Q “

Philip M. Johnson and Anne M. Disney

aaiaiai ey ayayalaayaiaaedaay el sy afal

Quality Time

The Personal Software
Process: A Cautionary

Case Study

In 1995, Watts Humphrey introduced the Personal
Software Process in his book, A Discipline for Software
Engineering (Addison Wesley Longman, Reading,
Mass.). Programmers who use the PSP gather mea-
surements related to their own work products and
the process by which they were developed, then use
these measures to drive changes to their develop-
ment behavior. The PSP focuses on defect reduction
and estimation improvement as the two primary
goals of personal process improvement. Through in-
dividual collection and analysis of personal data, the
PSP shows how individuals can implement empiri-
cally guided software process improvement.

The full PSP curriculum leads practitioners
through a sequence of seven personal processes. The
firstand most simple PSP process, PSPO, requires that
practitioners track time and defect data using a Time
Recording Log and Defect Recording Log, then fill out
a detailed Project Summary Report. Later processes
become more complicated, introducing size and time
estimation, scheduling, and quality management
practices such as defect density prediction and cost-
of-quality analyses.

After almost three years of teaching and using
the PSP, we have experienced its educational bene-
fits. As researchers, however, we have also uncov-
ered evidence of certain limitations. We believe that
awareness of these limitations can help improve ap-
propriate adoption and evaluation of the method
by industrial and academic practitioners.

PSP BENEFITS

Since the PSP’s introduction, several case stud-
ies (M. Ramsey, “Experiences Teaching the Personal

0740-7459/98/$10.00 © 1998 IEEE

Software Process in Academia and Industry,” Proc.
1996 Software Eng. Process Group Conference, 1996;
Barry Shostak, “Adapting the Personal Software
Process to Industry,” Software Process Newsletter, No.
5, Winter 1996; Pat Ferguson et al., “Introducing the
Personal Software Process: Three Industry Cases,”
Computer, May 1997, pp. 24-31) have reported
positive experiences. For example, in one broad-
ranging study, researchers from the Software
Engineering Institute analyzed data submitted to
them by 23 PSP instructors at both academic and
industrial sites. The report concludes that the PSP
improved performance in size estimation and effort
estimation accuracy, product quality, process qual-
ity, and personal productivity, without any loss of
overall productivity (Will Hayes and James W Over,
The Personal Software Process (PSP): An Empirical
Study of the Impact of PSP on Individual Engineers,
Technical Report CMU/SEI-97-TR-001, Software Eng.
Inst., Pittsburgh, 1997).

At the University of Hawaii, we have taught and
used the PSP for more than two years. We have also
had positive experiences with it, and the results of
our analyses mirror those reported by other re-
searchers. For example, our final PSP project as-
signment typically requires that each student de-
sign and develop a 500- to 1,000-line Java program.
Using the personal data they collect on their first
eight projects, many students estimate both the size
and time required for this final project with 95 per-
cent accuracy. For students who typically enter the
course believing that “software estimation”is an oxy-
moron, this experience proves revelatory. Some typ-
ical post-course evaluation comments include

¢ “Ithought|wasagood programmer, but after
using PSP | realized that | was nothing back then.”

November/December 1998 (& IEEE Software

EDITOR: Shari Lawrence Pfleeger « Systems/Software « s.pfleeger@ieee.org

el ay sy elalayalaadedaeay aya) s ey el

Quality Time

86

¢ “I'mustadmit, when | started this course, | un-
derstood what we were supposed to do in good
software engineering, but | never really did it. Now
I understand the reasons behind these practices and
the benefits of actually following a process instead
of just jumping right into coding.”

manual PSP, however, we began to wonder if the
clerical overhead involved in completing and check-
ing the forms by hand might significantly affect the
ability of the PSP to drive process improvement.
Consider how the PSP actually works. Through a
process of collection, the developer generates an
initial empirical representation of
her personal process. She then

The amount of PSP paperwork and manual augments this initial representa-

calculation has long concerned us. tion with additional analyses,

¢ “Byexecuting and learning this process | know
way more about software engineering than when |
started this course.”

We also practice what we preach...and teach.
We applied PSP concepts to the development of a
“Personal Thesis Process” for use by graduate stu-
dents. One of us, Anne Disney, has consistently used
PSP in her workplace for more than two years, and
has recorded PSP data for more than 120 commer-
cial database development projects—likely the
largest collection of PSP data on asingle developer’s
industrial practice in existence.

A CRUSHING CLERICAL OVERHEAD

Although these results undeniably speak well of
the PSP, we have long been concerned with the
amount of paperwork and manual calculation in-
volved in the original PSP curriculum. A software
system developed using PSP2.0, for example, re-
quires that students fill out 12 separate paper forms,
including a project plan summary, time recording
log, defect recording log, process improvement pro-
posal, size estimation template, time estimation
template, object categories worksheet, test report
template, task planning template, schedule plan-
ning template, design checklist, and code checklist.
These dozen forms typically yield more than 500 dis-
tinct values that each student calculates and records
manually for a single project. If you think this sounds
tedious, consider the fate of the instructor, who must
check all these values. We estimated that in a recent
PSP course, the instructor manually checked over
31,000 PSP data values for the nine projects devel-
oped by 10 students, in addition to checking the ac-
tual software projects themselves.

There is nothing wrong with a heavy workload
when the end justifies the means. In the case of

IEEE Software (g‘ November/December 1998

thus deriving the data that can
give her the insights necessary
for personal process improvement.

Ultimately, the goal of the PSP is to generate a
model of the user’s actual software development
behavior accurate enough to support process im-
provement. In our initial experiences with manual
PSP, we caught dozens upon dozens of clerical and
other errors made by students during the course. If
we were catching so many errors, we reasoned, could
many more errors be slipping through? If so, were
these errors distorting the behavioral model used
to support process improvement?

A Case Stuby To CHeck PSP
DATA QUALITY

To answer this question, we performed a case
study as part of a class of 10 students learning the
PSP in 1996. Our study design involved teaching the
class using the manual PSP method, augmented
with certain curriculum modifications designed to
improve data quality. For example, we instituted
technical reviews of the PSP data and generated
supplemental forms to clarify the process of certain
multistep estimation techniques. Next, we designed
and implemented a database system that eventu-
ally stored more than 30,000 data values from the
paper forms. The database system let us compare
the student-generated empirical models of their
behavior with the database-generated empirical
models to determine if any differences existed.

At the start of this case study, we anticipated that
the database program might uncover 50 to 100 er-
rors; to our astonishment, the program discovered
1,539. We also found that, in some cases, these er-
rors were not simply noise in the model, but did ap-
pear to affect some of the important PSP measures,
such as Yield (the percentage of defects discovered
that were removed before the first compile) and the

QRRRRRRRLE

Cost-Performance Index (a measure of how well the
planned effort predicts actual effort). Figures laand
1b show the differences between the original val-
ues calculated by students and the ‘corrected”values
calculated by our database program.

You could certainly generate alternative expla-
nations for such a high number of errors. Perhaps
these 1,539 errors were simply the result of poor in-
struction and/or project correction. As tempting as
this explanation might be, the data does not appear
tosupportit. The 1,539 errors represent only 4.8 per-
cent of the total number of data values, which
means that the instructor checked more than 31,000
data values by hand with over 95 percent accuracy.
Although there is always room for improvement in
any instructional context, 95 percent accuracy does
not support the idea that the results are due to poor
instruction.

RECOMMENDATIONS

Do our results indicate that the PSP should be
abandoned? Certainly not. We intend to continue
using it for teaching, research, and our own indus-
trial software development activities. Further, re-
member that our results are based upon data from
a single course and that our design did not use a
control group. Nevertheless, we recommend you
consider the following points when deploying the
PSP within your academic or industrial organization.

¢ The PSP can be used to teach useful software
engineering skills, despite its potential for data qual-
ity problems. Some detractors claim that the im-
provements in product and process quality attrib-
uted to the PSP over the four months of the course
would be achieved by any programmer who com-
pleted the 10 programming projects, regardless of
whether that person used the PSP or not. We dis-
agree emphatically. We have taught both introduc-
tory Java programming, which involved completing
10 or so Java programming assignments, and ad-
vanced software engineering, which involved com-
pleting asimilar number of assignments while using
the PSP. Although the results are not controlled, our
anecdotal experience suggests that the PSP adds
substantial value. While students in both contexts
do improve with respect to syntax and programming
idioms, only the PSP students acquire concrete soft-
ware engineering skills that involve time and size es-
timation, defect-removal costs, design quality, and

Key:
Original
14+ I Corrected
1.2+

1.6+

0.8
0.6
0.4+
0.2

Yield—project 8

@ Student

809 Key:

70+ Original
60 I Corrected
504
404
30
20+
10

CPl-project 8

(b) Student

Figure 1. Our case study sought to determine if the clerical over-
head of completing the PSP’s forms compromised its accuracy. For
sample Project 8, the light green bars show students’ original values
for (@) Yield, the percentage of defects found and removed before
the first compile, and (b) the Cost-Performance Index, a measure of
how well the planned effort predicts actual effort. The dark green
bars show the corrected values, derived from a database-generated

empirical model. The database program uncovered 1,539 errors.

so forth. These skills, in turn, produce insights con-
cerning process- and product-quality improvement
not available to programmers who just hack code.
¢ Avoid teaching or adopting a manual, paper-
based version of the PSP. Fortunately, since the time
of our case study, automated tools for the PSP have
become available. For example, East Tennessee State
University makes a package called the PSP Design
Studio, which is available online (Joel Henry,
Personal Software Process Studio, http://www-
cs.etsu.edu/softeng/psp/, 1997). In our opinion, itis
vital that any PSP toolset you select replace the hard-
copy forms from the original PSP curriculum with
online equivalents, rather than simply compute val-
ues that must be transferred to the forms by hand.
We say this because we provided the studentsin our
study with tools that included spreadsheets and

November/December 1998 (& IEEE Software

87

el ay sy elalayalaadedaeay aya) s ey el

Quality Time

Java-based code counting and estimation applets,
but these unintegrated tools failed to prevent more
than 1,500 errors.

¢ Avoid using PSP measures to evaluate the
success of the PSP itself. It is tempting to use the
changes in PSP measures that occur over the du-
ration of the course as evidence of the method’s
success. This approach to evaluation is widespread
in current PSP case studies, which frequently cite
conclusions such as: “The improvement in aver-
age defect levels for engineers who complete the
course is 58 percent for total defects per KLOC....”
The problem is that such numbers are derived
from the model of programmer behavior built by
the PSP, which, as our case study shows, may not
always accurately represent actual programmer
behavior. Instead of using PSP measures to evalu-
ate the PSP, case studies should use external, non-
PSP measures. As an example of this approach, Pat
Ferguson's report on industrial use of the PSP, cited
earlier, found that acceptance-test defect density
fell after the introduction of PSP into selected de-
velopment groups.

¢ Avoid viewing automated support as a silver
bullet for the problem of PSP data quality.
Automated tool support has the potential to dra-
matically reduce or eliminate the analysis errors that
occur while transforming a programmer’s work

records into analyses. Unfortunately, automated
support can do little to guarantee that the pro-
grammer’s recorded work accurately reflects her ac-
tual work. Thus, even if automated support is used
to provide defect-free analysis, collection-stage er-
rors could still lead to an inaccurate PSP model of
programmer behavior.

For more details on this case study, including a
discussion of the types of errors we found, their
severity, and their origin, see either our technical re-
port (Anne M. Disney and Philip M. Johnson,
“Investigating Data Quality Problems in the PSP”
Proc. Sixth Int’l Symp. Foundations of Software Eng.,
SIGSOFT '98, 1998) or the thesis discussing this re-
search (Anne M. Disney, Data Quality Problemsin the
Personal Software Process, master’s thesis, University
of Hawaii, Aug. 1998, http://csdl.ics.hawaii.edu/
Research/PSP/PSPhtml).

Philip M. Johnson is an associate professor in the Department
of Information and Computer Sciences at the University of
Hawaii and director of the Collaborative Software Develop-
ment Laboratory. He is a member of the IEEE Computer Soc-
iety and ACM. Contact Johnson at johnson@hawaii.edu.

Anne Disney is a software engineer at Infoworld Management
Systems in Malvern, Pennsylvania. This December, she will re-
ceive her MS in information and computer science from the
University of Hawaii. Contact Disney at anne@ics.Hawaii.edu.

