
UMLsec: Extending UML
for Secure Systems Development�

Jan Jürjens��

Software & Systems Engineering, Dep. of Informatics
Munich University of Technology, Germany

Abstract. Developing secure-critical systems is difficult and there are
many well-known examples of security weaknesses exploited in practice.
Thus a sound methodology supporting secure systems development is
urgently needed.

Our aim is to aid the difficult task of developing security-critical systems
in an approach based on the notation of the Unified Modeling Language.

We present the extension UMLsec of UML that allows to express security-
relevant information within the diagrams in a system specification.
UMLsec is defined in form of a UML profile using the standard UML
extension mechanisms. In particular, the associated constraints give cri-
teria to evaluate the security aspects of a system design, by referring to a
formal semantics of a simplified fragment of UML. We demonstrate the
concepts with examples.

1 Introduction

Modern society and modern economies rely on infrastructures for commu-
nication, finance, energy distribution, and transportation. These infras-
tructures depend increasingly on networked information systems. Attacks
against these systems can threaten the economical or even physical well-
being of people and organizations. Due to the widespread interconnection
of information systems, attacks can be waged anonymously and from a
safe distance. Many security incidents have been reported, sometimes with
potentially quite severe consequences.

Many problems with security-critical systems arise from the fact that
their developers do not always have a strong background in computer
security. This is problematic since in practice, security is compromised
most often not by breaking mechanisms such as encryption or security
protocols, but by exploiting weaknesses in the way they are being used.
Security mechanisms cannot be “blindly” inserted into a security-critical

� Supported by the German Ministry of Economics within the FairPay project.
�� http://www.jurjens.de/jan – juerjens@in.tum.de

1

system, but the overall system development must take security aspects
into account.

Furthermore, sometimes security mechanisms (such as security proto-
cols) cannot be used off-the-shelf, but have to be designed specifically to
satisfy given requirements (for example on the hardware). Such mecha-
nisms are notoriously hard to design correctly, even for experts, as many
examples of protocols designed by experts that were later found to con-
tains flaws show.

Any support to aid secure systems development is thus dearly needed.
In particular, it would be desirable to consider security aspects already in
the design phase, before a system is actually implemented, since removing
security flaws in the design phase saves cost and time.

This has motivated a significant amount of research into using formal
methods for secure systems development. However, part of the difficulty
of security-critical systems development is that correctness is often in
conflict to cost. Where thorough methods of system design pose high cost
through personnel training and use, they are all too often avoided.

The Unified Modeling Language (UML, [RJB99, UML01], the de facto
industry-standard in object-oriented modeling) offers an unprecedented
opportunity for high-quality critical systems development that is feasible
in an industrial context.

– As the de facto standard in industrial modeling, a large number of
developers is trained in UML.

– Compared to previous notations with a user community of comparable
size, UML is relatively precisely defined.

To support using UML for secure systems development, we give an ex-
tension, UMLsec, of the UML, following a suggestion in [DS00]. This way
we encapsulate knowledge on prudent security engineering and thereby
make it available to developers which may not be specialized in security.
One can also go further by checking whether the constraints associated
with the UMLsec stereotypes are fulfilled in a given specification, if de-
sired by performing a formal analysis.

After presenting some background on distributed system security and
on UML extension mechanisms in the following subsections, we explain
how to formally evaluate UML specifications for security requirements
in Section 2. We introduce UMLsec in Section 3. We give an account of
experiences in using UMLsec in Section 3. After pointing to related work,
we indicate future work and end with a conclusion. Due to space restric-
tions, we present only a representative fragment of UMLsec. A complete
account can be found in [Jür02c].

2

Distributed System Security We exemplarily explain a few impor-
tant recurring security requirements of distributed object-oriented sys-
tems which are encapsulated in UML stereotypes and tags in the UMLsec
profile by associating formalizations of these requirements (referring to
the formal semantics) as constraints with the stereotypes. The formal-
izations are obtained following standard approaches to formal security
analysis. There are other general security requirements (such as availabil-
ity and integrity) also covered by the UMLsec approach which have to be
omitted. More details can be found in [Jür02c].

Fair exchange When trading goods electronically, the requirement fair
exchange postulates that the trade is performed in a way that prevents
both parties from cheating. In our context here we mean more specifically
the requirement that after a prepayment the buyer either receives the
purchased good or is able to reclaim the money.

Secrecy/confidentiality One of the main data security requirements is
secrecy (or confidentiality), meaning that some information will become
known only to legitimate parties.

Secure information flow Sometimes even a partial leakage of information
must be prevented (for example, leaking one half of a cryptographic key
may give enough information to recover the other half by brute force).
The notion of secure information flow ensures that where trusted parts of
a system interact with untrusted parts, there is not even a partial leakage
of secret information from the trusted to the untrusted part.

Secure communication link This requirement ensures that the physical
communication links between different parts of the system give the re-
quired security guarantee regarding a given adversary model. For exam-
ple, a local area network (LAN) is a secure link with respect to secrecy
against outsider attackers.

UML extension mechanisms The three main “lightweight” extension
mechanisms are stereotypes, tagged values and constraints. Stereotypes,
in double angle brackets, define new types of modeling elements extending
the semantics of existing types in the UML metamodel. A tagged value is
a name-value pair in curly brackets associating data with model elements.
Constraints may also be attached. A UML extension collects stereotypes,
tagged values, and constraints into a profile. For UMLsec, we give vali-
dation rules evaluating a model against included security requirements.

3

For this we extend a formal semantics for the used fragment of UML in
a modular way with a formal notion of an adversary.

Related Work To our knowledge, this is the first work proposing an ex-
tension of UML for the development of security-critical systems. [Jür01]
gave some initial ideas on how to use UML to develop security-critical sys-
tems (without actually defining an extension profile). For more material
on UMLsec see http://www4.in.tum.de/̃ umlsec. [Jür02d] gives a process
for applying UMLsec using goal-trees profiting from work in [MCY99].

Distributed system modeling with UML is considered in [Kob01].
[FH97] defines role-based access control rights from object-oriented use
cases. [WW01] gives an approach similar to ours but using the notation of
the CASE tool AutoFocus. Also relevant is the work towards a formal
semantics of UML including [GPP98, SW98, KER99, BLMF00, Whi00,
EHHS00, MC01, Ste01].

2 Security evaluation of UML diagrams

We briefly give an idea how the constraints used in the UMLsec profile
can be checked in a precise and well-defined way. More details can be
found in [Jür02c].

Outline of formal semantics For some of the constraints used to define
the UMLsec extensions we need to refer to a precisely defined semantics
of behavioral aspects. For security analysis, the security-relevant infor-
mation from the security-oriented stereotypes is then incorporated (cf.
Section 2).

Our formal semantics of a simplified fragment of UML builds on
[BCR00]; parts of it are in [Jür02a, Jür02b]. It includes activity diagrams,
statecharts, sequence diagrams, static structure diagrams, deployment di-
agrams, and subsystems, simplified to keep a formal treatment that is
necessary for some of the more subtle security requirements feasible. The
subsystems integrate the information between the different kinds of dia-
grams and between different parts of the system specification. We only
outline the basic concepts, a complete account is in [Jür02c].

In UML the objects or components communicate through messages
received in their input queues and released to their output queues. Thus
for each component C of a given system, our semantics defines a function
�C�() which

4

– takes a multi-set I of input messages and a component state S and
– outputs a set �C�(I, S) of pairs (O, T) where O is a multi-set of output

messages and T the new component state (it is a set of pairs because
of the non-determinism that may arise)

together with an initial state S0 of the component.
The behavioral semantics �D�() of a statechart diagram D models the

run-to-completion semantics of UML statecharts. As a special case, this
gives us the semantics for activity diagrams. Given a sequence diagram
S, we define the behavior �S.C�() of each contained component C.

Subsystems group together diagrams describing different parts of a
system: a system component C given by a subsystem S may contain sub-
components C1, . . . , Cn. The behavioral interpretation �S�() of S is defined
as follows:

(1) It takes a multi-set of input events.
(2) The events are distributed from the input multi-set and the link

queues connecting the subcomponents and given as arguments to the
functions defining the behavior of the intended recipients in S.

(3) The output messages from these functions are distributed to the link
queues of the links connecting the sender of a message to the receiver,
or given as the output from �S�() when the receiver is not part of S.

When performing security analysis, after the last step, the adversary
model may modify the contents of the link queues in a certain way ex-
plained in Section 2.

Security Analysis For a security analysis of a given UMLsec subsys-
tem specification S, we need to model potential adversary behavior. We
model specific types of adversaries that can attack different parts of the
system in a specified way. For this we assume a function ThreatsA(s)
which takes an adversary type A and a stereotype s and returns a subset
of {delete, read, insert}. Then we model the actual behavior of an adver-
sary of type A as a type A adversary function that non-deterministically
maps the contents of the link queues in S and a state S to the new
contents of the link queues in S and a new state T :

– the contents of links stereotyped s where delete ∈ ThreatsA(s) may be
mapped to ∅ and

– the contents of links stereotyped s where insert ∈ ThreatsA(s) may be
enlarged by elements from the contents of links stereotyped t where
read ∈ ThreatsA(t).

5

The adversary types define which actions an adversary may apply to a
communication link with a given stereotype. delete means that the ad-
versary may delete the messages in the corresponding link queue, read
allows him to read the messages in the link queue, and insert allows him
to insert messages in the link queue.

To evaluate the security of the system with respect to the given type
of adversary, we define the execution of the subsystem S in presence of
an adversary of type A to be the function �S�A() defined from �S�() by
applying the adversary function to the link queues as a fourth step in the
definition of �S�() as follows:

(4) The type A adversary function is applied to the link queues as de-
tailed above.

The UMLsec profile makes use of a formalization of the security re-
quirement secrecy following one of the standard approaches in formal
methods: It relies on the idea that a specification preserves the secrecy
of some data d if the system never sends out any information from which
d could be derived, even in interaction with an adversary (where the
knowledge set collects the information gained by an adversary).

Definition 1. We say that a subsystem S preserves the secrecy of an ex-
pression E from adversaries of type A if E never appears in the knowledge
set of A during execution of �S�A().

A secrecy like requirement that gives protection also against partial
flow of information is that of down-flow prevention. Given a set of mes-
sages H and a sequence m of event multi-sets, we write m�H for the se-
quence of event multi-sets derived from those in m by deleting all events
the message names of which are in H. For a set M of sequences of mes-
sages, we define M�H

def= {m�H : m ∈ M}.
Definition 2. Given a subsystem S and a set of messages H, we say
that S prevents down-flow with respect to H if for any two sequences ı,
of input event multi-sets, ıH = �H implies �S�A(i)�H = �S�A(j)�H .

Intuitively, preventing down-flow means that an output not assumed
to be secret should in no way depend on secret inputs.

3 The UMLsec extension

We can only describe a small fragment of the UMLsec profile to illustrate
the idea, in order to keep the presentation concise. The fragment was

6

chosen to be representative for the other UMLsec concepts that had to
be omitted (for example, integrity can be treated analogously to secrecy).
A complete account can be found in [Jür02c]. We give the profile following
the structure in [UML01].

Applicable subset The profile concerns all of UML.

Stereotypes, tagged values and constraints In Figure 1 we give some of
the stereotypes from UMLsec, together with their tags and constraints,
following the notation used in [UML01, 3-59]. The stereotypes do not
have parents. The constraints, which in the table are only named briefly,
are formulated (in plain mathematical language) and explained in the
remainder of the section. Figure 2 gives the corresponding tags (which are
all DataTags). Note that some of the stereotypes on subsystems refer to
stereotypes on model elements contained in the subsystems. For example,
the constraint of the 〈〈 data security 〉〉 stereotype refers to contained objects
stereotyped 〈〈 critical 〉〉 (which in turn have tags {secret}). The relations
between the elements of the tables are explained below in detail.

Stereotype Base Class Tags Constraints Description

Internet link Internet connection
encrypted link encrypted connection
LAN link LAN connection
secure links subsystem dependency security enforces secure

matched by links communication links
secrecy dependency assumes secrecy
secure subsystem 〈〈 call 〉〉, 〈〈 send 〉〉 respect structural interaction
dependency data security data security
critical object secret critical object
no down-flow subsystem prevents down-flow information flow
data subsystem provides secrecy basic datasec
security requirements
fair exchange package start,stop after start enforce fair

eventually reach stop exchange

Fig. 1. UMLsec stereotypes (excerpt)

Prerequisite profiles UMLsec requires no prerequisite Profiles.

Well-formedness rules We explain the stereotypes and tags given in
Figures 1 and 2 and give examples. The constraints are parameterized over

7

Tag Stereotype Type Multipl. Description

secret critical String * secret data
start fair exchange P(String) 1 start states
stop fair exchange P(String) 1 stop states

Stereotype Threatsdefault()

Internet {delete,read,insert}
encrypted {delete}
LAN ∅

Fig. 2. UMLsec tags (excerpt); Threats from the default attacker

the adversary type with respect to which the security requirements should
hold; we thus fix an adversary type A to be used in the following. By their
nature, some of the constraints can be enforced at the level of abstract
syntax (such as 〈〈 secure links 〉〉), while others refer to the formal definitions
in Section 2 (such as 〈〈 no down− flow 〉〉). Note that even checking the
latter can be mechanized given appropriate tool-support (for example
along the lines of [HJGP99]).

Internet, encrypted, LAN These stereotypes on links in deployment di-
agrams denote the respective kinds of communication links. We require
that each link carries at most one of these stereotypes. For each adver-
sary type A, we have a function ThreatsA(s) from each stereotype s ∈
{〈〈 encrypted 〉〉, 〈〈 LAN 〉〉, 〈〈 Internet 〉〉} to a set of strings ThreatsA(s)⊆{delete,
read, insert}. This way we can evaluate UML specifications using the ap-
proach explained in Section 2. We make use of this for the constraints of
the remaining stereotypes of the profile.

As an example for a threat function, Figure 2 gives the one for the de-
fault type of attacker, which represents an outsider adversary with modest
capability.

secure links This stereotype, which may label subsystems, is used to en-
sure that security requirements on the communication are met by the
physical layer. More precisely, the constraint enforces that for each de-
pendency d stereotyped 〈〈 secrecy 〉〉 between subsystems or objects on dif-
ferent nodes n, m, we have a communication link l between n and m
with stereotype s such that read /∈ ThreatsA(s) (again a more complete
definition also involving integrity can be found in [Jür02c]).

Example In Figure 3, given the default adversary type, the constraint
for the stereotype 〈〈 secure links 〉〉 is violated: The model does not provide
communication secrecy against the default adversary, because the Internet
communication link between web-server and client does not provide the
needed security level according to the Threatsdefault(Internet) scenario.

secrecy 〈〈 call 〉〉 or 〈〈 send 〉〉 dependencies in object or component diagrams
stereotyped 〈〈 secrecy 〉〉 are supposed to provide secrecy for the data that

8

«Internet»

«secrecy» server machineclient machine
get_password

browser
client apps

access control
web server«call»

«secure links»remote access

Fig. 3. Example secure links usage

is sent along them as arguments or return values of operations or signals.
This stereotype is used in the constraint for the stereotype 〈〈 secure links 〉〉.

secure dependency This stereotype, used to label subsystems containing
object diagrams or static structure diagrams, ensures that the 〈〈 call 〉〉 and
〈〈 send 〉〉 dependencies between objects or subsystems respect the security
requirements on the data that may be communicated along them. More
exactly, the constraint enforced by this stereotype is that if there is a
〈〈 call 〉〉 or 〈〈 send 〉〉 dependency from an object (or subsystem) C to an
object (or subsystem) D then the following conditions are fulfilled.

– For any message name n offered by D, n appears in the tag {secret}
in C if and only if it does so in D.

– If a message name offered by D appears in the tag {secret} in C then
the dependency is stereotyped 〈〈 secrecy 〉〉.

Example Figure 4 shows a key generation subsystem stereotyped with
the requirement 〈〈 secure dependency 〉〉. The given specification violates the
constraint for this stereotype, since Random generator and the 〈〈 call 〉〉

dependency do not provide the security levels for random() required by
Key generator.

critical This stereotype labels objects whose instances are critical in some
way, as specified by the associated tag {secret}, the values of which are
data values or attributes of the current object the secrecy of which are
supposed to be protected. This protection is enforced by the constraints of
the stereotypes 〈〈 data security 〉〉 and 〈〈 no down− flow 〉〉 (depending on the
degree of secrecy required) which label subsystems that contain 〈〈 critical 〉〉

objects.

9

Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»

Key generation
«secure dependency»

newkey(): Key

«call»

«critical»Key generator

newkey(): Key

{secret={newkey(),random()}}

Fig. 4. Key generation subsystem

no down-flow This stereotype of subsystems enforces secure information
flow by making use of the associated tag {secret}. More precisely, the
〈〈 no down− flow 〉〉 constraint is that the stereotyped subsystem prevents
down-flow with respect to the messages and their return messages speci-
fied in {secret}, as defined in Definition 2.

Example The example in Figure 5 shows a bank account data object
that allows its secret balance to be read using the operation rb() whose
return value is also secret, and written using wb(x). If the balance is over
10000, the object is in a state ExtraService, otherwise in NoExtraService.
The state of the object can be queried using the operation rx(). The
data object is supposed to be prevented from indirectly leaking out any
partial information about secret data via non-secret data, as specified
by the stereotype 〈〈 no down− flow 〉〉. The given specification violates this
requirement, since partial information about the input of the secret oper-
ation wb() is leaked out via the return value of the non-secret operation
rx().

data security This stereotype labeling subsystems has the following con-
straint. The subsystem behavior respects the data security requirements
given by the stereotype 〈〈 critical 〉〉 and the associated tags, with respect to
the threat scenario arising from the deployment diagram. More precisely,
the constraint is that the stereotyped subsystem preserves the secrecy of
the data designated by the tag {secret} against adversaries of type A as
defined in Definition 1.

Example The example in Figure 6 shows the specification of a simple
security protocol. The sender requests the public key K together with the
certificate SignKCA

(rcv :: K) certifying authenticity of the key from the

10

Bank account «no down−flow»

rb(): Data
wb(x: Data)
rx(): Boolean

rx(): Boolean

rb(): Data
wb(x: Data)

balance: Integer

Account

ExtraService

/balance:=x

/balance:=x

NoExtraService

/balance:=x
wb(x)[x>=10000]

wb(x)[x>=10000]

wb(x)[x<10000]wb(x)[x<10000]
/balance:=x

/return(true)
rx()

/return(false)
rx()

rb()/return(balance)rb()/return(balance)

{high={wb,rb,balance}}

/balance:=0

Fig. 5. Bank account data object

K
/transmit({d})

Request

Send

Wait
/request()

send(d)

return(K,C)
KCA

[Ext (C)=rcv::K]

s

Received

«data security»
SecureChannel

Sendercomp

S:Sender
«call»

Sendernode

«send»

Receivernode

Receivercomp

R:Receiver

«Internet»

WaitReq WaitTrm

request()

KCA
/return(Sign (rcv::K),K)

transmit(d)

r

receive():Data
send(d:Data)

R:Receiver

s r

S:Sender «critical»Sender «critical»

receive():Data

Receiver

request():Exp
send(d:Data)

«call»

«send»

transmit(d:Data)

{secret=d} {secret=d}

receive()

/return(Dec (d))
K

Fig. 6. Security protocol

11

receiver and sends the data d back encrypted under K (here {M}K is the
encryption of the message M with the key K, DecK(C) is the decryption
of the ciphertext C using K, SignK(M) is the signature of the message
M with K, and ExtK(S) is the extraction of the data from the signature
using K). Assuming the default adversary type and by referring to the
adversary model outlined in Section 2, one can establish that the secrecy
of d is preserved.

fair exchange This stereotype of subsystems has associated tags {start}
and {stop} taking sets of names of states as values (P(X) denotes the set
of subsets of a set X). The associated constraint requires that, whenever a
{start} state in the contained activity diagram is reached, then eventually
a {stop} state will be reached. This allows one to formalize the specific
fair exchange requirement explained in Section 1. This is formalized for a
given subsystem S as follows. S fulfills the constraint of 〈〈 fair exchange 〉〉 if
for every adversary adv of type A and every sequence of input event multi-
set I1, . . . , In, the following implication holds: If the function associated
with S reaches a state specified by {start}, then subsequently it eventually
reaches a state specified by {stop}.

Note that this requirement cannot be ensured for systems which an
attacker can stop completely.
Example The figure gives a subsys-
tem describing the following situation:
a customer buys a good from a busi-
ness. The semantics of the stereotype
〈〈 fair exchange 〉〉 is, intuitively, that the ac-
tions listed in the tags {start} and {stop}
should be linked in the sense that if one
of the former kind is executed then even-
tually one of the latter kind will be.
This would entail that, once the customer
has paid, he is either delivered the order
by the due date, or is able to reclaim the
payment on that date.

Request good

BusinessCustomer

Wait until
delivery due

Pay

Reclaim

Deliver

«fair exchange»Purchase
{start={Pay}} {stop={Reclaim,Deliver}}

Requirements on an UML extension for development of security-
critical systems We formulate what we consider necessary properties of
an UML extension for secure systems development and discuss whether
they are fulfilled by UMLsec. Following the format of the OMG Requests

12

for Proposals (RFPs) we distinguish mandatory and optional require-
ments.

Mandatory requirements

Security requirements Formalizations of basic security requirements
are provided via stereotypes, such as 〈〈 secrecy 〉〉.

Threat scenarios Threat scenarios are incorporated using the formal
semantics and depending on the modeled underlying physical layer
via the sets Threatsadv(ster) of actions available to the adversary of
kind adv.

Security concepts We have shown how to incorporate security concepts
such as encrypted communication links (using threat scenarios, in this
case).

Security mechanisms In further work we demonstrate how to incorpo-
rate security mechanisms at the example of Java security architecture
mechanisms such as guarded objects (see [Jür02c]).

Security primitives Security primitives such as encryption are built in.
Underlying physical security Physical security can be addressed as

demonstrated by the stereotype 〈〈 secure link 〉〉 in deployment diagrams.

Optional requirements It would be very useful to include domain-specific
security knowledge. — UMLsec has been used in the application domain
of smart-card based systems and of Java security and CORBA security
(for related material see http://www4.in.tum.de/̃ umlsec).

Experience The method proposed here has been successfully applied in
security consulting, for example in an evaluation of the Common Elec-
tronic Purse Specifications under development by Visa International and
others, in the project FairPay funded by the German Ministry of Eco-
nomics, and in projects with a large German bank. In particular, these
experiences show that the used adversary model is adequate for use in
practice.

4 Conclusion and Future Work

We proposed an extension of UML, called UMLsec, to aid development
of security-critical systems. Given the current state of computer security
in practice, with many vulnerabilities reported continually, this seems to
be a useful line of research, since it enables developers with background
in security to make use of security engineering knowledge encapsulated

13

in a widely used design notation. Since the behavioral parts of UMLsec
are considered with a formal semantics, this allows a formal evaluation
(parts of which may be mechanized). Thus even security experts under-
taking a formal evaluation for certification purposes may profit from the
possibility of using a specification language that may be more usable than
some traditional formal methods. Since UML specifications may already
exist independently from the formal evaluation, this should reduce cost of
certification. Note that one may use UMLsec without having to refer to a
formal semantics for UML. In that case, the constraints for the security
requirements would have to be checked by a CASE tool and explained
to the user informally. It is however beneficial to have a formal reference
that tool providers can refer to if necessary; this is why [Jür02c] provides
a formal semantics for the used fragment of UML.

For this line of research to be of practical value it is important to de-
velop tool support, which is under way (by using XMI to integrate a UML
editor with the CASE tool AutoFocus). This tool (with a UML-like no-
tation) has already proven to be useful in several security-related industry
projects (cf. e.g. [JW01]); an extension to the actual UML notation would
have the additional benefit of a standardised notation.

Some more guidance on how to employ UMLsec in the development
context is given in [Jür02c]. Currently it is investigated how to use use
cases in the context of UMLsec for security requirements capture.

Our approach could also be employed profitably for the development
and analysis of critical systems with respect to other non-functional re-
quirements, in which case the current adversary model has to be modified
to simulate other environment influences (for example, random insertion
of delays into communication links in the case of quality-of-service re-
quirements).

Acknowledgements This line of research applying UML to security has
benefitted from comments especially from P. Stevens, G. Lowe, and B.
Rumpe. Comments from R. Sandner, G. Wimmel, G. Popp, and P. Sha-
balin on a draft of this paper are very gratefully acknowledged.

References

[ACM02] ACM. Symposium of Applied Computing 2002, Madrid, March 11–14 2002.
[BCR00] E. Börger, A. Cavarra, and E. Riccobene. Modeling the dynamics of UML

State Machines. In ASMs, volume 1912 of LNCS. Springer, 2000.
[BLMF00] J.-Michel Bruel, J. Lilius, A. Moreira, and R.B. France. Defining Precise

Semantics for UML. In ECOOP’2000 Workshop Reader, volume 1964 of
LNCS. Springer, 2000.

14

[DS00] P. Devanbu and S. Stubblebine. Software engineering for security: a roadmap.
In The Future of Software Engineering (ICSE 2000), pages 227–239, 2000.

[EHHS00] G. Engels, J. Hausmann, R. Heckel, and S. Sauer. Dynamic meta-modeling.
In Evans et al. [EKS00], pages 323–337.

[EKS00] A. Evans, S. Kent, and B. Selic, editors. The Unified Modeling Language:
Advancing the Standard (UML’2000), volume 1939 of LNCS. Springer, 2000.

[FH97] E.B. Fernandez and J.C. Hawkins. Determining role rights from use cases.
In Workshop on Role-Based Access Control, pages 121–125. ACM, 1997.

[GPP98] M. Gogolla and F. Parisi-Presicce. State diagrams in UML. In PSMT’98.
TU München, TUM-I9803, 1998.

[HJGP99] W.-M. Ho, J.-M. Jézéquel, A. Le Guennec, and F. Pennaneac’h. UMLAUT:
an extendible UML transformation framework. In ASE, 1999.

[Huß01] H. Hußmann, editor. Fundamental Approaches to Software Engineering
(FASE, 4th International Conference), volume 2029 of LNCS. Springer, 2001.

[Jür01] J. Jürjens. Towards development of secure systems using UML. In Hußmann
[Huß01], pages 187–200.

[Jür02a] J. Jürjens. A UML statecharts semantics with message-passing. In Sympo-
sium of Applied Computing 2002 [ACM02], pages 1009–1013.

[Jür02b] J. Jürjens. Formal Semantics for Interacting UML subsystems. In FMOODS
2002, pages 29–44. IFIP, Kluwer, 2002.

[Jür02c] J. Jürjens. Principles for Secure Systems Design. PhD thesis, Oxford Uni-
versity Computing Laboratory, Trinity Term 2002. Submitted.

[Jür02d] J. Jürjens. Using UMLsec and Goal-Trees for Secure Systems Development.
In Symposium of Applied Computing 2002 [ACM02], pages 1026–1031.

[JW01] J. Jürjens and G. Wimmel. Security modelling for electronic commerce: The
Common Electronic Purse Specifications. In I3E 2001, pages 489–506. IFIP,
Kluwer, 2001.

[KER99] S. Kent, A. Evans, and B. Rumpe. UML Semantics FAQ. In ECOOP’99
Workshop Reader, volume 1743 of LNCS. Springer, 1999.

[Kob01] C. Kobryn. Modeling Distributed Applications with UML, Part IV. In
J. Siegel, editor, Quick CORBA 3, chapter 1. Wiley, 2001.

[MC01] W.E. McUmber and B.H.C. Cheng. A Generic Framework for Formalizing
UML. In ICSE. IEEE Computer Society, 2001.

[MCY99] J. Mylopoulos, L. Chung, and E. Yu. From object-oriented to goal-oriented
requirements analysis. Communications of the ACM, 42(1):31–37, 1999.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

[Ste01] P. Stevens. On use cases and their relationships in the Unified Modelling
Language. In Hußmann [Huß01], pages 140–155.

[SW98] A. Schürr and A. Winter. Formal Definition of UML’s Package Concept. In
UML – Technical Aspects and Applications, pages 144–159, 1998.

[UML01] UML Revision Task Force. OMG UML Specification v. 1.4. OMG Document
ad/01-09-67. Available at http : //www.omg.org/uml, 2001.

[Whi00] J. Whittle. Formal approaches to systems analysis using UML: An overview.
Journal of Database Management, 11(4):4–13, 2000.

[WW01] G. Wimmel and A. Wißpeitner. Extended description techniques for security
engineering. In IFIP SEC 2001. Kluwer, 2001.

15

