Softw Syst Model (2004) 3: 210-220 / Digital Object Identifier (DOI) 10.1007/s10270-004-0060-3

Ezxpert’s voice

Use cases — Yesterday, today, and tomorrow

Ivar Jacobson

Founder and Member of Advisory Board, Jaczone AB; E-mail: ivar@jaczone.com

Published online: 29 July 2004 — © Springer-Verlag 2004

Abstract. To my knowledge, no other software engineer-
ing language construct as significant as use cases has been
adopted so quickly and so widely among practitioners.
I believe this is because use cases play a role in so many
different aspects of software engineering.

Although I first used the term in 1986, I had actually
been working on and evolving the concept of use cases
since 1967. So many people have asked me how I came
up with this concept that I decided to write this article
to explain the origins and evolution of use cases. I’ll also
summarize what they have helped us achieve so far, and
then suggest a few improvements for the future.

Keywords: Use case — Use case driven development —
History of use cases — Extension use cases — Inclusion use
cases — Roles of use cases — Use cases are early aspects —
Use case fragments

Yesterday: In the beginning

It was 1986; I'd worked at Ericsson for more than twenty
years and was trying to figure out a better way to model
telephone calls. The modern telephone switches of that
time handled so many different types of telephone calls:

Caller

local calls; outgoing calls; incoming calls; transit calls
(Fig. 1). There were also many kinds of local calls and
many kinds of outgoing calls: calls to a neighbor switch;
calls to a domestic switch; calls to an international switch.
And, on top of this, each one of these calls could be carried
out with different signaling systems.

We had been grappling with the problem of model-
ing multiplicity and diversity for many years. It would
have been very difficult to model each type of call — there
were too many, and there was a lot of overlap between
them. So first we listed and named them. We called them
“traffic cases.” Our approach was to model the different
“functions” or “features” needed to carry out all the calls
— all the traffic cases. Functions had no interfaces. They
had beginnings and endings, but they were not well de-
fined. A function could interact with the outside world.
The general feeling was that we didn’t really know what
functions were, but we could give examples of them, and
some people could specify them.

However, we did know how to realize functions. I had
learned a diagramming technique to describe sequences
of relay operations; in 1969 I translated this technique to
describe software component interactions. I called the re-
sulting diagrams “sequence diagrams,” and we still use
that name for them today. With sequence diagrams (or

Callee

r%ﬁl

Switch

i 4

Incomin,

Switch

Switch

Outgoing

lines

lines

Fig. 1. Telecommunication network



I. Jacobson: Use cases — Yesterday, today, and tomorrow 211

collaboration diagrams for simpler interactions) we de-
scribed how functions were realized, in very much the
same way we describe use-case realizations today.

Then, one day in spring of 1986, while working on
traffic cases and trying to map them onto functions, I sud-
denly “got it.” I could describe a traffic case in terms of
functions by using an inheritance-like mechanism. I be-
gan calling both traffic cases and functions “use cases”—
the former became concrete or real use cases, and the lat-
ter became abstract use cases.

I introduced these new constructs in a paper for OOP-
SLA’86, but it was not accepted (probably because I'd
already submitted another paper that was accepted, or
because most people on the program committee were pro-
gramming language experts). However, an updated ver-
sion introducing many key ideas for use-case modeling
was accepted the next year, for OOPSLA’87.

What was a use case in 19877

According to the OOPSLA’87 paper, “A use case is a spe-
cial sequence of transactions, performed by a user and
a system in a dialogue.” The use cases for our switching
system are depicted in Fig. 2. The ellipses represent use
cases and the stick figures represent actors (user types).
In essence, the switching system in Fig. 2 provides the
ability for a caller to make a call to a callee and to transfer
calls.

This is pretty similar to our current (informal) defin-
ition. I developed a separate model for describing a sys-
tem from an outside perspective and called it a use-case
model. This provided a black-box view of the system —
the system’s internal structure would be of no interest
in this model. Some people have misunderstood the term
outside, mistaking it for a synonym for user interface.
Instead, the use-case model represents the functional re-
quirements of the system.

At this time the use-case model also included entity
(domain) objects, so we could show how use cases could
<<access>> entities. Use cases and entities were class-
like; they had operations and data. The other relationship
depicted in the use-case model was <<built-on>> which
was described as an extended form of inheritance
relation. Multiple inheritances are common.” In fact, the
built-on relationship was a combination of the generaliza-
tion relationship and the <<extend>> relationship.

-2

Make Call

O

Transfer Call

@ —
\ allee

Caller

Fig. 2. Use case model of switching system

After the use cases were specified, they were also de-
signed and tested.

You create as many processes [today we would say
activities] as there are use cases. The conceptual
model of the use cases is translated seamlessly into
a new model showing how each use case is imple-
mented by means of the identified blocks [today
a block would be a subsystem, class, or component]

Each use case is tested separately to safequard that the sys-
tem meets the requirements of the user. Please, note that
the use cases constitute the key aspect through the entire
[set of | development activities.

Sequence diagrams were used to show interactions
among the blocks/components. This was no surprise,
since sequence diagrams had shown their value in practice
for almost twenty years prior to that time.

What was a use case by 19922

As you can see, use cases had assumed much of their
current shape (syntax and semantics) by this time. Be-
tween 1987 and 1992, they evolved and matured, as about
twenty customers put the Objectory Process® to practi-
cal use for new product development. These customers
were involved in many different kinds of systems: manage-
ment information; defense (pilot, counter measure, C31);
and telecom (POTS, mobile). Use cases took on a new
relationship: “inheritance” (now replaced by “generaliza-
tion”). I avoided what is now called the <<include>>
dependency, which I thought would damage modeling by
inviting functional decomposition.

To increase clarity, we made it an important issue to
distinguish between a use case (as a class-like thing), an
instance of a use case, and a description of a use case.

The depth of the use-case model was in its use case
descriptions. Each use-case description contained the fol-
lowing:

— A brief description of the purpose of the use case.

— A flow of control

— Base flows and alternative flows

— Subflows (reusable in many places within the same
use-case description)

— Preconditions and postconditions

The use case was more than just a requirements tech-
nique; it was like the hub of a wheel (Fig. 3):2

I These were customers of my company, Objectory AB, founded
in 1987, which developed the Objectory Process over a period of
eight years. When the company was acquired by Rational in 1995,
the process grew, and it was renamed, becoming the Rational Ob-
jectory Process. Subsequently, the process grew even more, and
again its name changed in 1998 to become the Rational Unified
Process.

2 In this article, use cases are the focus of our discussion. Their
importance in relation to other best practices (e.g., architecture
first, iterative development) may therefore seem unbalanced.



212 I. Jacobson: Use cases — Yesterday, today, and tomorrow

Requirements

Architecture

Analysis & Design

User Interface Design

Fig. 3. Use cases were like the hub of a wheel

Use cases were traceable to analysis, design, imple-
mentation and test. For each use case in the model, we
created a collaboration (a view of participating classes)
in analysis and design. Each use case resulted in a set of
test cases. Use cases were important in designing user in-
terfaces and structuring the user manual. Use cases also
moved into the space of business modeling, since they
could perfectly capture business processes.

We coined the term use-case driven development for
our approach. First, you identified all use cases and spec-
ified each one of them in requirements. You analyzed and
designed each use case in analysis and design respectively,
and finally tested each and every one in test.

And we had all this before 1992! In that year, together
with my colleagues, I authored a book called Object-
Oriented Software Engineering: A Use Case Driven Ap-
proach.> What was presented at OOPSLA’87 was theory;
based on our work with customers,* we now had a lot of
practical experience to back up that theory.

Today: A lot has happened since then

The adoption rate of use cases has surprised me: They
were embraced almost immediately by all methodolo-
gists, and basically adopted worldwide. Other important
techniques such as component-based design and object-
oriented modeling were much more controversial and

3 Ivar Jacobson, Magnus Christerson, Patrik Jonsson & Gun-
nar Overgaard. Object-Oriented Software Engineering: A Use Case
Driven Approach. Addison Wesley, 1992.

4 Again, these were customers of Objectory AB, primarily in
Sweden. At the time we believed that, to really succeed with pro-
cess, you needed to work closely with every customer throughout
the entire lifecycle of a project. We had one or two consultants
working full time with each project and were able to help the
customer get started and address problems before they became se-
rious. Customers included the Swedish Defense, Ericsson Mobile,
Ericsson Radar Electronics, and ABB.

needed a much longer adoption time. Probably this is be-
cause use cases are basically a simple and obvious idea;
they work well with objects and object thinking. Using
use cases is not just a technique for managing require-
ments; it binds together all the activities within a project,
whether a mini-project such as a single iteration, or a ma-
jor project resulting in a new product release.

How many use cases is enough?

The current definition of use cases basically goes back to
1994. To help teams strike a balance between defining too
many use cases or too few, I added a requirement that
a use case must give a “measurable value” to a “particu-
lar actor.” As a rule of thumb, I suggested that a large
system supporting one business process should have no
more than twenty use cases. I realized that giving any
such number could lead people to take undesirable ac-
tions to get the “right” number. If they had fewer than
twenty use cases, they might split some of them to get
up to twenty. Or, if they had more than twenty use cases,
they might combine use cases to bring down the count.
But that is the wrong approach. I have seen good use-
case models for commercial systems with as few as five
use cases, and some with as many as forty use cases.
However, I have also seen use-case models with as many
as 700 use cases! Obviously, these were unsound models.
The twenty use cases I suggest should all be con-
crete (real) use cases and mot generalizations or
extension/inclusion fragments.

Use cases and the unified modeling language

Use cases have become part of the Unified Modeling Lan-
guage (UML). And because the UML is precisely defined,
use cases and associated concepts (such as use-case in-
stance [UCI]) are also now precisely defined, thanks to



I. Jacobson: Use cases — Yesterday, today, and tomorrow 213

the UML’s powerful classifier concept (e.g., what I called
“class-like” in 1992 can now be formally explained by
UML classifiers). Although the old definition that “a use
case is a sequence of actions ... ” is still compatible with
the user’s perspective, the definition based on classifiers is
what methodologists, process engineers, and tool builders
need for clarity.

Note, however, although the UML effort resulted in
a much more precise definition of use cases, it didn’t
do much to evolve them. Roughly speaking, we only
changed the “uses” relationship to a generalization, and
we added an <<include>> relationship. The “uses” re-
lationship in the Objectory Process was previously called
“inheritance” and was never intended to be used for
<<include>> fragments. In the past, we didn’t allow
developers to model these fragments, but used another
technique involving text objects instead. We’ll discuss
these text objects later.

Since my company became part of Rational, I have
been very happy with the way our Rational Unified
Process®), or RUP®) team has correctly implemented use
cases and improved their practical use. Although they
have made no really dramatic changes, they have pro-
vided much better explanations of use cases, based on the
experience of thousands of customers and our own ex-
perts. In particular, a new book, Use Case Modeling,® by
Kurt Bittner and Ian Spence, is now on the shelves. This
is THE book on use cases. I strongly recommend that ev-
eryone involved in software engineering and requirements
development read it. Also, work by Jim Conallen® and
Peter Eeles, Kelli Houston, and Wojtek Kozaczynski” on
user experience design with use cases is a great improve-
ment on our earlier work in this area, and is very much in
line with the original use-case concept.

Now may be the time to take steps to grow (clarify and
extend) the idea of use cases. But first, a word of warning
about formalizing use cases.

Use caution when formalizing use cases

Over the years, people have complained that there was
not information in the UML on how to formalize use
cases. Although several of my papers discuss techniques
for doing this, such as using sequence diagrams to show
how an actor interacts with a use case, or using activity
diagrams or state charts to describe a single use case, I
warned against using these techniques. After all, the use-
case model is intended for communicating with customers
and users. Formalizing use cases (using mathematics) has
never been a problem. I had already done it in 1986. In

5 Kurt Bittner, and Ian Spence. Use Case Modeling. Addison
Wesley, 2003.

6 Jim Conallen, Building Web Applications with UML (2nd Edi-
tion), Addison Wesley, 2002.

7 Peter Eeles, Kelli Houston, and Wojtek Kozaczynski, Build-
ing J2EE Applications with the Rational Unified Process. Addison
Wesley, 2002.

fact, any computer science student could do it. By making
use cases classifiers in UML, you have the tool to formally
describe use cases in basically any depth you want.

The challenge is to use, in the most pragmatic way,
what the UML makes available. I am still reluctant to
suggest that system analysts describe use cases in a more
formal way than simple text. Avoid trying to specify the
internals of each use case with diagrams such as activity
diagrams or state charts, although it is good to describe
the interactions between a use case and actors with se-
quence diagrams or activity diagrams with swimlanes.
I think there are better ways to become more precise
about requirements (the internals of a use case) than in-
troducing more formalism into the use-case model. But
that is the role of the analysis discipline — and the subject
of another article.

Tomorrow: Potential next steps

Over the last decade, techniques for writing use cases
have remained quite stable. Although I have been tempted
to make improvements, as soon as people began dis-
cussing them, everything suddenly became open to ques-
tioning and too unsettled. In the end, I felt it was safer to
leave things as is, until people become more familiar with
the use-case construct. Also, we needed to allow time for
use cases to be used in the field, and for their implemen-
tation to evolve and become established.

In this section, however, I will raise a couple of issues
regarding the current application of use cases and propose
possible changes.

A use-case model of a software system contains basi-
cally four kinds of use cases:

— Concrete use cases that can be instantiated (abstract
ones can’t)

— Generalization use cases that have generic sequence
of actions that can be specialized by other use cases.

— Extension use cases that add behavior to an existing
(or presumed) use case, without changing the original
use case.

— Inclusion use cases that describe behavior that can
be used by other use cases

We will discuss these different types of use cases be-
low.

Generalizations. These use cases are abstract; they
are generalizations of either concrete use cases
(through the generalization relationship) or other
abstract use cases. The generalization use case (parent
use case) and its sub-use cases (children) should be of the
same type to maintain substitutability — in other words,
you should be able to use an instance of a child whenever
you expect an instance of the parent. Strictly speaking,
you might not always be able to do this with use cases
(or any state-driven classifier), since a child use case can
require some extra interaction with the actors. However,



214 I. Jacobson: Use cases — Yesterday, today, and tomorrow

making the child the same type (classification) as the par-
ent is still important. For example, Make a Local Call
(child) and Make a Wake-Up Call (child) would both be
generalized to the abstract use-case Make a Call (parent).

Extensions. Recall that extension use cases serve
a very special purpose: They add behavior to an exist-
ing (or presumed existing) use case without chang-
ing it.® Using extensions is a technique to get easy-
to-understand descriptions. First you describe the basic
(mandatory) behavior, and then you add extra (manda-
tory or optional) behavior — behavior that is not needed
to understand more basic behavior. Extensions are not
Just a technique for describing optional behavior (optional,
that is, from the customer’s point of view); they also de-
scribe mandatory behavior in a structured way. Without
a mechanism such as extensions, the base flow of a use
case would become cluttered with statements that have
nothing to do with the base use case, even if the state-
ments are important for other use cases. Now, this is
precisely how aspect orientation does to make code un-
derstandable as well. Aspect orientation allows us to sep-
arate out code fragments which would otherwise clut-
ter existing code. It also composes these separated code
fragments into the existing code during compilation or
runtime.

A potential problem in using extensions is creating
deep hierarchies of extend dependencies. To avoid doing
this we follow a guideline: We usually never extend an ex-
tension (a fragment), since that would make the results
difficult to understand.

Another potential point of confusion is knowing when
to use extensions and when to use alternative paths when
describing a use case. Again, we need guidelines: We usu-
ally use the extend relationship only when the extension
use case is completely separate from the extended base use
case — or, more precisely, when it is a separate, concrete
use case in itself, or when it is only a small fragment that
is needed by another use case. The base use case must be
complete by itself and not require the extension. Other-
wise, you must use alternative paths to describe additional
behavior.

Extensions can help a lot in managing software de-
velopment over the entire software development lifecycle.
For example, you can add a large class of extensions with-
out requesting regression tests for the base. You would
need only to test the extensions and their cooperation
with the existing base. Let me qualify this. First, exten-
sions as language constructs need to propagate through

8 Those of you interested in aspect-oriented programming will
recognize that the intention of extensions is very similar to the in-
tention of aspects in AOP.

Ivar Jacobson. “Use Cases and Aspects — Working Seamlessly To-
gether,” Journal of Object Technology (www.jot.fm), July/August
2003.

Ivar Jacobson. “Case for Aspects — Part I” Software Development
Magazine, pp 32-37, October 2003.

Ivar Jacobson. “Case for Aspects — Part II” Software Development
Magazine, pp 42-48, November 2003.

design and implementation: They need to be added to the
design model, the implementation model, the executable
code, and so on.? Second, only extensions that don’t ac-
cess other use cases’ objects (more correctly, extensions
that don’t modify objects shared with other use-case re-
alizations) would belong to this class. When such condi-
tions are fulfilled, we could prove that some extensions
wouldn’t be able to damage the existing software.

I proposed the idea of extensions back in 1978 when I
worked at Ericsson and then wrote about them for OOP-
SLA 86.1° At that time I didn’t know that one day exten-
sions would eb mainstream and called aspects. My paper
was actually an early paper on aspect-orientation. Even
Ericsson recognized that the idea had merit, though: In
1981 Ericsson and I applied for patents to support exten-
sions. Later in 1991, Ericsson made extensions to C++
and to the operating system — in fact, also to the com-
puter architecture. Their infrastructure team had sug-
gested these to lower development costs. Further discus-
sion is beyond the scope of this article, but the point is
this: Don’t think of extensions as useful for use case mod-
eling only! To see how aspect orientation helps us with
use case driven development, please read my paper on
“Use Cases and Aspects — Working Seamlessly Together”.
In that paper, I address how extensions could propagate
through activities other than use-case modeling — includ-
ing analysis, design, implementation, and test. I am really
very optimistic about aspect orientation. Even though we
have an extension mechanism in use cases, we have been
missing the counterpart during implementation. Aspect
orientation plugs this gap and now we can implement ex-
tensions all the way to code.

Inclusions. When use cases were born, I saw the need
for two kinds of reuse. First, since I based use cases on
object orientated ideas, I saw great value in subclassing,
and in 1987 I introduced the “inheritance” relationship
between use cases. In 1992 we changed this to “uses”
to make it sound less like “techie” jargon and easier to
adopt by analysts. Later, the UML called the relationship
“generalization.” Second, the other reuse need was simply
a mechanism for factoring common flows of events (shar-
ing) from use-case descriptions; this was for cases in which
we currently use the <<include>> relationship and refer
to the shared behavior as an inclusion.

I was very reluctant to introduce a relationship like
this; I foresaw people misusing use cases by applying
them for functional decomposition. In fact, today people
do misuse use cases by using them to describe functions
as opposed to objects; and then, they blame the use-case
concept for their problem. To get around this, we intro-
duced another idea. In the Objectory tool, we supported

9 For further information, look up “extends” in Object-Oriented
Software Engineering: A Use Case Driven Approach.

10 Tvar Jacobson, “Language Support for Changeable Large Real
Time Systems.” OOPSLA86, ACM, Special Issue of Sigplan No-
tices, Vol. 21, No. 11, Nov. 1986.



I. Jacobson: Use cases — Yesterday, today, and tomorrow 215

reuse through “text objects,”!! reusable objects consist-
ing of a piece of text. These text objects could be changed
only by the person responsible for the text object, not by
someone else using (or reusing) the object.

Text objects could be reused in multiple places — for
example in different text descriptions of use cases. Like
Rose/XDE, which has a model element for each class
that could be shown (differently if necessary) in multiple
diagrams, text objects could be shown in multiple docu-
ments. The beauty was that all the text objects were kept
in one place, so they were easy to find, change, and man-
age, and all references were automatically kept in sync.
Very powerful!

I think the solution we had was right at that time, when
we feared that use cases would be viewed as just another
way to do functions. This problem persists today among
system analysts, although not among methodologists.

Two classes of extension/inclusion use cases

When extension use cases originally were introduced, I had
basically only one kind of extension or inclusion in mind:
the small reusable use-case fragment. I didn’t foresee the
need to extend or include concrete complete use cases. This
is something we learned during the first four years of practi-
cal use. Many times we'? discussed the need for two kinds of
extension use cases. However, we didn’t want to make use-
case modeling more complex. During the UML 1.1 work,
we (primarily Jim Rumbaugh, Gunnar Overgaard, and I)
touched on this subject, but for the same reason we didn’t
follow through. Maybe now is the time.

11 We called them text items.
12 Gunnar Overgaard, Patrik Jonsson, Karin Palmkvist, and
myself.

Validate User

Fig. 4. Part of a use-case model with two concrete use cases (conduct transaction
and inspect transaction failures) and two use case fragments (register failures
and validate user)

Register Failures y<------------
-

Below we will discuss the two classes of extension/in-
clusion use cases.

1. Extensions/inclusions that are concrete use
cases. These use cases interact with and provide value
to actors. As an example,'3 consider a “surveillance” sys-
tem that reports intruders. The base (concrete use case)
monitors the surveillance area, and perhaps even does
some other work, such as maintaining a constant building
temperature. The extending use case (also a concrete use
case) reports unusual events — security breaches or fires —
to the appropriate authorities (police, fire, building man-
agement). This illustrates that the base use case has some
significant behavior, as does the extending use case. Both
are concrete use cases, and both can be instantiated.

2. Eaxtensions/inclusions that are just frag-
ments of a use case. This is a far larger class of use
cases, but each member is usually very small. These use
cases cannot be instantiated separately. They are needed
by some other use case, usually a concrete or a generaliza-
tion use case. For example, in Fig. 4, let us assume that
the base use case is a bank transaction: Conduct Trans-
action. Every time a transaction fails, the bank wants
to register this event to make it available to some other
concrete use case. In this case, that would be an admin-
istrative use case: Inspect Transaction Failures.

One obvious traditional solution would be to change
the transaction use case and show explicitly in its de-
scription that a failure message has been registered. How-
ever, this would require changing the base and making
it more difficult to understand. The change has noth-
ing to do with the base use case Conduct Transaction;
it’s only there to register some information to the other
use case. One such change may not be disturbing, but

13 This example was provided by Kurt Bittner.

Inspect Transaction
Failures




216 I. Jacobson: Use cases — Yesterday, today, and tomorrow

when you have several of them, it gets to be quite messy.
To avoid cluttering the base, we instead use an exten-
sion use case to add the change on top of the base use
case. We would add a third use case — a very small use-
case fragment called Register Failures. Similarly, we may
have small, procedure-call like inclusion use cases that are
shared between two or more concrete use cases. Assume
that Validate User is such an included use-case fragment
(shared with some other real use case). In contrast to con-
crete uses cases, both Register Failures and Validate User
are use case fragments.

With current UML, we have to represent even small
fragments with the oval notation. Thus, we need a depen-
dency between the concrete use case Inspect Transaction
Failures and the use case fragment Register Failures. As
we shall see later, we will remove this dependency. Instead
we will suggest some minor changes to UML so that the
extension fragment can be modeled as a flow within the
Inspect Transaction Failures use case.

The first class of use cases — concrete use cases — is
fine; we don’t need to do anything special about it. Con-
crete use cases can extend a base use case or be included
in a base use case.

The second class of use cases — the use case fragments
— will be discussed below, along with suggested changes.
However, first let’s discuss a related subject: the relation-
ship between extension and inclusion use cases.

Extension and inclusion use cases have a lot in common

Extension and inclusion use cases are both related to a base
use case. During the “execution” of the base use case —
that is, when a use-case instance of the base runs — it will
(under certain conditions) interrupt the flow described in
the base use case and instead follow the flow as specified
by the extension or the inclusion use case. When the use-
case instance has come to the end of the extension or the
inclusion use case, it will return to the base use case and
to the position in the flow described in the base use case,
where it left off. This is true for both complete (concrete)
use cases and use case fragments.

The major difference between extension and inclusion
use cases is the way the use case instance is instructed to
interrupt the base use case and instead follow the exten-
sion or inclusion use case.

— In the case of inclusion, the base flow itself explicitly
instructs the use-case instance to obey the inclusion
use case.

— In the case of extension, the base flow doesn’t specify
the interruption; instead, the extension use case spec-
ifies where in the base use case the use case instance
shall make the interruption.

The extension use case references an extension
point, which specifies a unique location in the base use
case. In OOSE and the Objectory Process, extension
points belonged to the extending use case. In the work on

UML 1.1, Jim Rumbaugh suggested that extension points
should belong to the extended use case. The argument
was for encapsulation: The extending use case should not
see (it would be oblivious) the details of the base use case
— just the extension points. If you changed the extended
use case, he said, only that use case would know the new
location. I agreed with him.

Thus, extension and inclusion use cases are very simi-
lar; in fact, they could be considered the inverse of each
other.

Proposal: Don’t call fragments use cases

Neither extension use-case fragments nor inclusion use-
case fragments are really use cases, and they should not
be treated as use cases. Cleaning up this “defect” has long
been overdue; we need to change the UML, by adding
some minor notational elements.

Methodology users have the right to question any
new notation. In the past, I struggled with “homegrown”
methodologies that introduced notation for everything
but didn’t differentiate between syntax (notation) and
semantics. Typically, their authors had no education in
classic language design — programming language or mod-
eling language. Thanks to the work on SDL (Specification
and Description Language) in 1981, and now UML, we
have come a long way in developing more precise model-
ing languages.

Very simply: Classical language specifications (1)
start from a concrete syntactic construct (a notational
element in UML), which is (2) mapped into an abstract
syntactic construct that, in turn, is (3) mapped onto a se-
mantic element. The semantics specifies the meaning of
the syntax. Most interesting syntactic constructs have
a unique semantic correspondence. (The opposite is not
necessarily true, since designed languages usually have
many semantic elements [dynamic semantics] that don’t
have a syntactic correspondence.) I think it is standard
language design practice to make every unique seman-
tic element mappable from a unique syntactic construct.
Natural languages are much more complex, but since we
are creating the UML language ourselves, we don’t need
to complicate things.

Since fragments are NOT use cases, they should NOT
be represented by the use-case syntax. That only makes it
harder for analysts to distinguish among important elem-
ents. Fragments should be treated as they deserve to be
treated — as less important than real use cases.

I initially thought we will need a notation for use case
fragments but as I work with aspect orientation, my opin-
ion changes. The idea of fragments is not peculiar to use
cases alone. We can have code fragments and fragments
of any kind as well. Aspect orientation permits us to keep
extension code fragments away from existing code frag-
ments. It provides a composition mechanism to insert
these extension code fragments into the base during com-
pilation or execution



I. Jacobson: Use cases — Yesterday, today, and tomorrow 217

-

Withdraw Cash

Flows

{basic} Withdraw Cash

{alt} Handle Insufficient Balance
{sub} Identify Customer

Fig. 5. Flows as compartment

We should have a way to deal with fragments in gen-
eral. The way we deal with use case fragments should
be the same as the way we deal with class fragments
and code fragments in aspect orientation. Now aspect
orientation is a topic of a separate paper, but briefly
aspect orientation is about achieving better modular-
ity. Now, a use case is a unit of modularity to describe
behaviors that are needed for a particular use of the
system even if that behavior executes in the context
of another use case instance. For example, the Register
Failures use case fragment ought to be described to-
gether with the Inspect Transactions use case because
it is needed by the latter. With some slight adjust-
ments to the UML notation, we will show how this is
achieved.

Although the oval is the most well-known notation for
use cases, there are also other ways of displaying it. A use
case is actually just a special case of classifiers. Thus,
we can denote a use case using the standard rectangle
notation for classifiers with an ellipse icon in the upper-
right-hand corner of the rectangle with optional separate
list compartments for its contents as exemplified in Fig. 5.
This notation gives us an overall perspective of the re-
sponsibilities of a use case. How these responsibilities are
achieved will be described using text associated with each
of the flows. There are UML tags prefixing each flow and
we will discuss them in a minute.

A standard practice when specifying use cases is to
categorize the flow of events as basic flows, alternate
flows, and sub flows. Recall when describing use cases, we
begin with the most basic cases first and start describing
basic flows. Next we will look for variations of the basic
cases and describe them as alternate flows. Frequently, we
find that some behaviors are repeated within the use case,
so we factor them out as sub flows.

Accordingly, we can have a UML tag for each of these
different kinds of flow as shown in Fig. 5. Withdraw Cash
is a basic flow as denoted by the {basic} tag. It gets ex-
ecuted once the use case is instantiated. Handle Insuf-
ficient Balance is an alternative flow as denoted by the
{alt} tag. There is currently no counterpart for alternate
flows with classes, but with Aspect Orientation, things
will change. However that is the discussion of a sepa-
rate paper. Now there may be different ways of with-
drawing cash and each might begin with identifying the
customer. Thus, that behavior is common and we can
factor it — the Identify Customer flow — out as a sub
flow.

Sidebar:

A use case describes how user value is delivered includ-
ing how variations are handled — and the variations can
be huge. The ellipse notation is unable to highlight the
complexity of these variations and makes a use case look
simpler than it actually is. The standard rectangle nota-
tion in Fig. 3 gives us the ability to list the multitude of
flows within a use case.

We frequently encounter situations whereby practition-
ers simply create one use case per use case flow leading
to what we call “functional decomposition” — the break-
ing up of use cases such that the smaller use cases pro-
vide no real value to stakeholders. The reason for doing
this is that the ellipse notation gives the illusion that
a use case is simple when it in fact it is not and it con-
tains many flows and variations. In the absence of the
rectangle notation listing the use case flows, practition-
ers resort to creating a use case for each flow.

UML further allows us to choose which flows we want to
display. This is very useful as we can choose to show or
hide flows to address the context in which the use case
appears. If for instance we are discussing how a particu-
lar business scenario is addressed by different use cases,
we may want only to show those flows involved in that
business scenario.

So how does a use case distinguish from a use case
fragment? A use case is a complete description of be-
haviors and a use case fragment is simply a partial de-
scription. Which parts or flows to show depends on the
discussion context.

Let us revisit our previous example in Fig. 4 on con-
ducting transactions and apply the rectangle notation as
illustrated in Fig. 6.

Earlier on, we had two use case fragments, Validate
User and Register Failure. Now they become flows of
some use cases. There is an important difference between
inclusion fragments (i.e. sub flows) and extension frag-
ments (i.e. alternate flows):

An inclusion fragment will be “executed” by the use
case instance that also “executes” the concrete use case
(the one that includes it). Thus, Validate User will be ex-
ecuted when Conduct Transaction is executed.

An extension fragment will be “executed” by a use
case instance other than the use-case instance that needs
it. Thus, Register Failure will be executed by the use case
instance which also executes Conduct Transaction and it
will not be executed by the instance executing Inspect
Failures.

Modeling Inclusion Use Case Fragment. Vali-
date User was an inclusion use case fragment in Fig. 4.
Now, with the rectangle notation, it is modeled as a sub
flow in a Control Access use case. Sub flows are included
by and executed within the context of other use cases.
In our example, one of the steps within the Conduction
Transaction basic flow will have an explicit indication
that it will include the Validate User sub flow.



218 I. Jacobson: Use cases — Yesterday, today, and tomorrow

-

Inspect Failure
{basic} Inspect Failure
T {alt} Register Failure

«extend»

Conduct Transaction

S)Hll

{basic} Conduct Transaction

/
’

7/
«include» /’

Control Access
{sub} Validate User

Fig. 6. Revision of example. Fragments are flows in use cases

The Control Access use case is an example of what we
call a utility use case, analogous to utility classes in UML.
Utility use cases have no basic flow and therefore cannot
be instantiated on their own. It is merely a collection of
sub flows that addresses a particular concern.

Modeling Extension Use Case Fragment. Now,
Register Failure was an extension fragment in Fig. 4. We
now model it as an alternate flow in the Inspect Failure
use case, but it is a special kind of alternate flow. Instead
of handling a condition in the Inspect Failure use case
which it belongs to, the Register Failure handles a condi-
tion in a different use case — the Conduct Transaction use
case. Even though Register Failure executes in the con-
text of the Conduct Transaction use case, it is not needed
by it. Rather it is needed by the Inspect Failure use case,
and that is why it belongs there. This follows the princi-
ple of modularity — we want use case flows that address
the same concern — in this case, dealing with failures — in
the same place. This is the same principle we apply when
we put use case flows pertaining to access control in the
Access Control use case.

For alternate flows to work, we will need an exten-
sion mechanism that will insert the Register Failure flow
at correct location in the Conduct Transaction use case.
This is a standard practice when working with the use
case technique. We often write “if in step X of basic flow,
... ” to indicate how the alternative flow is inserted. Now,
since we can extend a flow in a different use case, we will
have to write something like “if in step X of the Conduct
Transaction basic flow, ... ” We call this kind of alternate
flow an extension flow. Thus, alternate flows extend a flow
in the same use case whereas an extension flows extend
flows in other use cases.

The day after tomorrow: The future of use cases
There have been many other ideas for improving use cases

and their application over the years. I don’t know them
all, but below TI’ll describe some important ones and in-

troduce two additional ideas of my own: making use cases
code modules through aspect-oriented programming and
making use cases run-time entities.

Add stereotypes for use cases. There are many
ways to classify use cases — as primary, secondary, and
so forth; as business, software, or system, and so forth.
Then, we can classify business use cases as supporting,
managerial, or operational.'* Using the UML stereotyp-
ing mechanism to classify these various types of use cases
could help developers.

Clarify the relationship between patterns and
use cases. Many design patterns are “templates” for
reusable use cases. Such patterns are usually described
using sequence diagrams or collaboration diagrams.
A pattern is a solution to a general problem that can be
applied in different contexts. There is thus an interesting
relationship between a pattern and the generic, reusable
use case that specifies the problem. Clarifying this rela-
tionship would be very helpful to developers.

Apply use cases within the domain of Human
Computer Interaction (HCI). HCI is a science. There
is a way of designing a user experience by understanding
the user community, its habits, and its metaphors. I was
introduced to this technology by working with companies
that were developing large commercial Web sites for huge
user communities. Use cases could play an important role
in integrating software development and HCI approaches.

Perform cost estimations based on use cases.
In 1994, Magnus Christerson sponsored Gustaf Karner’s
master’s thesis,'® which resulted in a paper on project
estimations based on use-case points (derived from func-
tion points). This is still an interesting paper, and with all
the experience we have accumulated about use cases and

14 See Ivar Jacobson, Maria Ericsson, and Agneta Jacobson, The
Object Advantage: Business Process Reengineering with Object
Technology. (Addison Wesley Longman, 1994). In this book we de-
scribed business use cases in layers.

15 Gustav Karner, “Use Case Points — Resource Estimation for
Objectory Projects.” Objective Systems SF AB, (copyright owned
by Rational software) 1993.



I. Jacobson: Use cases — Yesterday, today, and tomorrow 219

project estimation, we should be able to modernize these
ideas.

Start reusing use cases. This is a huge topic. Reuse
of business software should start from understanding its
use cases — both those of the business, and those of the
software to be used. This is the focus of the Software
Reuse book that I published with Martin Griss and Pa-
trik Jonsson back in 1997.16 It is more relevant than ever
today, when a company’s IT support is built by inte-
grating enterprise applications, whether these are legacy
systems, packaged solutions, new applications, or Web
services. I also discussed this further in my RUC 2002 talk
“Closing The Gap: Business Driven Enterprise Applica-
tion Integration.” (Available through Rational Developer
Network: http: //www.rdn.net; authorization required.)

Make use-case scenarios first-class citizens. It
would be helpful to be able to identify and enumerate use-
case scenarios, and to show dependencies between these
scenarios. Recall that a scenario is a use-case instance
that we choose to model. This is probably more of a pro-
cess issue than a language issue, as there are many kinds
of dependencies.

— Iteration dependencies: Each project iteration is
driven by a number of use-case scenarios. Usually
a use case is not completed within a single iteration,
but is worked on over several iterations. I would like to
be able to show how iterations are made up of scenar-
ios, how a scenario grows over several iterations, and
how several different scenarios over several iterations
together make up a complete use case. You should
be able to show, for instance, that you may have to
develop less important scenarios first just to be able
to develop more important scenarios later. As a con-
crete example, you may need to develop a use-case
scenario that allows a telephone system operator to
make a subscriber a valid user, before you develop any
use case scenarios that allow that subscriber to make
telephone calls.

— Test case dependencies. There are other reasons
for dependencies between scenarios. One is for testing.
Integration test is built up test case by test case, in
a manner very similar way to the way iterations are
built up. We would be able to trace use-case scenarios
to test cases. A good use-case scenario is a good test
case. The relationship between a use-case approach
and a test-first approach would become more stream-
lined.

Streamline use cases and aspects. One of the most
exciting new movements today is Aspect-Oriented Pro-
gramming (AOP). AOP was the buzzword of the year at
OOPSLA 2002, and for very good reasons. Although I
cannot discuss AOP in depth in this article, I do believe
that AOP will bring about fantastic changes for use cases.

16 Tvar Jacobson, Martin Griss, & Patrik Jonsson. Software
Reuse: Architecture, Process and Organization for Business Suc-
cess. Addison Wesley Longman, 1997.

The idea behind extension use cases — to add behavior
to an existing system without changing it — is very
similar to the idea of aspects. Use-case realizations are
implemented as aspects, and extension use cases are real-
ized as aspects. Extension points are semantically similar
to “join points” in AOP.

When using RUP, within each iteration we specify use
cases, design them, and test them. Between design and
test we must disrupt the use-case flow in order to de-
sign, code, and test the components that together realize
the use cases. Using AOP will simplify this: We’ll go di-
rectly from use-case design to use-case programming, and
then to use-case test. We will not completely get rid of
component work, but dramatically reduce it. In effect,
they use cases will be treated like modules that cross-cut
the components. The work on these modules will be sup-
ported by our programming environment (an AOPL = an
OOPL + aspects). AOP will allow us to seamlessly imple-
ment use cases.

Neither use-case driven development nor aspect-
oriented programming is a silver bullet. They merely
represent two best practices. However, I believe that inte-
grating them will dramatically improve the way software
is developed.

Make use cases run-time entities. The most ex-
citing prospect for use cases is that they will also have
counterparts in the run-time environment. Being able to
identify executing use cases (use-case instances, in fact)
in the operating system will help us with many important
features. I discussed this in my 1985 thesis,'” which had
a semantic construct representing a use-case instance:
A use-case instance was created by an external event, it
lived during the whole interaction with the user (e.g., dur-
ing a telephone call), and it tracked all the objects that
participated in the use-case instance. With such a con-
struct, we could change installed software much more
incrementally — one use case instance at a time. The soft-
ware system could be restarted in much smaller steps,
in most cases by restarting only the use-case instance
that was broken. And, we could simplify the program-
ming of use cases. With AOP we may achieve parts of
this. Certainly, at least, we will achieve use-case oriented
programming!

Final words

Use cases have now been around for more than fifteen
years. We can move them an important step forward by
cleaning up a minor defect: separating use cases and frag-
ments. This can be done tomorrow.

For the future, there are many other interesting ideas
about how to improve use cases and expand their appli-
cation. Many of these ideas represent marginal improve-

17 Tvar Jacobson. “Concepts for Modeling Large Real Time Sys-
tems.” Dissertation, Department of Computer Systems, The Royal
Institute of Technology, Stockholm, September, 1985.



220 I. Jacobson: Use cases — Yesterday, today, and tomorrow

ments, but two would be dramatic enhancements: making Acknowledgements. I would like to thank in particular Pan-Wei
use cases code modules and making them executable run- Ng for his detailed review of this paper and his help in improv-
time entities ing it. I would also like to thank Kurt Bittner, Gunnar Overgaard,
. ’ i and Paul Szymkowiak for their feedback on an early version of this
Until then, enjoy use cases as they are today! article.



