-Reliance
	Transparency and Accountability
	Summary of the Limitations and Risks of Using ChatGPT

	Future Research Directions
	Conclusions
	References

