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Abstract—The creation of a Software Requirements Specifica-
tion (SRS) document is important for any software development
project. Given the recent prowess of Large Language Models
(LLMs) in answering natural language queries and generating
sophisticated textual outputs, our study explores their capability
to produce accurate, coherent, and structured drafts of these
documents to accelerate the software development lifecycle. We
assess the performance of GPT-4 and CodeLlama in drafting
an SRS for a university club management system and compare
it against human benchmarks using eight distinct criteria. Our
results suggest that LLMs can match the output quality of an
entry-level software engineer to generate an SRS, delivering
complete and consistent drafts. We also evaluate the capabilities
of LLMs to identify and rectify problems in a given requirements
document. Our experiments indicate that GPT-4 is capable of
identifying issues and giving constructive feedback for rectifying
them, while CodeLlama’s results for validation were not as
encouraging. We repeated the generation exercise for four distinct
use cases to study the time saved by employing LLMs for
SRS generation. The experiment demonstrates that LLMs may
facilitate a significant reduction in development time for entry-
level software engineers. Hence, we conclude that the LLMs can
be gainfully used by software engineers to increase productivity
by saving time and effort in generating, validating and rectifying
software requirements.

Index Terms—Requirements engineering, software require-
ments specifications, empirical research, large language models

I. INTRODUCTION

One of the fundamental requirements for developing soft-

ware is clearly defined objectives and communication of the

same to the software developers. It is standard practice in

the industry to prepare a Software Requirements Specification

(SRS) document at the beginning of the project to ensure

clear communication between all the stakeholders involved.

Traditionally, this document is prepared and reviewed man-

ually with contributions from multiple team members. This

practice can take weeks or months but is earmarked as an

essential time investment. However, with the advent of Large

Language Models (LLMs), we find ourselves at a revolutionary

moment where such ML models can assist in automating

even the toughest technical tasks. In this work, we explore

the efficacy of GPT-4 (ChatGPT) [1], and CodeLlama [2] in

generating, validating, and rectifying these documents using

natural language prompts describing the features of our in-
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tended final product. We also present evidence on the time

saved by utilizing these models for the task.

Software Requirements Specifications are formally defined

as a “specification for a particular software product, program,

or set of programs that perform certain functions in a specific

environment” containing details about the functionality, exter-

nal interfaces, performance, attributes, and design constraints

imposed on an implementation [3], [4]. The SRS is a compre-

hensive document that serves as the foundational blueprint of

the entire software development lifecycle. It ensures alignment

among all stakeholders by delineating a software venture’s

expectations, operational methods, and inherent constraints,

thus ensuring clarity regarding the software’s intended pur-

pose, functionality, and limitations. This can expedite the

development trajectory by preemptively diagnosing and fixing

potential pitfalls, obviating the need for extensive rework or

modifications. A robust SRS serves as a unified reference that

ensures that all parties have synchronized expectations and

responsibilities, promoting efficient cooperation.

With the explosion in the adoption of Artificial Intelligence

(AI), it is now possible to leverage AI agents in key require-

ment engineering (RE) tasks like extraction, classification,

prioritization, and validation of requirements [5], [6]. The

popularization of Large Language Models (LLMs) based on

the transformer [7] architecture, such as Generative Pre-trained

Transformer (GPT) [8], [9] and the recently released LLaMa

[10] models has led to an increase in their usage in RE tasks.

In this paper, we evaluate the proficiency of LLMs like GPT-

4 [11] (ChatGPT) [1] and CodeLlama [2] in formulating the

SRS for a software project. To demonstrate this, we chose the

task of designing a university’s student club management web

portal. We grade LLM-generated documents and the human

benchmark on various metrics relevant to this task chosen from

the literature. Our goal is to evaluate if LLMs can reduce

human effort by independently developing comprehensive

documents or providing worthy drafts that humans can refine

easily. We attempt to identify their weaknesses and strengths in

such complex design tasks through an empirical analysis. We

also observe their utility for validating and correcting software

requirements and analyze the time saved by utilizing them in

designing requirements specifications.

Specifically, our study addresses the following research

questions (RQ):
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RQ1: How do LLMs, with focus on GPT-4 and CodeLlama,

perform relative to an entry-level software engineer in SRS

creation?

RQ2: How do GPT-4 and CodeLlama perform in validating

the quality of requirements and suggesting improvements?

RQ3: What is the reduction in effort by utilizing LLMs for

generating SRS documents?

The final prompts, settings, and chats we used for our

experiments can be accessed from the following GitHub1

repository.

II. RELATED WORKS

The creation and evaluation of SRS documents have been

studied extensively. The importance of having complete, un-

ambiguous, and contextually rich SRS documents has been

emphasized repeatedly [12]–[14]. To facilitate writing good

SRS documents, previous work [15] provides guidelines to

write good requirements and proposes measures to evaluate

the same. Researchers have also proposed a framework [16]

to quantify key aspects of a good SRS and facilitate easier

comparison through a weighted score, which our evaluation

framework heavily derives from.

Despite taking measures to write good requirements, cre-

ating and evaluating SRS documents has inherent challenges

rooted in subjectivity, such as ambiguity, inaccuracy, and in-

consistency [17]. A taxonomy of commonly observed defects

in SRS documents has been prepared [18] along with a process

to detect such defects by isolating each section of the SRS and

searching for typical errors. Further, researchers have studied

guidelines to determine the quality of an SRS and created an

automated testing tool [19] to determine the level of ambiguity

of each sentence.

Prior works have also explored the automated generation

of SRS documents. [20], [21] discuss methods to generate

SRS documents in natural language using Natural Language

Syntax and Semantics Requirements Engineering (NLSSRE)

methodology that aims to do requirements discovery, analysis,

and requirements specification. [22] utilize a BERT [23] model

as an encoder and an LSTM [24] network as a decoder to

generate requirements.

In order to of examine and correct an SRS to satisfy

critical qualities of correctness, completeness, and unambi-

guity, among others, [25]–[27] use knowledge graph and

ontology tracking-based approaches to re-format requirements

such that they are consistent, correct, traceable, unambiguous,

and organized.

The mainstream adoption of LLMs, which serve as powerful

information retrieval and zero-shot generation tools [28], [29]

has led to a transition in the software development lifecycle

[30]. It is possible to prompt LLMs in several ways – zero-

shot prompting, prompt chaining, few shot prompting [31],

chain-of-thought prompting [32], [33], and tree-of-thought

prompting [34], [35], among others. In the context of using

LLMs for requirements engineering, [36] provided guidelines

1 https://github.com/madhava20217/LLMs-for-SRS-Prompts

for prompt engineering, observing the impact of the task

context on the quality of documents and that a more detailed

context resulted in better outputs for requirements engineering

tasks. [37] experiment with a real-life use case on how LLMs

can be used in requirements elicitation, user story generation,

quality assurance, and requirement validation. [38] use LLMs,

specifically GPT-4 [11], to create user stores from an SRS

document.

III. METHODOLOGY

In this section, we describe the process of generating the

SRS using LLMs and the instructions given to the human

oracle.

A. Task definition

We chose to generate an SRS to design a university’s

student club management portal as the primary task for our

experiments. There are four main types of users - the adminis-

trator, the student council coordinator, club coordinators, and

students. We provide a summary of the key functionalities

below:-

The administrator serves as the central authority of the sys-

tem with complete control and visibility of activities assigned

to all system users. They can create, edit, and delete clubs and

appoint the student council coordinator and club coordinators

from within the registered students. The administrator should

be a part of the college staff, being from the Students Affairs

department.

The student council coordinator manages and approves

events for which each club puts forward proposals. The

club coordinators for each club can add or edit the club’s

information and schedule events and club activities, which

will then be approved first by the student council coordinator

and then the administrator. They can also manage the club

members and the visibility and access for club events to the

student body. All other university students should be able to

view the schedule of the club events and their details and

register for the same. All users should be able to login using

the Google sign-in API.

B. Benchmark for SRS Generation

We established a benchmark with a human-generated SRS

document, which conformed to IEEE specifications [3]. This

document was created and reviewed by software engineering

experts. The template used for the SRS is given in figure 1.

The SRS includes the problem background, information about

stakeholders, functional and non-functional requirements, and

use cases.

We experimented with both iterative prompting in a con-

versational format and a single, comprehensive prompt. Ul-

timately, we decided to go with the latter, whilst including a

detailed context for all SRS generations since we observed the

best results using this. A maximum of two additional prompts

were allowed to fix minor errors and formatting.
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      Format for the SRS

1. Problem Background
2. Stakeholders
3. Functional Requirements
4. Performance Requirements
5. Design Constraints
6. External Interfaces
7. Security Requirements
8. Use cases for the application

Actor
Purpose
Event Flow
Special conditions

9. Glossary of terms

Fig. 1. The format of the SRS used for the study.

C. Document generation with GPT-4

We used OpenAI’s ChatGPT [1], powered by the GPT-4

[11] model (25th September 2023 version) to generate the

SRS. We explicitly provided both prompt and context to the

large language model after observing a noticeable improve-

ment in the detail of the generated documents compared to

only prompt or context tuning, aligning with the findings of

Arora et al. (2023) [37]. The context contained guidelines

for creating good SRS documents. The prompt contained the

output format comprising major headings and subheadings as

a template and concrete information about the use case, and,

apart from minor changes, was maintained constant between

ChatGPT and CodeLlama34b (ref. III-D).

The context was provided in response to two questions,

added in a recent update to ChatGPT:

1) What would you like ChatGPT to know about you
to provide better responses?
We provided detailed information in the form of guide-

lines for creating quality requirements documents, fol-

lowing the methodology of [3] and [15].

2) How would you like ChatGPT to respond?
We explicitly prompted the model to be detailed and

thorough in its response.

D. Document Generation with CodeLlama

We chose CodeLlama-34b to represent open-source LLMs

as an alternative to GPT-4 because of its robust performance.

We could not use a larger model due to GPU memory con-

straints. We obtained the model from the official HuggingFace

repository source and used it with the Text Generation We-

bUI [39] to facilitate a ChatGPT-like experience. The model

was processed to the GGML [40] format and loaded using

llama.cpp [41] to allow for faster generation on the CPU. We

used a context length of 16,384 with the simple-1 preset for

the hyperparameters and set num new tokens to 4096.

Rating Interpretation

1 Strongly Disagree: Falls far below the expected stan-
dards for the particular parameter being evaluated.

2 Disagree: Requires significant improvement to meet the
expected standards.

3 Neutral: Meets the expected standards for the particular
parameter being evaluated, but the document misses
some details.

4 Agree: Generally meets or slightly exceeds the expected
standards with minor areas for improvement.

5 Strongly Agree: Excellent and fully meets or exceeds
the expected standards for the parameter being evalu-
ated.

TABLE I
THE GRADING SCALE USED FOR EVALUATING THE SRS ALONG WITH

THEIR INTERPRETATIONS.

No quantization was used as it was found to induce hallu-

cinations and disorganized responses. We also experimented

with smaller models but noted the performance of the 34b

model to be the most detailed.

As with ChatGPT, we provided characteristics of a good

SRS in the context. As CodeLlama34b does not have limits to

the context length, we were able to include more details about

each trait. The prompt, however, remained the same.

E. Evaluation Strategy for SRS documents

To facilitate a strong and unbiased evaluation of the SRS

documents, they were anonymized and shared with inde-

pendent reviewers who were not involved in the generation

process. These reviewers rated the documents on various

parameters (ref. Table II). Our recruits included four experts

from academia and the industry with at least three years

of experience and familiarity with the practices followed in

software development.

To evaluate the SRS documents and answer RQ1, we chose

parameters prevalent in literature [15], [16], evaluating the

documents on a per-requirement and document-wide basis.

The ratings were given on a 5-point Likert scale. The inter-

pretation of each grade is given in Table I. Reviewers first

graded each SRS using the document-wide metrics shown in

Table II. Next, the reviewers graded each requirement of an

SRS in the following sections: functional requirements, per-

formance requirements, design constraints, external interfaces,

and security requirements, based on the metrics in Table II.

We then report the average scores for each section.

All SRS documents were standardized to have the same

formatting to reduce human bias during evaluation.

F. Validation and Correction of Requirements

For the experiments on validating and correcting require-

ments, that answer RQ2, we prompted the LLMs to validate

the quality of each requirement in the human SRS created

previously and correct them in the same conversation. We used

GPT-4 with the January 2024 version of ChatGPT for this

task, and we used the same configuration for CodeLlama34b

as we did to generate the SRS. As before, ChatGPT was

given explicit instructions to generate a detailed and thorough

response.
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Grading
Scheme

Parameter Definition

P
er

-r
eq

u
ir

em
en

t

Unambiguous A requirement is unambiguous if and
only if it has only one possible interpre-
tation.

Understandable A requirement is understandable if all
classes of SRS readers can easily com-
prehend its meaning with a minimum of
explanation.

Correctness A requirement is deemed correct when it
accurately represents a required feature or
function the system must possess.

Verifiable A requirement is verifiable if finite, cost-
effective techniques exist for verifying
that it is satisfied by the system as built.

D
o

cu
m

en
t-

w
id

e

Internal Consis-
tency

An SRS is internally consistent if and
only if no subsets of individual require-
ments conflict.

Non-redundancy An SRS is not redundant if no require-
ment is restated more than once.

Completeness An SRS is complete if it details all func-
tions, describes all responses, provides
organizational clarity, and avoids place-
holder text.

Conciseness An SRS is concise when it delivers
all necessary information briefly without
sacrificing its quality.

TABLE II
EVALUATION CRITERIA FOR THE SRS. EACH SECTION OF THE SRS WAS

EVALUATED ON THE PER-REQUIREMENT MEASURES. THE SRS ON THE

WHOLE WAS EVALUATED ON THE DOCUMENT-WIDE MEASURES.

As with SRS generation, we set both the prompt and context

for each LLM. The context contained information about the

four parameters for evaluating the requirements: unambiguity,

understandability, correctness, and verifiability, as given in

Table II and the format of the SRS (Figure 1). The prompt

contained the SRS without the section on use cases, and the

goal was to individually assess requirements on a scale of 1 to

5 as per the descriptions in Table I for each parameter provided

in the context. Apart from minor changes in the prompts and

context to improve the generation, the inputs were the same

to both LLMs.

The conversation flow for validating and correcting require-

ments was as follows:

1) Evaluate individual requirements in a section on a scale

of 1 to 5 with justifications for the corresponding rating

on each parameter.

2) Reformat the evaluations into a table with the section,

the requirement number, the ratings for the four param-

eters, and the justifications for the ratings.

3) Prompt the LLM to correct the requirements that did not

obtain perfect ratings in any of the four parameters.

IV. QUALITY OF GENERATED SRS DOCUMENTS

Table III shows a high-level comparison of the three SRS

documents, highlighting the length and the number of require-

ments in each section. We note that CodeLlama generated a

shorter document than the human benchmark despite having

more requirements than the human benchmark in four out of

Area Section Human CodeLlama GPT-4

S
R

S
-S

ec
ti

o
n

s

Functional Requirements 10 8 9
Performance Requirements 2 8 2
Design Constraints 4 8 2
External Interfaces 3 5 2
Security Requirements 4 7 3
Use cases 10 7 4
Glossary 14 6 3

Length 7 pages 6 pages 3 pages

TABLE III
NUMBER OF REQUIREMENTS IN EACH SECTION OF THE SRS DOCUMENTS

GENERATED.

Fig. 2. Overall SRS evaluation. The graph corresponding to document-wide
evaluation parameters and has been obtained by averaging the ratings provided
by human graders.

seven cases. From Fig. 2, we observe that while ChatGPT gen-

erated the most concise and non-redundant document with the

least number of requirements in all sections except Functional

Requirements, it was not rated to be a complete document.

Documents generated by CodeLlama34b were often ver-

bose, detailed, and covered a lot of aspects critical to the

software. On the other hand, ChatGPT generated short, crisp

documents that often lacked the detail that the former offered.

This is reflected in the completeness, conciseness, and non-

redundancy scores in Figure 2: CodeLlama34b scores the

highest in completeness, indicating that it covered the most

requirements for the use case. ChatGPT, on the other hand,

scores the maximum in conciseness and non-redundancy while

performing equal to the human SRS in completeness. We

also observe that CodeLlama34b scores the most in internal

consistency, indicating minimal conflicts in the requirements

it generates. ChatGPT trails the human SRS in this regard.

CodeLlama always formatted requirements in the language

as specified in [15], while ChatGPT did that only for a few

requirements. However, both LLMs mixed up the requirements

corresponding to each section despite indicating what they

should contain.

A. Per-Requirement Evaluation

The summary of the per-requirement grades in Fig. 3 shows

that while the first draft of the human SRS is the best

document overall, the CodeLlama SRS often comes close and

occasionally outperforms it in some categories. The document

generated by ChatGPT almost always performs worse than the

478

Authorized licensed use limited to: Telecom SudParis. Downloaded on March 07,2025 at 08:40:55 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Per-requirement evaluation results for the three SRS documents. Each graph corresponds to each section of the SRS and has been obtained by averaging
the ratings provided by human graders for that part of the SRS.

document generated by CodeLlama. In cases where it does

better, CodeLlama never falls too far behind.

Functional Requirements: All SRS documents were close in

all parameters. The human SRS outscored the LLM-generated

documents in unambiguity and understandability, but trailed

them in terms of correctness. Between the LLMs, we note

that ChatGPT performs at par or marginally better than

CodeLlama34b. The requirements generated by ChatGPT were

atomic, clear, and relevant to the use case. CodeLlama34b,

on the other hand, clubbed major requirements into a single

requirement despite clear instructions, having a minor impact

on the understandability and potentially introducing some

ambiguity. However, as the high scores for all documents

suggest, the difference was not significant.

Performance Requirements: Both LLMs demonstrate very

strong performance, with ChatGPT taking the lead. Despite

ChatGPT delivering fewer requirements than CodeLlama34b,

the individual requirements were precise and without am-

biguity. CodeLlama34b’s responses, however, catered more

to the use case at hand, while ChatGPT and the human

SRS contained generic requirements like “the database should

contain K concurrent users”.

Design Constraints: There is a clear ranking achieved on

all parameters, with the human SRS superseding both the

LLMs followed by the CodeLlama SRS in second. We observe

that CodeLlama34b recycled requirements from other sections,

such as security requirements, and often contained irrelevant

requirements. ChatGPT failed to be descriptive and provided

generic responses.

External Interfaces Both LLMs made mistakes here and

performed much worse than the human benchmark: ChatGPT

included the database schema, while CodeLlama mislabeled

some design constraints as external interface requirements.

Ambiguities were present in the responses, as indicated in the

results. However, CodeLlama performs marginally better than

ChatGPT.

Security Requirements ChatGPT generated generic re-

sponses, while CodeLlama generated detailed responses. We

notice strong performance by LLMs in unambiguity, under-

standability, and correctness, with CodeLlama leading the rest

in 2 of the four parameters. On average, the LLMs performed

better than the human benchmark.

V. VALIDATION AND CORRECTION OF SOFTWARE

REQUIREMENTS

A. Validation of Requirements

To determine whether LLMs can determine the quality of

a requirement, we compare the mean deviations of the ratings

provided by LLMs to the averaged ratings from the human

graders for each requirement.

deviation = RatingLLM − ¯RatingHuman

Where RatingLLM is the rating provided by the LLM, and
¯RatingHuman is the average of the ratings provided by human

evaluators for that requirement. A positive deviation suggests

that the LLM graded the SRS more optimistically than human

graders, and a negative deviation indicates a more pessimistic

evaluation. The mean deviations for each section are shown in

figure 4.

During the generation, CodeLlama omitted one requirement

in the design constraints section and two requirements in

the external interfaces section from a total of four and three

requirements, respectively. The omitted requirements were

excluded from the calculation of the mean deviations. No such

behavior was observed for ChatGPT.

We observe that ChatGPT consistently has a lower mean

deviation than CodeLlama, remaining under ±1 for the vast

majority of cases, indicating that it generally agrees with the

human grades. CodeLlama gave scores of 4 and 5 to all

requirements in unambiguity, significantly poor scores com-

pared to both ChatGPT and the humans for correctness and

verifiability, leading to large negative deviations. In addition,

the justifications provided were often generic and imprecise,

for ex. “Login is a common functionality, therefore it is

easy to understand and has only one interpretation, making it

unambiguous”, or “This requirement is general and has only

one interpretation, making it unambiguous”.

In contrast to CodeLlama, ChatGPT provided verbose and

constructive feedback for each parameter, often aligning with

the feedback given by human graders. It identified flaws
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Fig. 4. The mean deviations of the LLM-obtained ratings from human ratings averaged for each section.

within the performance requirements, a section widely noted

by human graders as ambiguous and not verifiable, while also

noticing ambiguities in the design constraints and security

requirements sections. In addition, it gave high scores to the

external interfaces section, which was reported to have the

least defects from prior evaluations. It also provided relevant

remarks for each evaluation, like “’Considerable amounts’ is

vague” and “Specific traffic metrics needed” for performance

requirements, “’Easy’ and ’readable’ are subjective” for design

constraints, and “Broad, more specifics of attacks needed” for

security requirements.

B. Correcting Requirements

After verification, we prompted the LLMs to rectify any

and all requirements that did not receive a perfect score in

any of our evaluation parameters. ChatGPT corrected ten

out of the 11 requirements it identified. On the other hand,

CodeLlama gave imperfect scores to all requirements but

corrected just four of them. Tables IV, V provide details of

some of the original and corrected requirements for ChatGPT

and CodeLlama, respectively.

Both LLMs’ corrections improve the overall quality of the

requirements, making them more comprehensive and reducing

ambiguities, as seen from the tables. However, CodeLlama

drastically changes performance requirement 4.2, increasing

the threshold of response times from the original requirement.

VI. IMPACT ON EFFORT

In this section, we answer RQ3. To understand the impact

of using LLMs on the effort required for developing an SRS,

we performed the generation experiment multiple times for

an empirical analysis. To determine the time consumed to

generate an SRS document with LLMs, we created SRS

documents using CodeLlama13b and ChatGPT with GPT-4

for 4 use cases of various complexities. We recorded the

number of iterations and time-per-iteration for context-tuning,

prompt-tuning, and prompt-context-tuning to obtain the total

effort. We used CodeLlama13b instead of CodeLlama34b as

in the other experiments primarily to improve the generation

speed. We expect the general results to hold with the larger

CodeLlama34b model as well. To determine the human effort

required, we engaged three students who generated the SRS

documents for these use cases and reported the effort required

for each document. The details of the tasks and the average

time to set the prompts and contexts are given in Tables VI

and VII for ChatGPT and CodeLlama13b, respectively.

The following strategy was used for the SRS generation:

1) Set initial context and prompt. The context contained

information about the task, the expected output, and the

level of detail. The prompt had concrete details about

the use-case.

2) Context tuning: Tune the context till the format is

correct.

3) Prompt tuning: Tune the prompt till all details about

the task are included.

4) Prompt-context tuning: Adjust both prompt and con-

text till the SRS contains all required information in the

right format.

Compared to human-created documents, which took be-

tween 4 to 24 hours to create once the requirements were

specified, LLM-generated documents, while hard to get right

in the first go, required considerably less time. The time saving

is almost 7-47x from the human-created documents. We also

note that more complicated use cases require more time and

effort than simpler ones, as reflected in the total time to

generate an SRS. However, it should be pointed out that SRS

development, in general, consumes only a small portion of

the overall software development effort. Hence, the impact of

savings in the requirements activity will have only a small

impact on the overall project effort and cost.

VII. CONCLUSION AND DISCUSSION

Software requirements specification (SRS) is a key task in

any software project. It is also known to be human-effort-

intensive. In this paper, we report how LLMs can be used

effectively to get a strong SRS document — both through

generation and validation — and how the use of LLMs can

help reduce effort and improve quality.

We note good performance by the LLMs for generating SRS

documents (RQ1). The generations are consistent and usually

complete. CodeLlama34b tends to create an SRS close to the
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Section
Requirement

Number
Human
scores

GPT-4
scores

Old Requirements New Requirements

Performance
Requirements

4.1
1.75,

4.75, 4,
4.25

3, 4, 5, 3
Platform should withstand considerable amounts
of traffic.

The platform must support up to 10,000 concur-
rent users and maintain functionality during peak
usage times, such as event registration openings
and result announcements.

Design
Constraints

5.1
3.25,
4.75,

3.75, 3.5
3, 4, 5, 3

Develop with accessibility features like screen
readers, font adjusters, etc.

The platform will include accessibility features
such as screen readers compatibility, font size
adjusters, high contrast mode, and keyboard
navigation support.

Design
Constraints

5.3
2.5, 4.75,
4.75, 3.25

3, 4, 5, 3
Easy to maintain with readable and well-
documented code.

The platform’s codebase shall adhere to
industry-standard practices for readability, in-
cluding clear naming conventions, modular de-
sign, and comprehensive documentation.

External
Interfaces

6.1
4.5, 4,

4.5, 4.75
4, 5, 5, 4 Compatibility with major browsers.

The platform must be compatible with the lat-
est two versions of major browsers including
Chrome, Firefox, Safari, Edge, and Brave.

Security
Requirements

7.4
4, 4.25, 4,

4.5
3, 4, 5, 3 User data management as per institute’s policy.

User data shall be managed in compliance with
the institute’s Data Protection Policy, including
provisions for data encryption, regular audits,
and adherence to privacy regulations.

TABLE IV
ORIGINAL AND CORRECTED REQUIREMENTS BY GPT-4 (CHATGPT). THE PARAMETERS FOR RATINGS BY HUMANS AND CHATGPT ARE UNAMBIGUITY,

UNDERSTANDABILITY, CORRECTNESS, AND VERIFIABILITY, RESPECTIVELY.

Section
Requirement

Number
Human
scores

CodeLlama
scores

Old Requirements New Requirements

Performance
Requirements

4.2
3.25,
4.75,

3.75, 3.5
4, 5, 3, 1

The platform should be responsive and have an
average response time of 300 milliseconds or
less under normal load.

The platform should respond within a maximum
of 500 ms under normal traffic conditions, while
ensuring that it maintains the same level of
performance for all users.

External
Interfaces

6.2
4.75,
4.75,

4.75, 4.75

Not
Found

The platform would use Google sign-in API to
allow users to log in using their institute domain
email address. Upon login, the users would be
redirected to Google API’s interface.

The platform will enable Google authentication
and allow users to access the application directly
without being required to go through the Google
API’s interface. This feature enhances security
by eliminating the need for users to log into
a third-party service before accessing the insti-
tute’s student management portal.

Security
Requirements

7.2
3, 4.25,
4.5, 4.75

5, 4, 3, 1
The platform should prevent packet interception
and tampering with outgoing and incoming re-
quests.

All data transmitted between the client and
server will be encrypted using SSL/TLS to pre-
vent eavesdropping, man-in-the-middle attacks,
and other forms of unauthorized access. The
platform will also have a mechanism in place
that prevents tampering with outgoing and in-
coming requests by verifying their authenticity
using digital signatures.

TABLE V
ORIGINAL AND CORRECTED REQUIREMENTS BY CODELLAMA34B THE PARAMETERS FOR RATINGS BY HUMANS AND CODELLAMA34B ARE

UNAMBIGUITY, UNDERSTANDABILITY, CORRECTNESS, AND VERIFIABILITY, RESPECTIVELY.

quality of a document created by an advanced computer sci-

ence student while often avoiding the inconsistency, ambiguity,

and time required for formatting the document into a suitable

format. While ChatGPT also performs well, we observe it

to generate shorter, less-detailed documents. CodeLlama34b

can also create requirements catered to the use case, while

ChatGPT’s responses were more generic.

For validating and improving requirements (RQ2), we no-

ticed that ChatGPT outperformed CodeLlama34b. It was able

to accurately identify more requirements to be corrected while

also providing better explanations on the quality. Both of them

performed similarly when correcting requirements.

However, getting good results on the first attempt is often

hard. The stochasticity of LLMs outputs complicates the

generation process and in determining which combination

of the prompt and context works successfully. There are a

large number of parameters that can be changed to alter the

generation, with different configurations resulting in major dif-

ferences in the output. Additionally, most LLMs are also prone

to hallucinations in their responses. During our testing, we
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Task Complexity
Setup time Avg. #Re-iterations Avg. Tuning Time

Overall time Approx. time for Human SRS Speedup
P C P C P + C P C P + C

Club Management Portal Med 9.33 12 1.67 2.33 0.67 4.67 3.35 1 38.67 840 21.7x
Project management portal High 11.67 10.33 0.67 2 0.33 2 4.33 5 33.33 1440 43.2x
Golf-scores tracker Easy 10 10.33 0.5 2.33 0.33 6 2.89 4 31 240 7.7x
Sports council website Med 9 12 1 2 0 3 4 3 28 720 25.7x

Average 32.75 810 24.6x

TABLE VI
TIME SAVED BY USING GPT-4 (CHATGPT) FOR SRS CREATION, MEASURED IN MINUTES. P REPRESENTS PROMPT TUNING, C REPRESENTS CONTEXT

TUNING, AND P+C REPRESENTS BOTH PROMPT AND CONTEXT TUNING.

Task Complexity
Setup time Avg. #Re-iterations Avg. Tuning Time

Overall time Approx. time for Human SRS Speedup
P C P C P + C P C P + C

Club Management Portal Med 6.67 16 1 2 0.33 1.75 2.67 2 29.67 840 28.3x
Project management portal High 7.67 9 0.33 1.33 1.33 5 1.75 7.25 30.33 1440 47.5x
Golf-scores tracker Easy 5.33 9.67 0.33 0.33 0 2 3 - 16.67 240 14.4x
Sports council website Med 13 11 0 1 0 - 4 - 26 720 27.7x

Average 25.6675 810 29.5x

TABLE VII
TIME SAVED BY USING CODELLAMA13B FOR SRS CREATION, MEASURED IN MINUTES. P REPRESENTS PROMPT TUNING, C REPRESENTS CONTEXT

TUNING, AND P+C REPRESENTS BOTH PROMPT AND CONTEXT TUNING.

observed that while CodeLlama34b generated more verbose

and detailed outputs, it was more susceptible to such issues.

ChatGPT worked in reverse: its responses were more precise

and were less prone to hallucinations, but the compactness

often led to the responses being incomplete.
Despite these limitations and the effort taken for the initial

setup, LLMs present the potential multi-fold time saving

compared to a novice software engineer (RQ3). Hence, with

increasing experience in using LLMs for software develop-

ment, we vouch for their use in tasks such as requirements

engineering.

VIII. FUTURE WORK

Our work primarily focuses on CodeLlama34b and Chat-

GPT, which were, at the time of the study, pure-text LLMs. A

number of new and improved LLMs have been released since

then, with text-vision models steadily gaining traction. Bench-

marking their performance on SRS creation and requirement

validation can be a possible extension of our work.
Further, we used general, out-of-the-box models that had not

been finetuned. The LLMs often provided general suggestions,

especially in the case of non-functional requirements. While

they still provided competitive results compared to the human

baseline, finetuning these LLMs to create a specialist model

could improve the generation quality and accuracy and help

incorporate domain-specific knowledge information for more

competent generations.
Finally, the prospect of SRS validation, which involves

checking the document to ensure it satisfies qualities, needs

a more in-depth exploration. While we observe that LLMs

can be used for this task, research still needs to be done

on developing guidelines to prompt LLMs to do this task

efficiently and effectively.
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