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Abstract

This paper contributes an integrated survey of the work in the area of software inspection. It consists of two main sections. The

®rst one introduces a detailed description of the core concepts and relationships that together de®ne the ®eld of software inspection.

The second one elaborates a taxonomy that uses a generic development life-cycle to contextualize software inspection in detail.

After Fagan's seminal work presented in 1976, the body of work in software inspection has greatly increased and reached

measured maturity. Yet, there is still no encompassing and systematic view of this research body driven from a life-cycle perspective.

This perspective is important since inspection methods and re®nements are most often aligned to particular life-cycle artifacts. It

also provides practitioners with a roadmap available in their terms.

To provide a systematic and encompassing view of the research and practice body in software inspection, the contribution of this

survey is, in a ®rst step, to introduce in detail the core concepts and relationships that together embody the ®eld of software in-

spection. This lays out the ®eld key ideas and bene®ts and elicits a common vocabulary. There, we make a strong e�ort to unify the

relevant vocabulary used in available literature sources. In a second step, we use this vocabulary to build a contextual map of the

®eld in the form of a taxonomy indexed by the di�erent development stages of a generic process. This contextual map can guide

practitioners and focus their attention on the inspection work most relevant to the introduction or development of inspections at the

level of their particular development stage; or to help motivate the use of software inspection earlier in their development cycle.

Our work provides three distinct, practical bene®ts: First, the index taxonomy can help practitioners identify inspection expe-

rience directly related to a particular life-cycle stage. Second, our work allows structuring of the large amount of published in-

spection work. Third, such taxonomy can help researchers compare and assess existing inspection methods and re®nements to

identify fruitful areas of future work. Ó 2000 Elsevier Science Inc. All rights reserved.

1. Introduction

In the past two decades, software inspections have
emerged as one of most e�ective quality assurance
techniques in software engineering. The primary goal of
an inspection is to detect defects before the testing phase
begins; and hence strongly contribute to improve the
overall quality of software with the corollary budget and
time bene®ts (DeMarco, 1982; Yourdon, 1997). In this
article, we consider inspection to be an approach in-
volving a well-de®ned and disciplined process in which
quali®ed personnel analyse a software product using a
reading technique for the purpose of detecting defects. A
defect is considered any deviation from prede®ned

quality properties (this includes the functional ones).
This de®nition of an inspection is broader in scope than
the one originally provided by Fagan (1976) 2, which
allows us to discuss each inspection variation in detail.
However, the scope of this survey is limited in so far as
we do not consider the work on other static analysis
techniques, such as audits or walkthroughs, although
these techniques may be equally or in some situations
even more e�ective for achieving the stated goal. The
limitation stems from the fact that these approaches are
often less structured and vary a lot, which makes it
di�cult to compare them scienti®cally to software in-
spection. A more general discussion on the di�erences of
these techniques is provided, for example, in Marciniak
(1994).
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After Fagan's seminal introduction of the generic
notion of inspection to the software domain at IBM in
the early 1970s (Fagan, 1976), a large body of contri-
butions in the form of new methodologies and/or in-
cremental improvements has been proposed promising
to leverage and amplify inspection's bene®ts within
software development and even maintenance projects.
However, most of the published work has not been in-
tegrated into a broader context, that is, into a coherent
body of knowledge taken from a life-cycle point of view,
hence making the work di�cult to reconcile and evalu-
ate in speci®c life-cycle conditions. This may be one
reason why practitioners still are asking questions of the
following type: What are the key di�erences among the
currently available inspection approaches? On which
part of the life-cycle can these approaches be applied?
What have been their documented e�ects at those stag-
es? What category of e�ects can these approaches have
on a project, or an organization? What are the qualita-
tive and quantitative results to support the claims? What
type of tools are available to support inspections? The
lack of clear, consolidated answers to these questions
might be a reason as to why, so far, inspections have not
fully and e�ectively penetrated the software industry
(Johnson, 1998b). Yet, the fact that at least some form
of inspection has become a necessity for the CMM(TM)
and ISO-9000 certi®cation increases the pressure to an-
swer the stated questions. We believe that at least some
of them can be addressed by integrating existing re-
search and practice work into a coherent body of
knowledge viewed from a life-cycle angle.

Findings about inspections have not been easy to
reconcile and consolidate due to the sheer volume of
work already published. Hence, it is not surprising that
the available surveys (Kim et al., 1995; Mac-donald and
Miller, 1995; Porter et al., 1995a; Tjahjono, 1996;
Wheeler et al., 1997) only cover the most relevant pub-
lished research in their reviews.

Broadly speaking, existing surveys can be summa-
rized as follows: Kim et al. (1995) present a framework
for software development technical reviews including
software inspection (Fagan, 1976), Freedman and We-
inberg's technical review (Weinberg and Freedman,
1984), and Your don's structured walkthrough (Your-
don, 1989). They segment the framework according to
aims and bene®ts of reviews, human elements, review
process, review outputs, and other matters. Macdonald
et al. (1996a) describe the scope of support for the cur-
rently available inspection process and review tools.
Porter et al. (1995a) focus their attention on the orga-
nizational attributes of the software inspection process,
such as the team size or the number of sessions, to un-
derstand how these attributes in¯uence the costs and
bene®ts of software inspection. Wheeler et al. (1997)
discuss the software inspection process as a particular
type of peer review process and elaborate the di�erences

between software inspection, walkthroughs, and other
peer review processes. Tjahjono (1996) presents a
framework for formal technical reviews (FTR) including
objective, collaboration, roles, synchronicity, technique,
and entry/exit-criteria as dimensions. Tjahjono's
framework aims at determining the similarities and
di�erences between the review process of di�erent FTR
methods, as well as identifying potential review success
factors. All of these surveys contribute to the knowledge
of software inspection by identifying factors that may
impact inspection success. However, none of them
present its ®ndings from a software life-cycle phases
perspective. This makes it di�cult for practitioners to
determine which inspection method or re®nement to
choose, should they want to introduce inspection or
improve on their current inspection approach.

To tackle this problem, it is the goal and hence the
stated contribution of this article to portray the status of
research and practice as published in available software
inspection publications from a life-cycle angle and
present the facts as reported in the literature. For this
purpose, we performed an extensive literature survey
including a wide source of publications. The survey
consists of two principal sections. The ®rst includes a
taxonomy of the core concepts and relationships that
together embody the notion of software inspection. This
taxonomy is centered around ®ve primary dimensions ±
technical, managerial, organizational, economics, and
tools ± with which we attempt to characterize the nature
of software inspection. While these primary dimensions
are most relevant for the major areas of software de-
velopment, we elicited from the literature particular sub-
dimensions that are principal for work in the software
inspection area. In the second section, the survey in-
troduces an idealized life-cycle taxonomy contextuali-
zing software inspection to each main life-cycle
development phase, taking into account their speci®c
particularities. This can make it much easier for prac-
titioners, in a given life-cycle phase, to get an overview
of relevant inspection work including its empirical vali-
dation. Of course, considering the large volume of
published work in the area of software inspection, it is
impossible to integrate each and every article in this
survey. Hence, we decided to include only signi®cant
contributions to the ®eld, that is, we excluded, for ex-
ample, most opinion papers.

Practitioners as well as researchers can pro®t from
this survey in three di�erent ways: First, the survey
provides a road-map in the form of a contextualized,
life-cycle taxonomy that allows the identi®cation of
available inspection methods and experience directly
related to a particular life-cycle phase. This may be
particularly interesting for practitioners since they often
want to tackle quality de®ciencies of concrete life-cycle
artifacts with software inspection. Yet, they often do not
know which method or re®nements are available and

6 O. Laitenberger, J.-M. DeBaud / The Journal of Systems and Software 50 (2000) 5±31



which ones to choose. Hence, this survey helps them
focus quickly on the best-suited inspection approach
adapted to their particular environment via the life-cycle
driven taxonomy. Second, our work helps to structure
the large amount of published inspection work. This
structure allows us to present the gist of the inspection
work performed so far and helps practitioners as well as
researchers characterize the nature of new work in the
inspection ®eld. In a sense, this structure also helps de-
®ne a common vocabulary that depicts the domain of
software inspection. Third, our survey presents an
overview of the current state of research as well as an
analysis of today's knowledge in the ®eld of software
inspection. The condensed view on the published work
allows us to distill a theory in the form of three causal
models. These models, together with the road map, may
be particularly interesting to researchers for identifying
areas where little methodological and empirical work
has been done so far.

We structured this survey as follows. Section 2 pre-
sents the study methodology including the approach we
followed to identify and select the relevant software in-
spection literature. Section 3 describes the core concepts
and relationships that together de®ne the notion of
software inspection. Section 4 details them. Section 5
introduces a generic software life-cycle model to provide
the context for the situational inspection taxonomy.
Section 6 presents the latter. Section 7 integrates the
concepts and relationships into a theory to point out
possible future research directions. Section 8 concludes.

2. Study methodology

Literature surveys have long played a central role in
the accumulation of scienti®c knowledge. As science is a
cumulative endeavor, any one theory or ®nding is sus-
pect because of the large array of validity threats that
must be ruled out. Moreover, all too often new tech-
niques and methods are proposed and introduced,
without building on the extensive body of knowledge
that is incorporated in the ones already available. These
problems can be somewhat alleviated by establishing the
current facts using the mechanism of literature survey.
The facts are the dependable relationships among the
various concepts that occur despite any biases that may
be present in particular studies because of the implicit
theories behind the investigators' choice of observations,
measures, and instruments. Hence, a literature survey
makes the implicit theories explicit by identifying their
commonalities and di�erences, often from a speci®c
angle when the body of knowledge has become very
rich. In some cases, a literature survey may even be an
impetus for the uni®cation of existing theories to induce
a new, more general theory that can be empirically tes-
ted afterwards.

To achieve these goals, a survey must ful®ll several
principles: First, it must be well-contained, that is,
encapsulate its work within a clearly de®ned scope
where the bene®ts of doing so can be well-understood
and accepted. Second, a survey must provide profound
breadth and depth regarding the literature relevant to
its de®ned scope. Finally, it must present a uni®ed
vocabulary reconciling the most important terms in a
®eld.

The ®rst principle is the hardest to ful®ll and illus-
trates the fact that there cannot be one single method for
developing a survey since it is so tightly coupled with the
notion of scope. The scope is, in fact, what de®nes the
gist of a survey and hence, depending on the particular
interest of the authors, a survey can be geared in dif-
ferent directions. This is clearly illustrated by the dif-
ferent directions taken by the four surveys we mentioned
in the section above. Each used a particular scope and
rationales for its motivation. In our case, the scope has
been de®ned as ®ltering the software inspection litera-
ture work from the angle of the life-cycle phases. We
believe this perspective can be well understood and ac-
cepted because of the bene®ts outlined in the above
sections.

To ful®ll the second and third survey principles,
®nding and selecting the relevant literature is of utmost
importance. We attempted to collect any publication
®tting our de®nition of inspection which captures, we
believe, the essence of other de®nitions. However, no
single method for locating relevant literature is perfect
(Cooper, 1982). Hence, we utilized a combination of
methods to locate articles and papers on our subject.

We conducted researches of the following two in-
spection libraries: Bill Brykczynski's collection of in-
spection literature (Brykczynski and Wheeler, 1993;
Wheeler et al., 1996) and the FTR Library (Johnson,
1998a). To be sure not to miss a paper recently pub-
lished, we performed three additional steps in search of
inspection articles: First, we employed a keyword
search in the INSPECT database of the OCLC (1998)
and the library of the Association of Computing Ma-
chinery (1998) using the keyword `software inspection'.
Second, we manually searched the following journals
published between 1990 and July 1997: IEEE Trans-
actions on Software Engineering, IEEE Software,
Journal of Systems & Software, Communications of
the ACM, and ACM Software Engineering Notes. Fi-
nally, we looked at the reference sections of books
dealing with software inspection (Gilb and Graham,
1993; Strauss and Ebenau, 1993) and manually sear-
ched the library of the International Software Engi-
neering Research Network (1998) and the proceedings
of the NASA-Goddard Software Engineering Work-
shop from 1984 to 1997. Table 1 shows the results of
our literature search. The reader must keep in mind
that some articles are cross-referenced among several
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libraries. We made the results of our literature search
available on-line (Fraunhofer Institute for Experimen-
tal Software Engineering, 1998).

Considering the very large number of published ar-
ticles available, it was impossible to give full attention to
every article within this survey, although we carefully
considered each and every one of them. We excluded
articles based on the following rules: (a) the article is an
opinion paper and, therefore, does not represent tangi-
ble inspection experiences, (b) it takes considerable ef-
fort (money or time) to get an article, (c) one or several
authors published several papers about similar work in
journals and conference proceedings ± in this case, we
considered the most relevant journal publication ±, (d)
an article does only provide a weak research or practical
contribution, though we acknowledge the subjectivity of
this criteria. However, we avoided the dangers of ig-
noring papers because they do not ®t neatly into our
taxonomy. When in doubt, we included them. Overall,
we included a total of 99 articles and reports about
software inspection in this survey.

Although we consider the selected sample of papers
as representative of the work in the inspection area, we
are aware that the published papers are only a biased
sample of inspection work actually carried out in re-
ality. There are two principal reasons for this, which we
can only be aware of, without any hope of overcoming
them:
1. The `File drawer problem' ± unpublished as well as

unretrievable null results stored away by unknown re-
searchers (Rosenthal, 1979). When inspections are
unsuccessfully applied, they are most often not re-
ported in the literature. In all the articles we reviewed,
there is only one which shows that inspection did not
have the expected bene®ts (Shirey, 1992). Yet, we be-
lieve that there might be more unsuccessful inspection
trials.

2. The successful use of inspection might also be only
sporadically reported since that may reveal defect in-
formation unpalatable to companies engaged in com-
petitive industries (Ackerman et al., 1989).

3. Core inspection concepts and relationships

Based on the selected literature, we derived a taxon-
omy to articulate the core concepts and relationships of
software inspection. This taxonomy is centered around
®ve primary dimensions ± technical, managerial, orga-
nizational, economics, and tools. With them, we
attempted to characterize the nature of software in-
spection. For each primary dimension, we used a selec-
tion criterion in the form of a concrete goal to elicit from
the relevant literature. Yet, though necessary, these ®ve
primary dimensions are not unique. They are relevant to
the major areas of software development. Hence, we
elicited from the literature particular sub-dimensions
that we saw as fundamental to the nature and applica-
tion of software inspection. Fig. 1 shows the elicited
dimensions and sub-dimensions.

We brie¯y describe below each dimension and its
associated primary goals. The major goal of the tech-
nical dimension is to characterize the di�erent inspec-
tion methods so as to identify similarities and
di�erences among them. For this, each inspection ap-
proach needs to be characterized in more detail ac-
cording to the activities performed (process), the
inspected software product (product), the di�erent team
roles as well as overall optimal size and selection (team
roles, size, and selection), and the technique applied to
detect defects in the software product (reading tech-
nique). The managerial dimension provides informa-
tion on the e�ects inspections have on a project and
vice versa. Managers are most often interested in the
way inspections in¯uence project e�ort (e�ort), project
duration (duration), and product quality (quality).
However, inspections might also have other e�ects a
manager might be interested in, such as their contri-
bution to team building or education in a particular
project (others). The organizational dimension charac-
terizes the e�ects inspections have on the whole orga-
nization and vice versa. For the organizational
dimension, we elicited project structure (project struc-
ture), team (team), and environment (environment) as
particular subdimensions. These subdimensions provide
important information on the context in which in-
spections take place. The assessment dimension in-
cludes qualitative (qualitative assessment) and
quantitative assessment (quantitative assessment) of
inspections. This dimension allows one to make a
comparison of cost/bene®t ratios in a given situation to
determine the economics fo a software inspection im-
plementation. Finally, the tool dimension describes
how inspections can be supported with tools. For this
dimension, we elicited the purpose of the various tools
(purpose) and investigated how they support a given
inspection approach (supported inspection approach).

We have to state that the dimensions are
not completely orthogonal, that is, one dimension

Table 1

Summary of search results

Source Number of

articles

Literature in Wheeler et al. (1996) 147

FTR-library 204

OCLC database 55

ACM database 21

IEEE transactions on software engineering 10

IEEE software 9

Journal of Systems & Software 4

Communications of the ACM 4

ACM software engineering notes 3

Other (e.g., ISERN-reports) 22
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may be related to another dimension, but this is
unavoidable. For example, a manager might base
his/her decision about introducing inspections on
the cost/bene®t ratio inspections had in previous
projects. Yet, we have done our best to minimize such
overlap.

We now proceed by discussing in details each of
Fig. 1's dimensions and subdimensions using the rele-
vant articles.

4. Inspection concepts and relationships

4.1. The technical dimension of software inspection

Inspections must be tailored to ®t particular
development situations. To do so, it is fundamental to
characterize the technical dimension of current inspec-
tion methods and their re®nements in order to grasp the
similarities and di�erences among them. As depicted in
Fig. 2, the technical dimension of our taxonomy
includes as subdimensions the inspection process,
inspected, the inspected product, the team roles
participants have in an inspection as well as the team
size, and the reading technique. Each of the subdimen-
sions is discussed in more detail in this section. In total,
we have identi®ed 49 references relevant to this
dimension.

4.1.1. The process dimension
To explain the various similarities and di�erences

among the methods, a reference model for software
inspection processes is needed. To de®ne such a refer-
ence model, we adhered to the purpose of the various
activities within an inspection rather than their orga-
nization. This allows us to provide an unbiased exam-
ination of the di�erent approaches. We identi®ed six
major process phases: Planning, Overview, Defect De-
tection, Defect Collection, Defect Correction, and
Follow-up. These phases can be found in most in-
spection methods or their re®nements. However, the
question of how each phase is organized and performed
often makes the di�erence, that is, it characterizes one
method for another.

4.1.1.1. Planning. The objective of the planning phase is
to organize a particular inspection when materials to be
inspected pass entry criteria, such as when source code
successfully compiles without syntax errors. This phase
includes the selection of inspection participants, their
assignment to roles, the scheduling of the inspection
meeting, and the distribution of the inspection material.
In most papers, this phase is not described in much
detail, except in Ackerman et al. (1989) and Fagan
(1976). However, we consider planning important to
mention as a separate phase because there must be a
person within a project or organization who is

Fig. 1. Dimensions and subdimensions of the identi®ed taxonomy.
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responsible for planning all inspection activities, even if
such an individual plays numerous roles.

4.1.1.2. Overview. The overview phase consists of a ®rst
meeting in which the author explains the inspected
product to other inspection participants. The main goal
of the overview phase is to make the inspected product
more lucid and, therefore, easier to understand and in-
spect for participants. Such a ®rst meeting can be par-
ticularly valuable for the inspection of early artifacts,
such as requirements or design documents, but also for
complex source code. However, this meeting consumes
e�ort and increases the duration of an inspection.
Moreover, it may focus the attention of inspectors on
particular issues, which prohibits an independent as-
sessment of the inspected artifact. These limitations may
be one reason why Fagan (1976) states that an overview
meeting for code inspection is not necessary. This
statement is somewhat supported by Gilb and Graham
(1993). They call the overview meeting `Kicko� Meeting'
and point out that such a meeting can be held, if desired,
but is not compulsory for every inspection cycle. How-
ever, other authors consider this phase essential for ef-
fectively performing the subsequent inspection phases.
Ackerman et al. (1989), for example, argue that the
overview brings all inspection participants to the point
where they can easily read and analyse the inspected
artifact. In fact, most published applications of inspec-
tions report performing an overview meeting (Cross-
man, 1991; Doolan, 1992; Fowler, 1986; Franz and
Shih, 1994; Kelly et al., 1992; Kitchenham et al., 1986;
Raz and Yaung, 1997; Reeve, 1991; Russell, 1991;
Svendsen, 1992; Tripp et al., 1991; Wenneson, 1985).
However, there are also examples that either did not
perform one or did not report about one (Bourgeois,
1996; Knight and Myers, 1993).

We found two conditions under which an overview
meeting is justi®ed and bene®cial. First, when the in-
spected artifact is complex and di�cult to understand.
In this case, explanations from the author about the
inspected artifact facilitate the understanding of the in-
spected product for inspection participants. Second,
when the inspected artifact belongs to a large software
system. In this case, the author may explain the rela-
tionship between the inspected artifact and the whole
software system to other participants. In both cases,
explanations by the author may help other participants
perform more e�ective inspection and save time in later
inspection phases.

4.1.1.3. Defect detection. The defect detection phase can
be considered the core of an inspection. The main goal
of the defect detection phase is to scrutinize a software
artifact to elicit defects. How to organize this phase is
still debated in the literature. More speci®cally, the issue
is whether defect detection is more an individual activity
and hence should be performed individually, or whether
defect detection is a group activity and should therefore
be conducted as part of a group meeting, that is, an
inspection meeting. Fagan (1976) reports that a group
meeting provides a synergy e�ect, that is, most of the
defects are detected because inspection participants meet
and scrutinize the inspection artifact together. He makes
the implicit assumption that interaction contributes
something to an inspection that is more than the mere
combination of individual results. Fagan refers to this
e�ect as the `phantom' inspector. However, others found
little synergy in an inspection meeting. The most cited
reference for this position is a paper by Votta (1993). His
position is empirically supported in Sauer et al. (1996).

In the literature, we found a broad spectrum of
opinions ranging between these two positions. In fact,

Fig. 2. Technical dimension of software inspection.
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most of the papers consider defect detection as an in-
dividual or a mixture of individual and group activity
rather than a pure group activity (Using our survey se-
lection, we had the following tally: Individual: 19; Both:
15; Group: 13). In many cases, authors distinguish be-
tween a `preparation' phase of an inspection, which is
performed individually, and a `meeting' phase of an
inspection, which is performed within a group (Acker-
man et al., 1989; Gilb and Graham, 1993; Strauss and
Ebenau, 1993; Fagan, 1976). However, it often remains
unclear whether the preparation phase is performed with
the goal of detecting defects or just understanding the
inspected artifact to detect defects later on in a meeting
phase. For example, Ackerman et al. (1989) state that a
preparation phase lets the inspectors thoroughly un-
derstand the inspected artifact. They do not explicitly
state that the goal of the preparation phase is defect
detection. Bisant and Lyle (1989) consider individual
preparation as the vehicle for individual education.
Other examples mention that the inspected artifact
should be individually studied in detail throughout a
preparation phase, but do not explicitly state education
as a goal per se (Christenson et al., 1990; Doolan, 1992;
Fowler, 1986; Letovsky et al., 1987).

Since the literature on software inspection does not
provide a de®nite answer on which alternative to
choose, we looked at some literature from the psychol-
ogy of small group behavior (Dennis and Valacich,
1993; Levine and Moreland, 1990; Shaw, 1976). Psy-
chologists found that an answer to the question whether
individuals or groups are more e�ective, depends upon
the past experience of the persons involved, the kind of
task they are attempting to complete, the process that is
being investigated, and the measure of e�ectiveness.
Since at least some of these parameters vary in the
context of a software inspection, we recommend orga-
nizing the defect detection activity as both individual
and group activity with a strong emphasis on the for-
mer. Individual defect detection with the explicit goal of
looking for defects that should be resolved before the
document is approved ensures that inspectors are well-
prepared for all following inspection steps. This may
require extra e�ort on the inspectors' behalf since each
of them has to understand and scrutinize the inspected
document on an individual basis. However, the e�ort is
justi®ed because, if a group meeting is performed later
on, each inspector can play an active role rather than
hiding himself or herself in the group and, thus, make a
signi®cant contribution to the overall success of an in-
spection.

There has been noticeable growth in the research on
how individual defect detection takes place and can be
supported with adequate techniques (Basili et al., 1996;
Basili, 1997; Porter et al., 1995b). We tackle this issue
later in more detail when we discuss reading techniques
to support defect detection.

4.1.1.4. Defect collection. In most published inspection
processes, more than one person participates in an in-
spection and scrutinizes a software artifact for defects.
Hence, the defects detected by each inspection partici-
pant must be collected and documented. Furthermore, a
decision must be made whether a defect is really a defect.
These are the main objectives of the defect collection
phase. A follow-up objective may be to decide whether
the inspected artifact needs to be reinspected. Since the
defect collection phase is most often performed in a
group meeting, the decision whether or not a defect is
really a defect is in many cases a group decision. The
same holds for the decision whether or not to perform a
reinspection. To make the reinspection decision more
objective, some authors suggest trying to apply statisti-
cal models for estimating the remaining number of de-
fects in the software product after inspection (Eick et al.,
1992; Wiel and Votta, 1993). If the estimate exceeds a
certain threshold, the software product needs to be re-
inspected. However, in a recent study Briand et al.
(1997) showed that statistical estimators are not very
accurate for inspections with less than four inspection
participants. Further research is necessary to validate
this ®nding. In addition to the statistical estimation
models, graphical defect content estimation approaches
are currently being investigated (Wohlin and Runeson,
1998).

Since a group meeting is e�ort consuming and in-
creases the development schedule, some authors suggest
abandoning such a meeting for inspections. Instead,
they o�er the following alternatives (Votta, 1993):
Managed meetings, depositions, and correspondence.
Managed meetings are well-structured meetings with a
limited number of participants. A deposition is a three-
person meeting in which the author, a moderator, and
an inspector collect the inspectors' ®ndings and com-
ments. Correspondence includes forms of communica-
tion where the inspections and author never actually
meet (e.g., by using electronic mail). Some researchers
have elaborated on these alternatives. Sauer et al.
(1996), for example, provide some theoretical under-
pinning for depositions. They suggest that the most ex-
perienced inspectors collect the defects and decide upon
whether these are real or not.

Overall, research does not seem to provide a con-
clusive answer to the question of whether inspection
meetings pay-o� or not. We recommend to practitioners
that they start with the `traditional' meeting-based ap-
proach and try later on whether non-meeting based
approaches provide equivalent bene®ts. Regarding the
bene®ts of group meetings, those also provide more in-
tangible bene®ts such as dissemination of product in-
formation, development experiences, or enhancement of
team spirit as reported in Franz and Shih (1994). Al-
though di�cult to measure, these bene®ts must be taken
into account when a particular inspection approach is
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evaluated in addition to the number of defects it helps
detect and remove.

On the other hand, these meetings are not problem-
solving sessions. Neither personal con¯icts among peo-
ple or departments nor radically alternate solutions ±
complete rewrite or redesign ± of the inspected artifact
should be discussed there.

4.1.1.5. Defect correction. Throughout the defect cor-
rection phase, the author reworks and resolves defects
found (Fagan, 1976) or rationalizes their existence
(Shirey, 1992). For this he or she edits the material and
deals with each reported defect. There is not much dis-
cussion in the literature about this activity.

4.1.1.6. Follow-up. The objective of the follow-up phase is
to check whether the author has resolved all defects. For
this, one of the inspection participants veri®es the defect
resolution. Doolan reports that the moderator checks
that the author has taken some remedial action for each
defect detected (Doolan, 1992). However, others do not
report a follow-up phase (Myers, 1978; Russell, 1991;
Shirey, 1992). They either did not perform one or did not
consider it important. Furthermore, many consider the
follow-up phase optional like the overview phase.

4.1.2. The product dimension
The product dimension refers to the type of product that
is usually inspected. Boehm (1981) stated that one of the
most prevalent and costly mistakes made in software
projects today is deferring the activity of detecting and
correcting software problems until late in the project.
This statement supports the use of software inspection
for early life-cycle documents. However, a look at the
literature reveals that in most cases inspection was ap-
plied to code documents. Fig. 3 depicts how inspection
was applied to various software products 3 phasewise.

Although code inspection improves the quality and
provides savings, the savings are higher for early life-
cycle artifacts as shown in a recent study (Briand et al.,
1998), which integrates published inspection results into
a coherent cost/bene®t-model. The results of the study
reveal that the introduction of code inspection saves
39% of defect costs compared to testing alone. The in-
troduction of design inspection saves 44% of defect costs
compared to testing alone.

4.1.3. The team role and size
Practitioners usually have the following three ques-

tions about software inspections: (1) what roles are in-
volved in an inspection, (2) how many people are
assigned to each role, and (3) how to select people for
each role. For the ®rst question, a number of speci®c
roles are assigned to inspection participants. Hence,
each inspection participant has a clear and speci®c
responsibility. The roles and their responsibilities are
described in Ackerman et al. (1989), Fagan (1976) and
Russell (1991). There is not much disagreement re-
garding the de®nition of inspection roles. In the fol-
lowing, we describe each of these roles in more detail:
· Organizer: The organizer plans all inspection activi-

ties within a project or even across projects.
· Moderator: The moderator ensures that inspection

procedures are followed and that team members per-
form their responsibilities for each phase. He or she
moderates the inspection meeting if there is one. In
this case, the moderator is the key person in a suc-
cessful inspection as he or she manages the inspection
team and must o�er leadership. Special training for
this role is suggested.

· Inspector: Inspectors are responsible for detecting de-
fects in the target software product. Usually all team
members can be assumed to be inspectors, regardless
of their speci®c role.

· Reader/Presenter: If an inspection meeting is per-
formed, the reader will lead the team through the ma-
terial in a complete and logical fashion. The material
should be paraphrased at a suitable rate for detailed
examination. Paraphrasing means that the reader
should explain and interpret the material rather than
reading it literally.

· Author: The author has developed the inspected prod-
uct and is responsible for the correction of defects
during rework. During an inspection meeting, he or
she addresses speci®c questions the reader is not able
to answer. The author must not serve as moderator,
reader, or recorder.

· Recorder: The recorder is responsible for logging all
defects in an inspection defect list during the inspec-
tion meeting.

· Collector: The collector consolidates the defects
found by the inspectors if there is no inspection meet-
ing.

Fig. 3. Distribution of the use of software inspection on various

product types.

3 We should note that some articles describe software inspection for

several products. This explains why the total number of references is

114, although we only included 99 articles in this survey.
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To answer the second question, that is, how to assign
resources to these roles in an optimal manner, the re-
ported numbers in the literature are not uniform. Fagan
(1976) recommends to keep the inspection team small,
that is, four people. Bisant and Lyle (1989) have found
performance advantages in an experiment with two
persons: one inspector and the author, who can also be
regarded as an inspector. Weller (1993) presents some
data from a ®eld study using three to four inspectors.
Madachy et al. (1993) presents data showing that the
optimal size is between three and ®ve people. Bourgeois
(1996) corroborates these results in a di�erent study.
The experimental results of Porter et al. (1997) suggest
that reducing the number of inspectors from 4 to 2 may
signi®cantly reduce e�ort without increasing inspection
interval or reducing e�ectiveness.

We assume that there is no de®nite answer to this
question and that an answer heavily depends on the type
of product and the environment in which an inspection
is performed. However, we recommend starting with
three to four people: One author, one or two inspectors,
and one moderator (also playing the role of the pre-
senter and scribe). After a few inspections, the bene®ts
of adding an additional inspector can be empirically
evaluated.

The ®nal question is how to select members of an
inspection team. Primary candidates for the role of
inspectors are personnel involved in product develop-
ment (Fagan, 1986). Outside inspectors may be brought
in when they have a particular expertise that would add
to the inspection (National Aeronautics and Space
Administration, 1993). Inspectors should have good
experience and knowledge (Fagan, 1986; Blakely and
Boles, 1991; Strauss and Ebenau, 1993). However, the
selection of inspectors according to experience and
knowledge has two major implications. First, inspec-
tion results heavily depend upon human factors. This
often limits the pool of relevant inspectors to a few
developers working on a similar or interfacing products
(Ackerman et al., 1989). Second, personnel with little
experience are not chosen as inspectors although they
may learn and, thus, pro®t a lot from inspection. De-
fect detection, that is, reading techniques, which we
discuss later on in more detail, may alleviate these
problems.

It is sometimes recommended that managers should
neither participate nor attend inspections (National
Aeronautics and Space Administration, 1993; Kelly
et al., 1992). This stems from the fact that inspections
should be used to assess the quality of the software
product, not the quality of the people who create the
product (Fagan, 1986). Using inspection results to
evaluate people may result in less than honest and tho-
rough inspections results since inspectors may be reluc-
tant to identify defects if ®nding them will result in a
poor performance evaluation for a colleague.

4.1.4. The reading technique dimension
Recent empirical studies seem to demonstrate that

defect detection is more an individual than a group ac-
tivity as assumed by many inspection methods and re-
®nements (Land et al., 1997; Porter and Johnson, 1997;
Votta, 1993). Moreover, these empirical studies show
that a particular organization of the inspection process
does not explain most of the variation in inspection re-
sults. Rather, one expects that inspection results depend
on inspection participants themselves (Porter and Votta,
1997) and their strategies for understanding the in-
spected artifacts (Rifkin and Deimel, 1994). Therefore,
supporting inspection participants, that is, inspectors,
with particular techniques that help them detect defects
in software products, may increase the e�ectiveness of
an inspection team most. We refer to such techniques as
reading techniques.

A reading technique can be de®ned as a series of steps
or procedures whose purpose is for an inspector to ac-
quire a deep understanding of the inspected software
product. The comprehension of inspected software
products is a prerequisite for detecting subtle and/or
complex defects, those often causing the most problems
if detected in later life-cycle phases. In a sense, a reading
technique can be regarded as a mechanism for the in-
dividual inspector to detect defects in the inspected
product. Of course, whether inspectors take advantage
of this mechanism is up to them.

Even though reading is one of the key activities for
individual defect detection (Basili, 1997), few docu-
mented reading techniques are currently available to
support the activity. We found that ad hoc reading and
checklist-based reading are probably the most popular
reading techniques used today for defect detection in
inspections (Fagan, 1976; Gilb and Graham, 1993).

Ad hoc reading, by nature, o�ers very little reading
support at all since a software product is simply given to
inspectors without any direction or guidelines on how to
proceed through it and what to look for. However, ad-
hoc does not mean that inspection participants do not
scrutinize the inspected product systematically. The
word 'ad-hoc' only refers to the fact that no technical
support is given to them for the problem of how to
detect defects in a software artifact. In this case, defect
detection fully depends on the skill, the knowledge, and
the experience of an inspector. Training sessions in
program comprehension as presented in Rifkin and
Deimel (1994) may help subjects develop some of these
capabilities to alleviate the lack of reading support.
Although an ad-hoc reading approach was only men-
tioned a few times in the literature (Shirey, 1992; Doo-
lan, 1992), we found many articles in which little was
mentioned about how an inspector should proceed in
order to detect defects. Hence, we assumed that in most
of these cases no particular reading technique was pro-
vided because otherwise it would have been stated.
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Checklists o�er stronger, boilerplate support in the
form of questions that inspectors are to answer while
reading the document. Checklists are advocated in more
than twenty ®ve articles. See, for example, Ackerman
et al. (1989), Fagan (1976), Fagan (1986), Humphrey
(1995) and Tervonen (1996). Gilb and Graham (1993)
also advocate the use of checklists must ultimately be
derived from the rules of the process which themselves
are being checked by inspection. Although reading
support in the form of a list of questions is better than
none (such as ad-hoc), checklist-based reading has sev-
eral weaknesses as denoted in the literature. First, the
questions are often general and not su�ciently tailored
to a particular development environment. Thus, the
checklist provides little support to help an inspector
understand the inspected artifact. That can be vital to
detect application logic defects. Second, concrete in-
structions on how to use a checklist are often missing,
that is, it is often unclear when and based on what in-
formation an inspector is to answer a particular check-
list question. Finally, the questions of a checklist are
often limited to the detection of defects that belong to
particular defect types. Since the defect types are based
on past defect information (Chernak, 1996), inspectors
may not focus on defect types not previously detected
and, therefore, may miss whole classes of defects.

Techniques providing more structured and precise
reading instructions include both a reading technique
denoted as `Reading by Stepwise Abstraction' for code
documents advocated by the Cleanroom community
(Dyer, 1992a,b; Linger et al., 1979), as well as a tech-
nique suggested by Parnas et. al. called Active Design
Review (Parnas and Weiss, 1985; Parnas, 1987) for the
inspection of design documents. Reading by Stepwise
Abstraction requires an inspector to read a sequence of
statements in the code and to abstract the function these
statements compute. An inspector repeats this proce-
dure until the ®nal function of the inspected code arti-
fact has been abstracted and can be compared with the
speci®cation. Active Design Reviews, which is a sug-
gested variation to the conventional inspection meth-
odology, assign clear responsibilities to inspectors of a
team and require each of them to take an active role in
an inspection of design artifacts. In doing so, an in-
spector is required to make assertions about parts of the
design artifact rather than simply point out defects.

A more recent development in the area of reading
techniques for individual defect detection in software
inspection is Scenario-based reading (Basili, 1997). The
gist of the Scenario-based reading idea is the use of the
notion of scenarios that provide custom guidance for
inspectors on how to detect defects. A scenario may be a
set of questions or a more detailed description for an
inspector on how to perform the document review.
Principally, a scenario limits the attention of an in-
spector to the detection of particular defects as de®ned

by the custom guidance. Since each inspector may use a
di�erent scenario, and each scenario focuses on di�erent
defect types, it is expected that the inspection team, to-
gether, becomes more e�ective. Hence, it is clear that the
e�ectiveness of a scenario-based reading technique de-
pends on the content and design of the scenarios. So far,
researchers have suggested three di�erent approaches
for developing scenarios and, therefore, three di�erent
scenario-based reading techniques: Defect-based Read-
ing (Porter et al., 1995b) for inspecting requirements
documents, a scenario-based reading technique based on
function points for inspecting requirements documents
(Cheng and Je�rey, 1996), and Perspective-based Read-
ing for inspecting requirements documents (Basili et al.,
1996) or code documents (Laitenberger and DeBaud,
1997).

The main idea behind Defect-based Reading is for
di�erent inspectors to focus on di�erent defect classes
while scrutinizing a requirements documents (Porter
et al., 1995b). For each defect class, there is a scenario
consisting of a set of questions an inspector has to an-
swer while reading. Answering the questions helps an
inspector primarily detect defects of that particular
class. The defect-based reading technique has been val-
idated in a controlled experiment with students as sub-
jects. The major ®nding was that inspectors applying
Defect-based Reading are detecting more defects than
inspectors applying either Ad-hoc or checklist-based
reading.

Cheng and Je�rey (1996) have chosen a slightly dif-
ferent approach to de®ne scenarios for defect detection
in requirements documents. This approach is based on
Function Point Analysis (FPA). FPA de®nes a software
system in terms of its inputs, ®les, inquiries, and outputs.
The scenarios, that is, the Function Point Scenarios, are
developed around these items. A Function Point Sce-
nario consists of questions and directs the focus of an
inspector to a speci®c function-point item within the
inspected requirements document. The researchers car-
ried out an experiment to investigate the e�ectiveness of
this approach compared to an Ad-hoc approach. The
experimental results show that, on average, inspectors
following the Ad-hoc approach found more defects than
inspectors following the function-point scenarios.
However, it seems that experience is a confounding
factor that biased the results of the experiment.

The main idea behind the perspective-based reading
technique is that a software product should be inspected
from the perspective of di�erent stakeholders (Basili
et al., 1996; Laitenberger and DeBaud, 1997). The ra-
tionale is that there is no single monolithic de®nition of
software quality, and little general agreement about how
to de®ne any of the key quality properties, such as
correctness, maintainability, or testability. Therefore,
inspectors of an inspection team have to check software
quality as well as the software quality factors of a
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software artifact from di�erent perspectives. The per-
spectives mainly depend upon the roles people have
within the software development or maintenance pro-
cess. For each perspective, either one or multiple sce-
narios are de®ned, consisting of repeatable activities an
inspector has to perform, and questions an inspector has
to answer. The activities are typical for the role within
the software development or maintenance process, and
help an inspector increase his or her understanding of
the software product from the particular perspective.
For example, designing test cases is a typical activity
performed by a tester. Therefore, an inspector reading
from the perspective of a tester may have to think about
designing test cases to gain an understanding of the
software product from the tester's point of view. Once
understanding is achieved, questions about an activity
or questions about the result of an activity can help an
inspector identify defects.

Reading a document from di�erent perspectives is not
a completely new idea. It was seeded in early articles on
software inspection, but never worked out in detail.
Fagan (1976) reports that a piece of code should be
inspected by the real tester. Fowler (1986) suggests that
each inspection participant should take a particular
point of view when examining the work product. Gra-
den et al. (1986) state that each inspector must denote
the perspective (customer, requirements, design, test,
maintenance) by which they have evaluated the deliv-
erable. So far, the perspective-based reading technique
has been applied for inspecting requirements (Basili
et al., 1996) and code documents (Laitenberger and
DeBaud, 1997).

General prescriptions about which reading technique
to use in which circumstances can rarely be given.
However, in order to compare them, we set up the fol-
lowing criteria: Application Context, Usability, Re-
peatability, Adaptability, Coverage, and Overlap. The
criteria are to provide answers to the following ques-
tions:
1. Application context: To which software products can

a reading technique be applied and to which software
products has a reading technique already been ap-
plied?

2. Usability: Does a reading technique provide prescrip-
tive guidelines on how to scrutinize a software prod-
uct for defects?

3. Repeatability: Are the results of an inspector's work
repeatable, that is, are the results such as the detected
defects, independent of the person looking for de-
fects?

4. Adaptability: Is a reading technique adaptable to
particular aspects, e.g., notation of the document,
or typical defect pro®les in an environment?

5. Coverage: Are all required quality properties of the
software product, such as correctness or complete-
ness, veri®ed in an inspection?

6. Overlap: Does the reading technique focus each in-
spector to check the same quality properties or do dif-
ferent inspectors check di�erent quality properties?

7. Validation: How was the reading technique validated,
that is, how broadly has it been applied so far?
Table 2 characterizes each reading technique ac-

cording to these criteria. We use question marks for
cases for which no clear answer can be provided.

4.2. The managerial dimension of software inspection

One of the most important criteria for choosing a
particular inspection approach is the e�ort a particular
inspection method or re®nement consumes. E�ort is an
issue project managers are mainly interested in. Hence,
we refer to this dimension as the managerial dimension.
To make a sound evaluation, that is, to determine
whether it is worth spending e�ort on inspection, one
must also consider how inspections a�ect the quality of
the software product as well as the cost and the duration
of the project in which they are applied. We discuss a
sample of 24 articles in the context of these three sub-
dimensions.

4.2.1. Quality
Some authors state that inspections can reduce the

number of defects reaching testing by ten times
(Freedman and Weinberg, 1990). However, these state-
ments are often based on personal opinion rather than
on collected inspection data. Hence, we focus our dis-
cussion about quality on examples of published inspec-
tion data taken from the literature. We emphasize that
many of the data reported in the literature are not pre-
sented in a manner that allows straightforward com-
parison and analysis as pointed out by Briand et al.
(1998).

Fagan (1976) presents data from a development
project at Aetna Life and Casualty. An application
program of eight modules (4439 non-commentary
source statements) was written in Cobol by two pro-
grammers. Design and code inspections were intro-
duced into the development process. After 6 months of
actual usage, 46 defects had been detected during de-
velopment and usage of the program. Fagan reports
that 38 defects had been detected by design and code
inspections together, yielding a defect detection e�ec-
tiveness for inspections of 82%. In this case, the defect
detection e�ectiveness was de®ned as the ratio of de-
fects found and the total number of defects in the in-
spected software product. The remaining 8 defects had
been found during unit test and preparation for ac-
ceptance test. In another article, Fagan (1986) publishes
data from a project at IBM Respond, UK. A program
of 6271 LOC in PL/1 was developed by seven pro-
grammers. Over the life cycle of the product, 93% of all
defects were detected by inspections. He also mentions
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two projects of the Standard Bank of South Africa (143
KLOC) and American Express (13 KLOC of system
code), each with a defect detection e�ectiveness for in-
spections of over 50% without using trained inspection
moderators.

Weller (1992) presents data from a project at Bull HN
Information Systems which replaced ine�cient C-code
for a control microprocessor with Forth. After system
tests had been completed, code inspection e�ectiveness
was around 70%. Grady and van Slack (1994) report on
experiences from achieving widespread inspection use at
HP. In one of the company's divisions, inspections (fo-
cusing on code) typically found 60±70% of the defects.
Shirey (1992) states that defect detection e�ectiveness of
inspections is typically reported to range from 60% to
70%. Barnard and Price (1994) cite several references
and report a defect detection e�ectiveness for code in-
spections varying from 30% to 75%. In their environ-
ment at AT&T Bell Laboratories, the authors achieved a
defect detection e�ectiveness for code inspections of
more than 70%. McGibbon (1996) presents data from
Cardiac Pacemakers, where inspections are used to im-
prove the quality of life-critical software. They observed
that inspections removed 70±90% of all faults detected
during development. Collofello and Wood®eld (1989)
evaluated reliability-assurance techniques in a case study
± a large real-time software project that consisted of
about 700 000 lines of code developed by over 400

developers. The respective defect detection e�ectiveness
is reported to be 54% for design inspections, 64% for
code inspections, and 38% for testing. More recently,
Raz and Yaung (1997) presented the results of an
analysis of defect-escape data from design inspection in
two maintenance releases of a large software product.
They found that the less e�ective inspections were those
with the largest time investment, the likelihood of defect
escapes being clearly a�ected by the way in which the
time was invested and by the size of the work product
inspected. Kitchenham et al. (1986) report on experience
at ICL, where 57.7% of defects were found by software
inspections. The total proportion of development e�ort
devoted to inspections was only 6%. Gilb and Graham
(1993) include experience data from various sources in
their discussion of the bene®ts and costs of inspections.
IBM Rochester Labs publish values of 60% for source
code inspections, 80% for inspections of pseudocode,
and 88% for inspections of module and interface speci-
®cations. Grady (1994) performs a cost/bene®t analysis
for di�erent techniques, among them design and code
inspections. He states that the average percentage of
defects found for design inspections is 55%, and 60% for
code inspections. Franz and Shih (1994) present data
from code inspection of a sales and inventory tracking
systems project at HP. This was a batch system written
in COBOL. Their data indicate that inspections had
19% e�ectiveness for defects that could also be found

Table 2

Characterization of reading techniques

Reading

techniques

Characteristic

Application

context

Usability Repeatability Adaptability Coverage Overlap Validation

Ad-hoc All products;

all products

No No No Low High Industrial

practice

Checklists All products;

all products

No No Yes Case

dependent

High Industrial

practice

Reading by

stepwise

abstraction

All products

allowing

abstraction;

functional code

Yes Yes No High High Applied in clean

room projects

(Linger et al.,

1979)

Active design

reviews

Design; design Yes Yes Yes ? ? Experimental

validation

(Parnas, 1987)

Defect-based

reading

All products;

requirements

Yes Case

dependent

Yes High ? Experimental

validation (Porter

et al., 1995b)

Reading based on

function points

All products;

requirements

Yes Case

dependent

Yes ? ? Experimental

validation

(Cheng and

Je�rey, 1996)

Perspective-based

reading

All products;

requirements,

code

Yes Yes Yes High ? Experimental

validation

(Basili et al.,

1996; Laitenber-

ger and DeBaud,

1997)

16 O. Laitenberger, J.-M. DeBaud / The Journal of Systems and Software 50 (2000) 5±31



during testing. Myers (1978) performed an experiment
to compare program testing to code walkthroughs and
inspections. This research is based on work performed
earlier by Hetzel (1976). The subjects were 59 highly
experienced data processing professionals testing and
inspecting a PL/I program. Myers reports an average
e�ectiveness value of 38% for inspections. This con-
trolled experiment was replicated several times (Basili
and Selby, 1987; Kamsties and Lott, 1995; Myers, 1978;
Wood et al., 1997) with similar results.

4.2.2. Cost
It is necessary for a project manager to have a precise

understanding of the cost associated with inspections.
Since inspection is a human-based activity, inspection
costs are determined by human e�ort. The most im-
portant question addressed in literature is whether an
inspection e�ort is worth making when compared to the
e�ort for other defect detection activities, such as test-
ing. Most of the literature present solid data supporting
the claim that the costs for detecting and removing de-
fects during inspections is much lower than detecting
and removing the same defects in later phases. For in-
stance, the Jet Propulsion Laboratory (JPL) found the
ratio of the cost of ®xing defects during inspections to
®xing them during formal testing ranged from 1:10 to
1:34 (Kelly et al., 1992), at the IBM Santa Teresa Lab
the ratio was 1:20 (Remus, 1984), and at the IBM Ro-
chester Lab it was 1:13 (Kan, 1995).

We must say that authors often relate the costs to
either the size of the inspected product or the number of
defects found. Ackerman et al. (1989) present data on
di�erent projects as a sample of values from the litera-
ture and from private reports:
· The development group for a small warehouse-inven-

tory system used inspections on detailed design and
code. For detailed design, they reported 3.6 h of indi-
vidual preparation per thousand lines, 3.6 h of meet-
ing time per thousand lines, 1.0 h per defect found,
and 4.8 h per major defect found (major defects are
those that will a�ect execution). For source code,
the results were 7.9 h of preparation per thousand
lines, 4.4 h of meetings per thousand lines, and 1.2 h
per defect found.

· A major government-systems developer reported the
following results from inspection of more than
562 000 lines of detailed design and 249 000 lines of
source code: For detailed design, 5.76 h of individual
preparation per thousand lines, 4.54 h of meetings per
thousand lines, and 0.58 h per defect found. For
code, 4.91 h of individual preparation per thousand
lines, 3.32 h of meetings per thousand lines, and
0.67 h per defect found.

· Two quality engineers from a major government-sys-
tems contractor reported 3±5 sta�-hours per major
defect detected by inspections, showing a surprising

consistency over di�erent applications and program-
ming languages.

· A banking computer-services ®rm found that it took
4.5 h to eliminate a defect by unit testing compared to
2.2 h by inspection (these were probably source code
inspections).

· An operating-system development organization for a
large mainframe manufacturer reported that the aver-
age e�ort involved in ®nding a design defect by
inspections is 1.4 sta�-hours compared to 8.5 sta�-
hours of e�ort to ®nd a defect by testing.
Weller (1993) reports data from a project that per-

formed a conversion of C-code to Fortran for several
timing-critical routines. While testing the rewritten code,
it took 6 h per failure. It was known from a pilot project
in the organization that they had been ®nding defects in
inspections at a cost of 1.43 h per defect. Thus, the team
stopped testing and inspected the rewritten code, de-
tecting defects at a cost of less than 1 h per defect.

Collofello and Wood®eld (1989) estimate some fac-
tors for which they had insu�cient data. They per-
formed a survey among many of the 400 members of a
large real-time software project who were asked to es-
timate the e�ort needed to detect and correct a defect for
di�erent techniques. The results were 7.5 h for a design
error, 6.3 h for a code error, both detected by inspec-
tions, 11.6 h for an error found during testing, and 13.5 h
for an error discovered in the ®eld.

Franz and Shih (1994) data indicate that the average
e�ort per defect for code inspections was 1 h and for
testing 6 h. In presenting the results of analyzing in-
spections data at JPL, Kelly et al. (1992) report that it
takes up to 17 h to ®x defects during formal testing,
based on a project at JPL. They also report approxi-
mately 1.75 h to ®nd and ®x defects during design in-
spections, and approximately 1.46 h during code
inspections.

There are also examples that present ®ndings from
applying inspections only as a quality assurance activity.
Kitchenham et al. (1986), for instance, report on expe-
rience at ICL where the cost of ®nding a defect in design
inspections was 1.58 h.

Gilb and Graham (1993) include experience data
from various sources in their discussion of the bene®ts
and costs of inspections. A senior software engineer
describes how software inspections started at Applicon.
In the ®rst year, 9 code inspections and 39 document
inspections (documents other than code) were conduct-
ed and an average e�ort of 0.8 h was spent to ®nd and
®x a major problem. After the second year, a total of 63
code inspections and 100 document inspections had
been conducted and the average e�ort to ®nd and ®x a
major problem was 0.9 h.

Bourgeois (1996) reports experience from a large
maintenance program within Lock-heed Martin West-
ern Development Labs where software inspections
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replaced structured walkthroughs in a number of pro-
jects. The analysed program was sta�ed by more than 75
engineers who maintain and enhance over 2 million lines
of code. The average e�ort for 23 software inspections (6
participants) was 1.3 sta�-hours per defect found and
2.7 sta�-hours per defect found and ®xed. Bourgeois
also presents data from Jet Propulsion Laboratory
which is used as an industry standard. There, the aver-
age e�ort for 171 software inspections (5 inspection
participants) was 1.1 sta�-hours per defect found and
1.4±1.8 sta�-hours per defect found and ®xed.

Because inspection is a human-intensive activity and,
therefore, e�ort consuming, managers are often critical
or even reluctant to use them the ®rst time. Part of the
problem is the perception that software inspections cost
more than they are worth. However, available quanti-
tative evidence as presented above indicates that in-
spections have had signi®cant positive impact on the
quality of the developed software and that inspections
are more cost-e�ective than other defect detection ac-
tivities, such as testing. Furthermore, it is important to
keep in mind that besides quality improvement and cost
savings realized by ®nding and ®xing defects before they
reach the customer, other bene®ts are often associated
with performing inspections. These bene®ts, such as
learning, are often di�cult to measure, but they also
have an impact on quality, productivity, and the success
of a software development project.

4.2.3. Duration
Inspections do not only consume e�ort, but they also

have an impact on the product's development cycle time.
Inspection activities are scheduled in a way in which all
people involved can participate and ful®ll their roles.
Thus, the interval for the completion of all activities will
range from at least a few days up to a few weeks. During
this period, other work that relies on the inspected
software product may be delayed. Hence, duration
might be a crucial aspect for a project manager if time to
market is a critical issue during development. However,
only few articles present information on the global in-
spection duration.

Votta discusses the e�ects of time loss due to sched-
uling contention. He reports that inspection meetings
account for 10% of the development interval (Votta,
1993). Due to the delays, he advises substituting in-
spection meetings with other forms of defect collection.

4.3. The organizational dimension of software inspection

Fowler (1986) states that the introduction of inspec-
tion is more than giving individuals the set of skills on
how to perform inspections: It also introduces a new
process within an organization. Hence, it a�ects the
whole organization, that is, the team, the project struc-

ture, and the environment. We identi®ed six references
relevant to this dimension.

4.3.1. Team
An important factor regarding software inspection is

the human factor. Software inspection is driven by its
participants, i.e, the members of a project team. Hence,
the success or failure of software inspection as a tool for
quality improvement and cost reduction heavily depends
on human factors. If team members are unwilling to
perform inspections, all e�orts will be deemed to fail.
Franz and Shih (1994) point out that attitude about
defects is the key to e�ective inspections. Once the in-
evitability of defects is accepted, team members often
welcome inspections as a defect detection method. To
overcome objections, Russell reports on an advertising
campaign to persuade project teams that inspections
really do work (Russell, 1991). An advice which we of-
ten found in the literature was to exclude management
from inspections (Franz and Shih, 1994; Kelly et al.,
1992). This is suggested to avoid any misconception that
inspection results are used for personnel evaluation.
Furthermore, training is deemed essential (Ackerman
et al., 1989; Fowler, 1986). Training allows project
members to build their own opinion on how inspections
work and how crucial defect data are within an
environment for triggering further empirically justi®ed
process improvements.

4.3.2. Project structure
Inspection per se is a human-based activity. Espe-

cially when meetings are performed, authors are con-
fronted with the defects they created. This can easily
result in personal con¯icts, particularly in project envi-
ronments with a strict hierarchy. Hence, one must
consider the project structure to anticipate the con¯ict
potential among participants. Depending on this po-
tential for con¯ict, one must decide whether an inspec-
tion moderator belongs to the development team or
must come from an independent department. This is
vital in cases in which inspection is applied between sub-
groups of one project. Personal con¯icts within an
inspection result in demotivation for performing
inspection at all.

4.3.3. Environment
Introducing inspections is a technology transfer ini-

tiative. Hence, issues revolve around the need to deal
with a software development organization, not just in
terms of its workers but also in terms of its culture,
management, budget, quality, and productivity goals.
All these aspects can be subsumed in the subdimension
environment of an organization. Fowler (1986) states
that preparing the organization for using inspections
dovetails with adapting the inspections to the local
technical issues. Furthermore, the new process must be
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carefully designed to serve in the organization's envi-
ronment and culture. Based on their inspection experi-
ences at Hewlett-Packard, Grady and van Slack (1994)
suggest a four-stage process for inspection technology
transfer: Experimental stage, initial guideline stage,
widespread belief and adoption stage, and standardiza-
tion stage. The experimental stage comprises the ®rst
inspection activities within an organization, and is often
limited to a particular project of an organization. Based
on the experiences in this project, ®rst guidelines can be
developed. This is the starting point for the initial
guideline stage. In this stage, the inspection approach is
de®ned in more detail and training material is created.
The widespread belief and adoption stage takes advan-
tage of the available experiences and training material to
adopt inspection to several projects. Finally, the stan-
dardization stage helps build an infrastructure structure
strong enough to achieve and hold inspection compe-
tence. This approach follows a typical new technology
transfer model.

4.4. The assessment dimension of software inspection

When assessing whether inspections provide any
bene®ts, we di�erentiate between qualitative versus
quantitative assessment. While qualitative assessment is
often based on the subjective opinion of inspection
participants, quantitative assessment is based on data
collected in inspection and subsequent defect detection
activities, such as testing. In contrast to the managerial
dimension, the assessment describes how to evaluate
inspections rather than the results of the evaluation. We
identi®ed 20 references relevant to this dimension.

4.4.1. Qualitative assessment
Qualitative assessment is based on subjective judge-

ment of inspection bene®ts rather than on real inspec-
tion data. Weller states inspection participation results
in a better understanding of the software development
process (Weller, 1993) and the developed product. This
is supported in Doolan (1992). Furthermore, inspections
contribute to increased team work because they allow
the team to see each other's strengths and weaknesses
(Crossman, 1991; Doolan, 1992; Franz and Shih, 1994;
Jackson and Ho�man, 1994; MacLeod, 1993). They also
provide a good forum for learning, that is, educate the
team (Bisant and Lyle, 1989; Crossman, 1991; Doolan,
1992; Franz and Shih, 1994; Jackson and Ho�man,
1994; MacLeod, 1993; Tripp et al., 1991). One expla-
nation is that team members become familiar with the
whole system, not just with the part on which each one
of them is working. Finally, inspections contribute to
social integration (Svendsen, 1992). Apart from the ef-
fects on the development team, inspections a�ect each
participant individually. One observation is that in-
spection participants develop software products more

carefully (Doolan, 1992; Fagan, 1986; Tripp et al., 1991;
Weller, 1993). Most of these advantages are systemati-
cally used within the Personal Software Process, advo-
cated by Humphrey (1995).

4.4.2. Quantitative assessment
Quantitative assessment is often based on the data

collected in an inspection or in the project in which in-
spections were applied. It requires an evaluation model
(Briand et al., 1996) that describes how to combine the
collected data in order to come up with a valid conclu-
sion. Various models have been described in the litera-
ture. One can discern between models that do not
consider costs and models that do consider costs.
Models that do not consider the cost for performing
inspections are presented in Fagan (1976), Jones (1996),
Remus (1984), Collofello and Wood®eld (1989) and Raz
and Yaung (1997). These models basically relate the
number of defects found in inspection to the total
number of defects in a software artifact (if available).
Models that do consider cost are presented by Grady
and van Slack (1994), Collofello and Wood®eld (1989),
Franz and Shih (1994) and Kusumoto (1993). Most of
these models are built on the concept of comparing in-
spection as a defect detection technique against testing
activities. However, various assumptions are made for
the various models. Hence, before applying them, one
must carefully check whether the assumptions are ful-
®lled. An overview of the di�erent models as well as a
more mathematical description of each can be found in
Briand et al. (1998).

4.5. The tool dimension of software inspection

Currently, few tools supporting inspections are
available. Some of them were developed by researchers
to investigate software (often source code) inspection
and none of the academic tools has reached commercial
status yet. There may be some commercial tools avail-
able that we were not aware of, since they have not been
discussed in the inspection literature. We analysed, dis-
cussed, and classi®ed the following ten inspection tools:
(1) PAE (Program Assurance Environment) (Belli and
Crisan, 1996), which can be seen as an extended de-
bugger and represents an exception in the list of tools.
(2) InspecQ (Knight and Myers, 1993) concentrates on
the support of the Phased Inspection process model
developed by Knight and Meyers (3) ICILE (Brothers
et al., 1990) supports the defect detection phase as well
as the defect collection phase in a face-to-face meeting.
(4) Scrutiny (Gintell et al., 1995) and (5) CSI (Mash-
ayekhi et al., 1993), support synchronous, distributed
meetings to enable the inspection process for geo-
graphically separated development teams. (6) CSRS
(Johnson and Tjahjono, 1997), (7) InspectA (Knight and
Myers, 1993), (8) Hypercode (Perpich et al., 1997), and
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(9) ASIA (Perry et al., 1996) remove the conventional
defect collection phase and replace it with a public dis-
cussion phase were participants vote on defect-annota-
tions. (10) ASSIST (Macdonald and Miller, 1995) uses
its own process modelling language and executes any
desired inspection process model. All tools provide more
or less comfortable document handling facilities for
browsing documents on-line.

To compare the various tools, we developed Table 3
according to the various phases of the inspection pro-
cess. We focused on whether a tool provides facilities to
control and measure the inspection process, and on the
infrastructure on which the tool is running (a cross `x'
indicates support and a minus 'ÿ' no support). Of
course, for source code products various compilers are
available that can perform type and syntactical check-
ing. This may remove some burden from inspectors.
Furthermore, support tools, such as Lint for C, may
help detect further classes of defects. However, the use
of these tools is limited to particular development situ-
ations and may only lighten the inspection burden.

5. A generic life-cycle model for software development

So far, we have de®ned and detailed the various
characterization dimensions of software inspection. Yet,
software inspection can take place at di�erent levels
within the development life-cycle of software products.
As we saw earlier in this paper, an important inspection
customization factor is the stage within the life cycle
from which the software product is originating. Hence,
we believe it is important to present the inspection body
of knowledge from a life-cycle point of view. To do this,
we ®rst introduce a generic life-cycle model to serve as
reference for this angle.

We used as our model a simpli®ed version of the
Vorgehensmodell (V-Model) (Br�ohl and Dr�oschel, 1995)
to discuss inspection variations according to the identi-
®ed products. Fig. 4 presents its main products and the
main relationships among them. The products are ge-
neric enough and are found, at least in some form, in
most, if not all, development process models. Hence, we
consider this model appropriate for our purpose. This is
an important observation because it allows the results
from this work to be applied to most software devel-
opment environments. Of course, some tailoring and/or
modi®cation of products from the development life-cy-
cle might be required to accommodate naming conven-
tions and project organization issues.

The V-model is not a process model per se, but rather
a product model since it does not de®ne the sequence of
development steps that must be followed to create the
generic software development products. Hence, it is
applicable with all process models for which products
are developed in sequence, in parallel, or incrementally.

The point is that the logical relationship between de-
velopment products should be maintained.

The following generic software development products
are de®ned as those for which inspections can be con-
ducted:
1. Problem description: This document is created by the

customer to describe the problem for which a solu-
tion is being sought. The description might not be re-
stricted to the software aspects of the problem but
might also address a broader system context beyond
the software components of that system.

2. Customer requirements: This document is created es-
sentially by the customer, though the requirements
engineer may assist. The document recasts the prob-
lem description in terms of requirements that must
be satis®ed by a software solution and generally ad-
dresses more than just software requirements. The
combination of the two documents is frequently used
by the customer as a statement of work to potential
vendors for bidding on a development project.

3. Developer requirements: This document is created by
the requirements engineer and de®nes the require-
ments for the proposed software solution to the cus-
tomer's requirements. Hence, it describes precisely
what the software system should do. The document
should address all customer requirements and also in-
troduce requirements unique to the particular soft-
ware solution. This document is the formal response
to the customer's requirements and serves as the tech-
nical basis for a contractual arrangement between the
customer and vendor. This document sometimes may
evolve into a speci®cation document.

4. Architecture: This document is created by the system
architect and describes a system design to implement
the developer requirements. Hence, it describes the is-
sue of how the system is to be structured (with asso-
ciated rationale) so as to provide a solution. The
architecture generally identi®es the component parts,
software and otherwise, and how they ®t together and
interact to provide the customer-required capability.

5. Design: This document is created by the designer and
describes how the di�erent components should be de-
signed to ®t and realize the architecture speci®cation.
It generally identi®es their interface, structure, and
how they ®t together and interact with other compo-
nents to provide the customer-required capability.

6. Implementation: These documents are created by the
component programmer and includes the software
code and ancillary support documentation.

7. Test Cases: The unit, integration, system and accep-
tance test cases are generated in accordance with
the previously prepared documents, by the unit tester,
integrator, and system tester, respectively. These tests
allow them to validate the speci®c behavior of the ex-
ecutable modules, the executable system, the usable
system, and the used system against the architecture,
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developer requirements, customer requirements, and
the problem description, respectively. The documen-
tation of the test cases for each level is usually at-
tached to the level-speci®c document (e.g., the
acceptance test cases are attached to the customer re-
quirements document).

6. A life-cycle taxonomy for software inspection

Most inspection variations take a one-size-®ts-all
approach (Johnson, 1998b): the same variation is as-
sumed to work equally well regardless of which life-cycle
product is inspected. However, we realized in the lit-
erature that some variations are tightly coupled to the
inspected product type. Hence, we present in this section
a life-cycle taxonomy for software inspection which
describes the `conventional' inspection approach as well
as suggested variations according to the di�erent life-
cycle products. In our discussion, we focus more on the
technical and assessment dimension of software inspec-
tions than on the managerial, organizational, or tool
dimension. To facilitate our discussion, we ®rst present
an overview of articles in the context of our generic
software development model and then, continue by
discussing in detail the presented inspection variations
according to the di�erent life-cycle products.

6.1. Overview

Fig. 5 presents an overview of articles describing
inspection variations for di�erent life-cycle products. In
addition to the articles that only discuss the inspection
of a speci®c life-cycle product, we also included some
articles describing the inspection of several di�erent
products. For each product, we start by describing and

summarizing vital issues of the conventional inspection
approach, which we described in detail in Section 3, and
we continue with presenting other inspection variations.

6.2. Inspection of problem description, customer require-
ments, and developer requirements

6.2.1. `Conventional' inspection approach
The conventional inspection approach we presented

in Section 3 can be easily adapted for inspecting early
life-cycle artifacts. Examples can be found in Ackerman
et al. (1989), Doolan (1992), Fowler (1986), Graden et al.
(1986) and Shirey (1992). However, inspecting early life-
cycle artifacts is not commonly practiced in industry
(Shirey, 1992). Two main reasons appear to be respon-
sible. First, early life-cycle artifacts are often not as
precise as the life-cycle artifacts developed later on
(Cheng and Je�rey, 1996). Therefore, understanding the
semantics of the artifact may be more di�cult for in-
spectors, which then makes defect detection in these
software products more challenging than defect detec-
tion in later life-cycle artifacts. This is particularly the
case if the key function and quality properties that
the inspected artifact is to ful®ll are ill-de®ned. Second,
the inspected artifact may be the ®rst written document
in the software development project. This is, by nature,
the case for a problem description. Hence, inspectors
cannot compare or leverage the inspected artifact, e.g.,
the problem description, with another artifact previ-
ously developed. In this case, the inspection result
heavily depends on the reading technique and the level
of skill, knowledge, and experience of the inspectors.
This problem is sometimes alleviated by providing
reading techniques. The reading techniques o�ered to
inspectors for defect detection in early life-cycle prod-
ucts are Ad-hoc (Doolan, 1992), checklist-based reading

Fig. 4. A generic software development model.
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(Gilb and Graham, 1993), Defect-based Reading (Porter
et al., 1995b), and Perspective-based Reading (Basili
et al., 1996). In many cases, the lack of reading support
is compensated by increasing the number of inspectors
(Bourgeois, 1996; Doolan, 1992), so that, on average,
the number of inspectors is higher for early life-cycle
products than for products developed later on. Of
course, this increases inspection cost, which may prevent
managers from organizing the inspection of these
products.

6.2.2. Suggested variation: N-fold inspection
Martin et al. proposed the N-fold inspection method

(Martin and Tsai, 1990; Schneider et al., 1992). This
inspection method is based on the hypotheses that a
single inspection team can ®nd only a fraction of the
defects in a software product and that multiple teams
will not signi®cantly duplicate each others e�orts. In an
N-fold inspection, N teams each carry out parallel in-
dependent inspections of the same software artifact. In a
sense, N-fold inspection scales up some ideas of sce-
nario-based reading techniques, which are applied in the
conventional inspection approach on an individual level,

to a team level. The inspection participants of each in-
dependent inspection follow the various inspection steps
of a conventional inspection as outlined in Section 2,
that is, individual defect detection with an Ad-hoc
reading technique and defect collection in a meeting.
The N-Fold inspection approach ends with a ®nal step
in which the results of each inspection team are merged
into one defect list. It has been hypothesized that N
di�erent teams will detect more defects than a single
large inspection team. In fact, there already exists em-
pirical evidence which con®rms this hypothesis (Tripp
et al., 1991). However, if N independent teams inspect
one particular document, inspection cost will be high.
This limits this inspection approach to the inspection of
early life-cycle artifacts for which very high quality
really does matter, such as the aircraft industry, or
safety critical systems (Tripp et al., 1991).

6.3. Inspection of architecture and design artifacts

6.3.1. Conventional inspection approach
The conventional inspection approach for inspecting

architecture and design documents is described, for

Fig. 5. Inspection variations according to the generic software development model.
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instance, in Ackerman et al. (1989), Fagan
(1976), Fowler (1986), Graden et al. (1986), Humphrey
(1995), Kitchenham et al. (1986), MacLeod (1993),
Shirey (1992) and Weller (1992). The reading
techniques available for defect detecting in architecture
and design artifacts are Ad-hoc and checklist-based
reading.

6.3.2. Suggested variation: Active Design Reviews
Parnas (1987) and Parnas and Weiss (1985) suggest

an inspection method denoted as Active Design Re-
views (ADR) for inspecting design documents. The
authors believe that in conventional design inspections,
inspectors are given too much information to examine,
and that they must participate in large meetings which
only allow for limited interaction between inspectors
and author. To tackle theses issues, inspectors are
chosen based on their speci®c level of expertise skills
and assigned to ensure thorough coverage of design
documents. Only two roles are de®ned within the
ADR process. An inspector has the expected respon-
sibility of ®nding defects, while the designer is the
author of the design being scrutinized. There is no
indication of who is responsible for setting up and
coordinating the review. The ADR process consists of
three steps. It begins with an overview step, where the
designer presents an overview of the design and
meeting times are set. The next step is the defect de-
tection step for which the author provides question-
naires to guide the inspectors. The questions are
designed such that they can only be answered by
careful study of the design document, that is, inspec-
tors have to elaborate the answer instead of stating
yes/no. Some of the questions reinforce an active in-
spection role by making assertions about design deci-
sions. For example, he or she may be asked to write a
program segment to implement a particular design in a
low-level design document being inspected. The ®nal
step is defect collection, which is performed in in-
spection meetings. However, each inspection meeting is
broken up into several smaller, specialized meetings,
each of which concentrates on one quality property of
the artifact. An example is checking consistency be-
tween assumptions and functions, that is, determining
whether assumptions are consistent and detailed en-
ough to ensure that functions can be correctly imple-
mented and used.

ADR is an important inspection variation because
ADR inspectors are guided by a series of questions
posed by the author(s) of the design in order to en-
courage a thorough defect detection step. Thus, in-
spectors get reading support when scrutinizing a design
document. Although little empirical evidence shows the
e�ectiveness of this approach, other researchers based
their inspection variations upon these ideas (Cheng and
Je�rey, 1996; Knight and Myers, 1991).

6.4. Inspection of implementations

6.4.1. Conventional inspection approach
Software inspections have most often been applied

to implementations, that is, code artifacts. Examples
can be found in Ackerman et al. (1989), Barnard and
Price (1994), Crossman (1991), Fagan (1976), Fowler
(1986), Graden et al. (1986), Humphrey (1995), Ma-
cLeod (1993), Shirey (1992), and Weller (1992). The
currently available reading techniques for defect de-
tection in implementations are Ad-hoc (Ackerman et
al., 1989), Checklist-based reading (Fagan, 1976),
Reading by Stepwise Abstraction (Dyer, 1992a), and
Perspective-based reading (Laitenberger and DeBaud,
1997). The current state of the practice is to use
checklists for defect detection in implementations. De-
spite the large portion of work in the area of software
inspection, the number of available reading techniques
even for implementations is rather low. A possible
reason is that, in the past, too much attention has been
paid to the inspection process and group issues and too
little to the individuals carrying out the reading, that is,
the defect detection activity in the privacy of their own
o�ces. It is only recently that this issue has been
tackled.

An important aspect regarding implementation is the
in¯uence of the chosen programming language. So far,
most articles present the inspection of functional code,
such as Pascal, Fortran, or C-code. Inspection and more
speci®cally, defect detection in object-oriented code may
impose additional problems, such as inheritance, dy-
namic binding, or polymorphism (Hatton, 1998; Mac-
donald et al., 1996b). Object-oriented concepts therefore
raise new questions for inspection, such as how to en-
sure the quality of the inheritance structure? More im-
portantly, how to ensure the quality of an artifact by a
static analysis approach, such as inspection, when dy-
namic binding is applied? These are only some of the
questions that must be tackled in the context of object-
oriented development methods. For others, we refer to
Jones (1994). However, these questions highlight the fact
that inspection of early products may become even more
important, regardless of the development process.

6.4.2. Suggested variation-1: phased inspection
Knight and Myers (1991, 1993) suggested the Phased

Inspection method. The main idea behind Phased in-
spection is for each inspection phase to be divided into
several mini-inspections or phases. Mini-inspections are
conducted by one or more inspectors and are aimed at
detecting defects of one particular class or type. This is
the most important di�erence to conventional inspec-
tions which check for many classes or types of defects in
a single examination. If there is more than one inspector,
they will meet just to reconcile their defect list. The
phases are done in sequence, that is, inspection does not
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progress to the next phase until rework has been com-
pleted on the previous phase.

Although Knight and Myers state that phased in-
spections are intended to be used on any work product,
they only present some empirical evidence of the e�ec-
tiveness of this approach for the code inspections.
However, Porter et al. (1997) argue based on the results
of their experiments, that multiple session inspections,
that is, mini-inspections, with repair in between are not
more e�ective for defect detection but are more costly
than conventional inspections. This may be one expla-
nation why we did not ®nd extensive use of the phased
inspection approach in practice.

6.4.3. Suggested variation-2: Veri®cation-based Inspec-
tion

Veri®cation-based Inspection is an inspection varia-
tion used in conjunction with the Cleanroom software
development method. Although this method requires
the author(s) to perform various inspections of work
products, the inspection process itself is not well de-
scribed in the literature. We found that it consists of at
least one step, in which individual inspectors examine
the work product using a reading technique denoted as
Reading by Stepwise Abstraction. This reading tech-
nique is limited to code artifact, though it provides a
more formal approach for inspectors to check the
functional correctness (Dyer, 1992b). We found little
information on the inspection process after the indi-
vidual defect detection step. However, the Cleanroom
approach is one of the few development approaches in
which defect detection and inspection activities are
tightly integrated in and coupled with development ac-
tivities.The Cleanroom approach and its integrated in-
spection approach has been applied in several
development projects (Basili, 1997; Dyer, 1992a; Deck,
1994).

6.5. Inspection of testcases

The importance of inspecting testcases is pointed out
several times in the literature (Ackerman et al., 1989;
Graden et al., 1986; Shirey, 1992). It stems from the fact
that the participation of developers in the inspection of
testcases alerts them to user expectations before the
software product is developed. However, for the in-
spection of testcases, no inspection variations di�erent
from the conventional approaches have been described.

7. Future research direction

One of the most challenging and signi®cant avenues
of research in the software engineering discipline is the
investigation of how to assure software quality, reduce
development cost, and keep software projects within

schedule. Software inspection is a practical approach to
help tackle all three issues. However, there still exist
challenging questions that need to be addressed by re-
searchers in the future. Examples are: (1) What is the
most cost-e�ective inspection variation? (2) When to
stop inspection? (3) How does the number and experi-
ence of inspectors in¯uence software inspection? (4)
How does software inspection scale up (e.g., how to
introduce inspections in projects in which changes are
made to a large system that has not been inspected so
far)? (5) How to provide adequate reading techniques
for inspectors? (6) How to support software inspection
with tools? (7) How do software inspections depend on
the type of software artifact? For instance, are inspec-
tions of functional software artifacts di�erent from the
inspection of object-oriented artifacts, and if so, what
are the consequences? (8) How much to inspect?

Although each of these questions in isolation pro-
vides a fruitful area for future inspection research, we
encourage the research community to tackle them in the
context of a larger framework or theory. There, the
underlying research goal is to provide guidance for
practitioners on the most successful inspection approach
in the context of the practitioner's software development
situation. 4 The most successful inspection approach is
the one that helps to ®nd most of the defects in the in-
spected artifact, has an optimal cost/bene®t ratio, and
can be performed within the speci®ed time frame. These
three characteristics can be aligned to the quality/e�ort/
duration-subdimensions of our taxonomy. Although
there might be a limitless number of factors that induce
variations on the subdimensions, our survey allows us to
distill what we believe are the most important in¯uential
factors. This puts us into a position where we can apply
a causal modeling approach to theory construction
(Blalock, 1979). For each subdimension, we describe a
causal model and its graphical representation in the
form of a path diagram (Pedhazur, 1982) describing the
relationships between the subdimension and the in¯u-
ential factors. The set of causal models de®nes the the-
ory. Such a theory is bene®cial for three reasons. First,
practitioners as well as researchers gain insight into the
major factors in¯uencing software inspection. Second, a
theory o�ers the possibility for a researcher to integrate
his or her own work into a broader context and to
highlight his or her methodological or empirical con-
tribution to the inspection ®eld in a systematic manner.
Finally, in the long run, the accumulation of knowledge
in the context of a theory makes software inspection an
even more e�ective approach for overcoming software
quality de®ciencies and cost overruns. In the following,
we present and discuss three causal models, which

4 This does not imply that there is one best-®tting approach for all

development situations.
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should be regarded as a starting point for further re-
®nement and elaboration.

7.1. A causal model for explaining inspection quality

A high quality inspection must ensure that most of
the detectable defects in a software product are, indeed,
detected. Therefore, we are interested in the factors that
have an impact on the number of defects detected. Fig. 6
depicts the ones we isolated from the literature. There,
the principal factors are the team characteristics, e�ort,
the reading technique, the organization of the defect
detection activity, and product characteristics. The ma-
jor team characteristics are the number of inspectors and
their experience. The major product characteristics are
the type of product that is inspected, the di�culty of the
product, such as its complexity, the size of the product,
and its initial quality.

In Fig. 6 and in the two Figures that follow, an arrow
linking a given pair of variables (X, Y) indicates that
there is assumed to be a direct causal link between these
variables. 5 A `+' sign above an arrow must be inter-
preted as statements of the form `an increase in X will
produce (cause) an increase in Y '. A `ÿ' sign indicates
statements of the form `an increase in X will produce a
decrease in Y '. In addition, we give each relationship a
number so that we can later on refer to the articles
dealing with the relationship.

The principal factors impact the number of defects
detected in an inspection in the following manner:
· Increasing the number of inspectors is expected to in-

crease the number of defects detected in an inspec-

tion. However, there will be a ceiling e�ect after
which adding an additional inspector does not neces-
sarily pay o� in more detected defects. The optimal
number of inspectors needs to be determined empiri-
cally as, for example, presented in Madachy et al.
(1993) or Bourgeois (1996).

· Using very experienced inspectors is expected to in-
crease the number of detected defects in an inspec-
tion. This stems from the fact that if an inspector is
well versed in the application domain, he or she al-
ready knows many potential pitfalls and problem
spots.

· Spending more e�ort for defect detection is expected
to increase the number of defects detected in an in-
spection.

· The di�culty of a product is related to the defect-
proneness. This means that a more di�cult software
product contains more defects. Di�culty may be,
for example, de®ned as the complexity of the inspect-
ed product (McCabe, 1976). This relationship, there-
fore, translates to the following expectation: The
more di�cult the inspected product is, the more de-
fects are expected to be detected in an inspection.

· The larger the size of an inspected product, the more
defects are detected in an inspection (assuming a con-
stant defect density in the inspected product).

· The higher the initial quality of the inspected docu-
ment, the lower the number of detected defects.
The factors `life-cycle product', `reading technique'

and `organization of the defect detection activity' are
not that easy to quantify, and we refer to previous parts
of this survey for a detailed discussion. Moreover, we
have to mention that other factors, such as tool support,
may have an impact as well. Although these factors also
need to be investigated, we did not include them here
because we focused on the most prevalent factors.

According to the life-cycle structure of our survey,
Table 4 presents the articles in which the expectations
were mentioned and, in a few cases, empirically inves-
tigated.

7.2. A causal model for explaining inspection e�ort

As depicted in Fig. 7, the principal factors deter-
mining inspection e�ort are team and product charac-
teristics. The major team characteristics that impact
inspection e�ort are the number of persons (not only
inspectors) involved in an inspection and their experi-
ence. The major product characteristics are the type, the
di�culty, and the size of the product.

The principal factors impact inspection e�ort in the
following manner.
· Increasing the number of people increases inspection

e�ort.
· The more experienced the inspectors, the less e�ort

they consume for defect detection and, thus, for

Fig. 6. Path diagram for explaining the number of defects detected.

5 We do not assume that the relationships are necessarily linear and

additive. Furthermore, the causal models are a simpli®cation in the

sense that we neglect interactions among the di�erent in¯uential

factors. Such an interaction may be, for example, the checking rate

(Gilb and Graham, 1993), which is de®ned as the ratio of the size and

the defect detection e�ort.
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the overall inspection. However, one must be
aware that the more experienced inspectors are of-
ten the more expensive ones, so that the overall in-
spection costs are not necessarily decreased
commensurately.

· The more di�cult (e.g., complex) a product, the more
e�ort is required for inspecting it.

· The larger the size of the inspected product, the more
e�ort is required for its inspection.
Moreover, the inspection e�ort is determined by

which life-cycle product is inspected. Here again, other
factors, such as reading technique, may in¯uence in-
spection e�ort.

According to the life-cycle structure of our survey,
Table 5 presents the articles in which the relationships
were discussed and examined.

7.3. A causal model for explaining inspection duration

As depicted in Fig. 8, the most important factors
determining inspection duration are the team charac-
teristics and the organization of the inspection process.
The team characteristics involve the number of people
and the number of teams. All these factors are hypoth-
esized to have a positive relationship with duration, al-
though few solid data is currently available. The scarcity
of work regarding inspection duration is the reason why
we do not present a table of relevant articles. The arti-
cles that discuss inspection duration are Bourgeois
(1996), Porter et al. (1997) and Votta (1993).

7.4. Discussion

Transferring software inspection into development
organizations as well as bridging the gap between the
state-of-the-art and the state-of-the-practice clearly re-
quires concerted e�orts by both researchers and practi-
tioners. One major obstacle to operationalize the
transition seems to be a scarcity of experimental work
that is su�ciently solid and well analysed to justify the
risks entailed for transition to industrial practice. Ex-
perimental approaches, as, for example, presented in
Jalote and Haragopal (1998), play a vital role in con-
vincing inspection participants as well as their supervi-
sors that software inspections are bene®cial and allow a
smooth transition from research to practice. Further-
more, the data collected in these experiments help de-
termine key success factors for software inspection and

Table 4

Articles describing the relationship between in¯uential factors and the number of defects detected

Number of

inspectors

Experience

of inspectors

E�ort Reading

technique

Organization

of defect

detection

Size of the

product

Di�culty of

product

Initial

quality of

product

Customer

and devel-

oper require-

ments

(Fowler,

1986)

(Porter et al.,

1995b; Basili

et al., 1996;

Cheng and

Je�rey, 1996

(Tripp et al.,

1991)

Architecture

and design

(Fagan,

1986)

(Parnas,

1987)

(Christenson

et al., 1990;

Raz and

Yaung,

1997)

(Parnas,

1987)

(Parnas,

1987)

(Christenson

et al., 1990;

Raz and

Yaung,

1997; Weller,

1993)

(Humphrey,

1995)

Implementa-

tion

(Fagan,

1986;

Blakely and

Boles, 1991;

Strauss and

Ebenau,

1993; Weller,

1993)

(Barnard

and Price,

1994; Porter

et al., 1997;

Laitenberger

and

DeBaud,

1997)

(Barnard

and Price,

1994; Bour-

geois, 1996;

Christenson

et al., 1990;

Weller, 1993;

Franz and

Shih, 1994),

(Linger et al.,

1979; Dyer,

1992b;

Laitenberger

and

DeBaud,

1997)

(Fagan,

1986; Votta,

1993; Porter

and

Johnson,

1997; Land

et al., 1997)

(Porter et al.,

1998)

(Barnard

and Price,

1994; Chris-

tenson et al.,

1990)

(Humphrey,

1995)

Test cases

Fig. 7. Path diagram for explaining inspection e�ort.
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help establish the relationships among them. However,
sound experimentation requires viable theories or
models to understand as well as to predict factors that
bias software inspection. So far, few models or theories
have been presented for understanding or prediction,
despite many numerical studies presented in literature.
This is particularly the case for the inspection of life-
cycle products other than code. Hence, we made an
initial step towards theory construction by presenting
three causal models. Such a theory points out promising
areas for future research and provides a starting point
for systematically accumulating knowledge in the in-
spection ®eld. Both researchers and practitioners need to
re®ne the theory, study the functional form of rela-
tionships, and investigate interactions among the dif-
ferent factors. Regarding code inspections, some
researcher have already followed this process (Porter
et al., 1998; Seaman and Basili, 1998).

8. Conclusion

In this paper, we presented an encompassing, life-
cycle centric survey of work in the area of software in-
spection. The survey consisted of two main sections: The
®rst introduced a detailed description of the core con-
cepts and relationships that together de®ne the ®eld of
software inspection. The second elaborated a taxonomy
that uses a generic development life-cycle to contextua-
lize software inspection in detail.

This type of survey is bene®cial to both practitio-
ners and researchers: First, it provides a roadmap in

the form of a contextualized, life-cycle taxonomy that
allows the identi®cation of available inspection meth-
ods and experience directly related to a particular life-
cycle phase. This may be particularly interesting for
practitioners, since they often want to tackle the
quality de®ciencies of concrete life-cycle products with
software inspection. Yet, they often do not know
which method or re®nement to choose. Hence, this
survey helps to quickly focus on the best-suited in-
spection approach adapted to a particular environ-
ment. Second, our work helps structure the large
amount of published inspection work. This structure
allows us to present the gist of the inspection work so
far performed and helps practitioners as well as re-
searchers characterize the nature of new work in the
inspection ®eld. In a sense, this structure also helps
de®ne a common vocabulary that depicts the software
inspection ®eld area. Third, our survey presents an
overview of the current state of research as well as an
analysis of today's knowledge in the ®eld of software
inspection. It integrates the knowledge into a theory
that, together with the road map, can be particularly
interesting for researchers to identify areas where little
work has been done so far.

We have to state that each survey has its limitations.
At the time of publication, this can only be a snapshot of
the work that is currently in progress. Furthermore, a
survey usually represents only a fraction of articles that
are available on a subject. However, in this case we
analysed more than 400 references. We made the refer-
ences of papers available via the World Wide Web
(Fraunhofer Institute for Experimental Software Engi-
neering, 1998) and encourage other researchers to send
us their inspection articles or references to integrate
them into our bibliography.
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Table 5

Articles describing the relationship between in¯uential factors and inspection e�ort

Number of people Experience of

inspectors

Size of the

product

Di�culty of the

product

Customer and developer

requirements

Architecture and design (Fagan, 1976; Parnas, 1987) (Raz and Yaung,

1997)

Implementation (Bisant and Lyle, 1989; Fagan, 1976; Weller,

1993)

(Porter et al.,

1997)

(Bourgeois, 1996)

Test cases

Fig. 8. Path diagram for explaining inspection duration.
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