Using UML To Visualize Role-Based Access Control
Constraints *

Indrakshi Ray
Computer Science Dept.
Colorado State University

Fort Collins, CO 80523

iray @ cs.colostate.edu

Na Li
Computer Science Dept.
Colorado State University

Fort Collins, CO 80523

na@ cs.colostate.edu

Robert France
Computer Science Dept.
Colorado State University

Fort Collins, CO 80523

france @cs.colostate.edu

Dae-Kyoo Kim
Computer Science Dept.
Colorado State University

Fort Collins, CO 80523

dkkim @ cs.colostate.edu

ABSTRACT

Organizations use Role-Based Access Control (RBAC) to protect
information resources from unauthorized access. We propose an
approach, based on the Unified Modeling Language (UML), that
shows how RBAC policies can be systematically incorporated into
an application design. We consider an RBAC model to be a pattern
which we express using UML diagram templates; RBAC policies
for an application conforming to this model can be generated by
instantiating these templates with values obtained from the appli-
cation. The constraints of the RBAC model are expressed using
the Object Constraint Language (OCL). OCL constraints, based on
first-order logic, are difficult to understand. To alleviate this prob-
lem, we show how violation of such constraints can be visually
represented using object diagram templates. With adequate tool
support, developers can use these to demonstrate constraint viola-
tions in their applications. Our approach is illustrated using a small
banking application.

Categories and Subject Descriptors

D.2.1 [Requirements/Specifications]: [Languages, Methodologies];
K.6.5 [Management of Computing and Information Systems]:
[Security and Protection]

General Terms

Design, Languages, Security

* Any opinions, findings, and conclusions, or recommendations ex-
pressed in this publication are those of the authors and do not nec-
essarily reflect the views of AFOSR.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SACMAT 04, June 2-4,2004, Yorktown Heights,New York, USA.
Copyright 2004 ACM 1-58113-872-5/04/0006 ...$5.00.

115

Keywords
Modeling, RBAC, UML

INTRODUCTION

Role-Based Access Control (RBAC) [10] is used by organiza-
tions to protect their information resources from unauthorized ac-
cess. In RBAC, users are assigned to roles and roles are associated
with permissions. A permission determines what operations a user
assigned to a role can perform on information resources. In addi-
tion, various kinds of constraints can be specified in RBAC.

A lot of research appears in the area of specification of policies
[3,4,5,7,8, 13, 14, 15, 16, 23, 22, 26]. Some researchers [3, 4,
5,7, 13, 16, 23] use formal logic for specifying security policies;
others [14, 15, 22, 26] use high level languages. Since formal-logic
based approaches are difficult to use and understand, application
developers are unlikely to use them. High-level languages are easy
to use and understand, but are not amenable for analysis. A lan-
guage is needed that is easy to understand and use, and also allows
for the analysis of policy specification.

Researchers [12, 27, 28] have often advocated that security poli-
cies must be kept separate from the application. This allows secu-
rity requirements to be clearly documented, policies to be changed
independently of the application, policies to be independently an-
alyzed, and policies to be centrally managed. Specifying policies
independently creates an additional problem — how to integrate the
policy concerns in an application. Thus, there is an additional re-
quirement of policy specification language: the language should
also allow the policy specification to be methodically integrated
with the application.

In this work, we show how the Unified Modeling Language (UML)
[29] can be used to specify RBAC policies. UML is the de facto
modeling language used in the software industry. UML is easy
to use and understand and is also amenable to analysis. Other re-
searchers [2] have also advocated the use of UML for specifying
RBAC policies. For instance, Ahn and Shin [2] show how RBAC
constraints can be expressed in UML using the Object Constraint
Language (OCL) [31]. However, they do not provide a systematic
modeling approach that can be used by developers to create appli-
cations with RBAC features.

We present an approach for systematically incorporating RBAC

1.

policies into an application design model that is specified using
UML. We use UML diagram templates to specify patterns of reusable
RBAC policies. The patterns describe reusable structures and con-
straints that developers can use to describe their application-specific
RBAC policies. Class diagram templates are used to describe RBAC
entities (e.g., user, permission, session) and their relationships. Ap-
plying an RBAC pattern in an application domain involves binding
the template parameters to design elements in the domain.

To aid in the analysis of policies, RBAC constraints can be speci-
fied using the Object Constraint Language (OCL). OCL is based on
first order logic which is not much comprehensible to the ordinary
user. We provide an approach for visualizing RBAC constraints;
this makes it easier for the end users to recognize problems with
the constraints. Developers can specify application specific RBAC
constraints as object diagrams. To assist in the task of identify-
ing conflicts we provide object diagram templates that describe ob-
ject structure patterns that describe violations to RBAC constraints.
These patterns can be used by developers to check for the presence
of policy violations.

Note that, other researchers [24, 30] have also focussed on visu-
alization of access control policies. Osborn and Guo [24] use group
and role graphs, and Tidswell and Jaeger [30] use a set-based nota-
tion. Unlike the technique described in this paper, these approaches
use their own notations and could require some effort to integrate
with the industry-based standard notations.

The rest of the paper is organized as follows. In Section 2, we
give a brief overview of RBAC and UML. In Section 3 we present a
generic RBAC model expressed as a class diagram template. Sec-
tion 4 describes how to use object diagram templates to specify
RBAC constraints. Section 5 illustrates how the violation patterns
described by object diagram templates can be used to detect viola-
tions in application-specific RBAC policies. An overview of related
work is provided in Section 6. Section 7 concludes the paper.

2. BACKGROUND
2.1 Role-based Access Control

RBAC is used to protect information objects (henceforth referred
to as objects) from unauthorized users. To achieve this goal, RBAC
specifies and enforces different kinds of constraints. Fig. 1 de-
scribes the general model of RBAC. RBAC has three components:
base model, role hierarchies, and constraints.

The base model embodies the essential aspects of RBAC. The
base model requires that users (human) be assigned to roles (job
function), roles be associated with permissions (approval to per-
form an operation on an object), and users acquire permissions by
being members of roles. The base model also includes the notion
of user sessions. A user establishes a session during which he ac-
tivates a subset of the roles assigned to him. Each user can ac-
tivate multiple sessions; however, each session is associated with
only one user. The operations that a user can perform in a session
depend on the roles activated in that session and the permissions
associated with those roles.

Role hierarchies define an inheritance relation among the roles
in terms of permissions and user assignments. In other words, role
r1 inherits role r2 only if all permissions of 72 are also permissions
of r1 and all users of r1 are also users of 2.

Constraints are an important aspect of RBAC and are sometimes
argued to be the principal motivation for RBAC. The common ex-
amples of RBAC constraints include static separation of duty, dy-
namic separation of duty, prerequisite roles, and cardinality con-
straints. These constraints will be explained when we describe our
approach for specifying RBAC constraints later in this paper.

116

2.2 Unified Modeling Language (UML)

The UML is a standard modeling language maintained by the
Object Management Group (OMG) (See http://www.omg.org/uml
for details). The UML defines notations for building many dia-
grams that each presents a particular view of the artifact being mod-
eled. In this paper we utilize the following diagram types:

Class Diagram: A class diagram depicts the static structural as-
pects of an artifact being modeled. It describes the concepts
and the relationships between them. Relationships are ex-
pressed using associations and generalizations/specializations.
are described in terms of their properties, where a property
can be represented by an attribute, a behavioral unit (an op-
eration), or a relationship with another concept.

Object Diagram: A static object diagram is an instance of a class
diagram; it shows a snapshot of the detailed state of a system
at a point in time. In this paper, we use object diagrams both
to capture RBAC constraints and to model system specific
security policies.

MODELING RBAC

In this section we specify RBAC in terms of UML template
classes. A template class diagram is a class descriptor with pa-
rameters. A class diagram is obtained from a template diagram
by binding the parameters to values. Fig. 2 shows a class diagram
template describing hierarchical RBAC with SSD and DSD. The
symbol “|” is used to indicate parameters to be bound. We use this
notation when there is a large number of parameters that makes use
of the standard UML parameter list cumbersome.

Class templates are associated with attribute templates (e.g., |[Name :
String in Role) and operation templates (e.g., |Grant Permission in
Role). Association templates (e.g., |UserAssignment) consist of
parameters for association names and association-end multiplici-
ties. The OCL constraints in Fig. 2 restrict the values that can be
bound to multiplicity parameters. For example, {|o.lowerbound =
1} restricts the multiplicities that can be bound to the parameter o
to ranges that have a lower bound of 1. The multiplicity “1” on the
UserSessions association-end attached to User is strict: a session
can only be associated with one user.

The User class template represents users. A user can create a
new session (CreateSession), delete a session (DeleteSession), as-
sociate self with a new role AssignRole and remove an associated
role (DeassignRole). The operation AssignedRoles returns the set
of roles directly assigned to the user while the operation Authorize-
dRoles returns the set of roles directly assigned to the user as well
as those roles that are inherited by the directly assigned roles. The
class templates Role, Session, and Permission are similarly speci-
fied.

Association templates, such as UserAssignment and SessionRoles
produce associations between instantiations of the class templates
they link. A UserSessions link (i.e., an instance of an association
obtained by binding the parameters of UserSessions to values) is
created by a CreateSession operation (i.e., an operation obtained
by binding the operation template parameters to values) and deleted
by a DeleteSession operation. The AssignRole operation creates a
UserAssignment link; the DeassignRole operation removes a UserAs-
signment link.

Each operation template is associated with an OCL template ex-
pression that produces OCL pre- and post-conditions when the tem-
plate parameters are bound to values. Pre- and post-condition tem-
plates associated with the CreateSession and Grant Permission op-
eration templates are given below:

3.

(RH)
SSD Role Hierarchy DSD

(UA)
User Assignment
S

\/

(PA)

user_sessions session_roles

PRMS

Figure 1: Describing the different components of RBAC

Permission Assignment

IPermission

ICheckAccess(lobj : 1O
lop : IOperation) : [Boolean

blject,

IPermOperations

ISSD IDSD IRoleHierarchy
I Ir Is li | Isenior
IRole i
2 IName: String ljunior
|GrantPermission (Ip : [Permission)
IRevokePermission (Ip : [Permission)
IUser ICheckAccess (lobj : [Object,
[UserlD: IString . lop : IOperation): IBoolean
IUserAssignment| |\ 44 scendantlr : IRole)
ICreateSession (Is : ISession) b lc| IDeleteAscendant(r : IRole) IPermAssignment
IDel§leSession (Is : ISession) |AddDescendant(lr : IRole) K 0
|A55‘g‘.‘ROIe (Ir: IRole) IDeleteDescendant(lr : IRole)
IDeassignRole (Ir: Role) IAddSSDRole(lr : IRole)
|AssignedRoles () : Set(IRole) |DeleteSSDRole(lr : [Role) Im
|AuthorizedRoles () : Set(IRole) |IAddDSDRole(lr : IRole)
1 IDeleteDSDRole(lr : IRole) .
|AssignedUsers () : Set(IUser) [PermObjects
|UserSessions |AuthorizedUsers () : Set(IUser)
|Ascendants() : Set(IRole)
IDescendants() : Set(IRole)
ISSDRoles() : Set(IRole)
la IDSDRoles() :Set(IRole)
ISession le
|AddActiveRole(Ir : IRole)
IDropActiveRole(Ir : IRole) Id |SessionRoles lo [ExecuteOn 4

ICheckAccess(Iob':\Obljecl,
lop:IOperation) : fBoo ean
lInvokeOperation(lobj:|Object,
lop:IOperation)

{lo.lowerbound = 1} and {Iq.lowerbound = 17‘

Figure 2: RBAC class diagram template

117

In

Ip

|Operation

context |User::|CreateSession():(|s:|Session)
post: result = |s and
|s.oclIsNew() = true and
self.|Session — includes(]s)

context |Role::|GrantPermission (|p:|Permission)
pre: self.|Permission — excludes(|p)
post: self.|Permission — includes(|p)

For a detailed description of how to use the templates to incorpo-
rate RBAC features into an application, please refer to our previous
work (e.g., see [25, 18]).

4. MODELING RBAC CONSTRAINTS

Constraints are an important aspect of RBAC. Consequently, we
focus on the specification of constraints. We can specify constraints
using OCL in class diagram templates (as is done in Fig. 2). Al-
ternately, one can visualize constraints using object diagram tem-
plates. We employ both techniques. The OCL approach is formal
and precise; while visualization of constraints makes it easier to
understand and recognize violation of those constraints.

In our visualization approach, we create object diagram tem-
plates that describe object structure patterns that are violations of
RBAC constraints. These patterns can be used by developers to
check for the presence of constraint violations. Developers can
specify application specific security policies as object diagrams.
Presence of invalid patterns in object diagrams that represent se-
curity policies indicate problems with the specification of security
policies.

Our expression includes separation of duty constrains, prerequi-
site constraints, and cardinality constraints.

4.1 Separation of Duty Constraints

Separation of duty constraints are used to enforce conflict of in-
terest policies. Static separation of duty (SSD) constraints aim to
prevent conflict of interests that arise when a user gains permissions
associated with conflicting roles (roles that cannot be assigned to
the same user). SSD constraints are specified for any pair of roles
that conflict. SSD constraints place constraint on the assignment
of users to roles, that is, membership in one role that takes part in
an SSD constraint prevents the user from being a member of the
other conflicting role. We refer to this type of constraints as SSD-
Role constraints. SSD-Role constraints may exist in the absence of
role hierarchies or in the presence of role hierarchies. A role hier-
archy defines inheritance relationships between roles. Through the
inheritance relationship, a senior role inherits the permissions of its
junior roles and any user assigned to the senior role is also assigned
to the junior roles.The presence of role hierarchies complicates the
enforcement of the SSD-Role constraints: before assigning users to
roles not only should one check the direct user assignment but also
the indirect user assignment that occurs due to the presence of the
role hierarchies. An SSD-Role constraint is expressed as follows
using the OCL template notation:

e SSD-Role constraint: Conflicting roles cannot be assigned to
the same user.

context |[SSDRole inv:
Irl. |[User — excludesAll(|r2.|User)

Alternately, SSD-Role constraint violations can be visualized using
object diagram templates as in Fig. 3. Fig. 3a describes structures in

118

<<invalid>>

lul : [User

|UserAssignment

Ir1 : IRole ISSDRole Ir2 : IRole

(a) Violation of the SSD constraint in the absence of role hierarchies

|UserAssignment

. . <<invalid>>
<<invalid>>

Isenio Isenior

Irl : IRole
IRoleHierarchy

IRoleHierarchy

ljunior

Ir2 : IRole

(b) Violation of the SSD constraint in the presence of role hierarchies

ljunior
Ir1 : IRole

ISSDRole

Irl:IRolel 71 Ir2:IRole

IRoleHierarchy

ISSDRole

Figure 3: Using UML object diagram templates to show SSD-
Role constraint violations

which a user is assigned to roles in an SSD-Role constraint; Fig. 3b
describes structures in which two roles connected by a hierarchy
are also involved in an SSD-Role constraint, or two roles that are
in an SSD constraint have the same senior role.

Dynamic separation of duty (DSD) constraints aim to prevent
conflict of interests as well. DSD constraints place restrictions on
the roles that can be activated within the same user session. If one
role that takes part in a DSD constraint is activated, the user cannot
activate the other conflicting role in the same session. We refer to
these types of constraints as DSD constraints. A DSD constraint is
expressed using the OCL template notation as follows:

e DSD constraint: Conflicting roles cannot be activated in the
same session.

context |DSD inv:
rl. |Session — excludesAll(|r2.|Session)

Alternately, DSD constraint violation can be visualized using ob-
ject diagram template as in Fig. 4. Fig. 4 describes structures in
which two roles in a DSD constraint are activated in the same ses-
sion (violation of DSD constraints).

This conflicting notion can be applied to other elements such
as user and permission in RBAC. The concept of conflicting per-
missions defines conflicts in terms of permissions rather than roles.
Constraints of conflicting permissions are referred to SSD-Permission
constraints. SSD-Permission constraints place constraint on the
permissions that can be assigned to roles. Assignment of a per-
mission that takes part in an SSD-Permission constraint to a role
prevents the other conflicting permission being assigned to the role.
Similarly, the concept of conflicting users defines conflicts in terms
of users rather than roles. Constraints of conflicting users are re-
ferred to SSD-User constraints. SSD-User constraints place con-
straint on the users that can be assigned to roles. Assignment of
a user that takes part in an SSD-User constraint to a role prevents

<<invalid>>

Is1 : ISessio

ISessionRoles

Ir1 : IRole IDSD Ir2 : IRole

ISessionRoles

Figure 4: Using UML object diagram template to show DSD
constraint violation

the other conflicting user being assigned to the role. The SSD-
Permission and SSD-User constraints are expressed using OCL
template expressions as follows:

e SSD-Permission constraint: Conflicting permissions cannot
be assigned to the same role.

context |SSDPerm inv:
Ipl. |Role — excludesAll(|p2.|Role)

e SSD-User constraint: Conflicting users cannot be assigned
to the same role.

context |SSDUser inv:
|ul. |Role — excludesAll(Ju2.|Role)

<<invalid>>

Ir] : IRole

IPermAssignment IPermAssignment

ISSDPerm

Ip1 : [Permisson Ip2 : [Permisson

Figure 5: Using UML object diagram template to show SSD-
Permission constraint violation

<<invalid>>

Ir1 : IRole

|UserAssignment

lul : [User ISSDUser lu2 : [User

|UserAssignment

Figure 6: Using UML object diagram template to show SSD-
User constraint violation

Alternately, SSD-Permission and SSD-User constraints can be
visualized using object diagram template as in Fig. 5 and Fig. 6.

119

Fig. 5 describes the structure in which a role is assigned to permis-

sions in an SSD-Permission constraint (violation of SSD-Permission
constraints). Fig. 6 describes the structure in which two users in

an SSD-User constraint are assigned to the same role (violation of

SSD-User constraints)

4.2 Prerequisite Constraints

The concept of prerequisite roles is based on competency and
appropriateness. Prerequisite constraints require that a user can
be assigned to a role only if the user is already assigned to the
role’s prerequisites. We refer to such constraints as Prerequisite-
Role constraints.

<<invalid>>

lul : [User

|UserAssignment

|PrerequisiteRolew 112 - IRole

Figure 7: Using UML object diagram template to show

Prerequisite-Role constraint violation

<<invalid>>

Ir1 : IRole

|PermAssignment

Ipl : [Permisson | IPrerequisitePerm® | 155 - |permisson

Figure 8: Using UML object diagram template to show

Prerequisite-Permission constraint violation

This notion of prerequisite can also be applied to other elements
such as permission in RBAC. The concept prerequisite permissions
requires that a permission can be assigned to a role only if the role
already possesses the permission’s prerequisites. We refer to such
constraints as Prerequisite-Permission constraints. Prerequisite-Role
and Prerequisite-Permission constraints are expressed using OCL
template expressions as follows:

o Prerequisite-Role constraint: A user can be assigned to a role
only if the user is already assigned to the role’s prerequisites.

context |PrerequisiteRole inv:
Ir1. [User — includesAll(|r2.|User)

e Prerequisite-Permission constraint: A permission can be as-
signed to a role only if the role already possesses the permis-
sion’s prerequisites.

context |PrerequisitePerm inv:
Ipl. |Role — includesAll(|p2.|Role)

Alternately, Prerequisite-Role and Prerequisite-Permission constraints
can be visualized using object diagram template as in Fig. 7 and
Fig. 8. Fig. 7 describes the structure in which a user is assigned
to a role without being assigned to the role’s prerequisite (violation
of Prerequisite-Role constraints). Fig. 8 describes the structure in
which a role is assigned to a permission without being assigned to
the permission’s prerequisite (violation of Prerequisite-Permission
constraints).

<<invalid>>

Ir1 : IRole

|UserAssignment

lul : [User

|UserAssignment

lu2 : [User

Figure 9: Using UML object diagram template to show cardi-
nality constraint violation

4.3 Cardinality Constraints

Another constraint type is cardinality constraints. Cardinality
constraints can be used to restrict, for example, the number of users
that can be assigned to a role, the number of roles a user can play,
the number of roles a permission can be assigned to, or the number
of sessions a user is allowed to activate at the same time. Cardi-
nality constraints place constraint on the relationship between ele-
ments. They restrict the number of elements that can be related to
each other.

This numerical limitation may vary depending upon organiza-
tional policies. For example, we may have one type of organiza-
tional policies stating that there is at most one person in a role.
Fig. 9 shows the specification of this type of constraints. Fig. 9
describes the structure in which two users are assigned to a role
which, according to a cardinality constraint, should have at most
one user assigned to it (violation of cardinality constraints).

S. IDENTIFYING CONFLICTS IN SYSTEM-
SPECIFIC RBAC POLICIES

In this section we illustrate how the violation patterns shown in
the previous section can be used to identify policy conflicts. If the
violation pattern exists in an object diagram describing a system-
specific policy, then a conflict exists. Checking for the presence of
a pattern in an object diagram specifying a set of policies is essen-
tially a search for a sub-graph in an object diagram.

To illustrate our approach we use a simple banking application
taken from [6]. The application is used by various bank officers to
perform transactions on customer deposit accounts, customer loan
accounts, ledger posting rules, and general ledger reports. A set
of system-specific RBAC policies for the banking system is given
below:

Core policies: The roles of the banking system (instances of
BankRole) are teller, customerServiceRep, accountant, account-
ingManager and loanOfficer. The permissions assigned to these
roles are given below:

P1 A teller can modify customer deposit accounts.

120

P2 A customer service representative can create or delete customer
deposit accounts.

P3 An accountant can create general ledger reports.
P4 An accounting manager can modify ledger-posting rules.

PS5 A loan officer can create and modify loan accounts.

Hierarchical policies: The hierarchical policy in the banking
application is stated below:

H1 Customer service representative role is senior to the teller role.

SSD-Role policies: For the banking system the following pairs
of roles are conflicting:
{(teller; accountant), (teller, loanOfficer),
(loanOfficer, accountant), (loanOfficer, accountingManager),
(customerServiceRep, accountingManager)}

DSD policies: For the banking system the following pair of roles
is in DSD relation:
{(customerServiceRep, loanOfficer)}

Prerequisite-Role policies: For the banking system the follow-
ing pair of roles is in a prerequisite role constraint:

PR1 Accountant role is a prerequisite role for the accounting man-
ager role.

Fig. 10 shows the object diagram that integrates the policies listed
above. The reader can visually check that the patterns described by
object diagram template in Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7,
Fig. 8, and Fig. 9 does not occur in Fig. 10.

Formally, an object diagram has the violation described by a vio-
lation pattern if there exists a binding that produces an object struc-
ture contained in the object diagram. To illustrate how conflicts
can be identified, consider the case in which the following policy is
added to the set of policies described in the previous section: “The
branch manager role is senior to all the other roles in the bank.”
Fig. 11 shows this policy. A number of occurrences of the pattern
described in Fig. 3b can be found in Fig. 11. For example, if we
assign a user to the branch manager role, the user is also assigned
to the roles customerServiceRep and accountingManager through
inheritance. However, the roles customerServiceRep and account-
ingManager are in an SSD constraint.

The second example of conflict occurs when a new employee
Peter, to whom both customer service representative role and loan
officer role are assigned, activates both roles in a session. Fig. 12
shows that the new policy violates DSD constraints in Fig. 4.

The third example of conflict occurs when an employee John
is assigned to an accounting manager role without being assigned
to an accountant role. Fig. 13 shows that the new policy violates
Prerequisite-Role constraints in Fig. 7.

Considering the case in which the following policy is added to
the set of organizational policies: “There is at most one person in
the branch manager role. An occurrence of the pattern described
in Fig. 9 occurs in Fig. 14 when two employees Peter and John are
both assigned to the branch manager role.

6. RELATED WORK

Tidswell and Jaeger [30] propose an approach to visualizing ac-
cess control constraints. They point out the need for visualizing
constraints and the limitations of previous work (e.g., [1, 21, 24])
on expressing constraints. A drawback of their work is that they

‘ DSD SSDRole ‘
customerServiceRep : Role ‘ ‘ accountingManager : Role
senior
RoleHierarchy
PrerequisiteRole
SSDRole ‘ loanOfficer : Role ‘ SSDRole
junior
‘ SSDRole ‘
teller : Role accountant : Role
SSDRole

Figure 10: Object

Conflict __

diagram for RBAC policies in a banking system

junior

customerServiceRep : Role

: DSD SSDRole i
}—"\7 —‘ accountingManager : Role

L/'EranchManager: Role ‘ senior xlibléHiepaLc‘l;y .

, IS senior X
2 RoleHierarchy
junior '

PrerequisiteRole

senior
RoleHierarchy
junior /
SSDRole " loanOfficer : Role ‘ SSDRole
junior \\“‘*—n,;_,’ ,,,“,,7»—/”//‘
| SSDRole ! ‘
teller : Role - accountant : Role
SSDRole

RoleHierarchy

junior

loanOfficer : Role ‘

(a) Conflicting Policies

senior senior
4{ branchManager : Role }7

RoleHierarchy

junior

SSDRole ‘ accountingManager : Role

(b) Detecting Conflict

Figure 11: Violation pattern occurrence: SSD-Role

121

Conflict

Activates UserSession

UserAssignment UserAssignment

DSD
, customerServiceRep : Role }7

\| senior

RoleHierarchy

/—{ customerSerivceSession: Session }——

Activates

! SSDRole
—‘ accountingManager : Role

PrerequisiteRole|

SSDRole ‘ lpaﬂbfficer

junior T o

Role \ SSDRole

SSDRole
teller : Role ‘ ‘ accountant : Role

SSDRole

Figure 12: Violation pattern occurrence: DSD

created a new notation for specifying constraints and it is not clear
how the new notation can be integrated with other widely-used de-
sign notations. The approach described in this paper utilizes no-
tations from a standardized modeling language and also integrates
the policy specification activity with design modeling activities.

Another effort to graphical specification of RBAC is proposed
by [19]. In their approach, RBAC policies are represented by graph
transformations. A graph consists of nodes and edges. Nodes rep-
resent notions such as users and roles. Edges represent relation-
ships between notions. Transformation rules are defined for ad-
ministration activities such as add a user to a role and remove a
user from a role. Consistency properties such as DSD constraints
are also specified graphically. Verification of RBAC policies is car-
ried on by showing that graphical constraints do not occur in the
graph specifying RBAC policies. The drawback of this approach is
similar to what has been discussed in previous paragraph.

UserAssignement
accountingManager : Role ‘

PrerequisiteRole

accountant : Role

Figure 13: Violation pattern occurrence: Prerequisite-Role

A large volume of research [3, 4, 5, 7, 8, 13, 14, 15, 16, 23, 22,
26] exists in the area of specification of access control policies. For-
mal logic-based approaches [3, 4, 5, 7, 13, 16, 23] are often used to
specify security policies. They assume a strong mathematical back-
ground which makes them difficult to use and understand. Other
researchers have used high-level languages to specify policies [14,
15, 22, 26]. Although high-level languages are easier to understand
than formal logic-based approaches, they are not analyzable. Our

122

John - User UserAssignement

‘ branchManager : Role

Perter : User UserAssignement

Figure 14: Violation pattern occurrence: Cardinality

work, on the other hand, provides a easy-to-use language supported
by mechanisms for detecting problems with the specifications.
Some work [9, 17, 20] has been done on modeling system secu-
rity using UML. Jurjens [17] proposes UMLsec, a UML profile for
modeling and evaluating security aspects based on the multi-level
security model. Lodderstedt et al. propose SecureUML [20], an ex-
tension of the UML that defines security concepts based on RBAC.
These approaches mainly focus on extending the UML notation to
better reflect security concerns. The approach described in this pa-
per tackles the complementary task of capturing RBAC policies in
patterns that can be reused by developers of secure systems.

7. CONCLUSION

In this work we have shown how RBAC policies can be mod-
eled such that they can be easily integrated with the application,
easy to understand and use, and are amenable to analysis. We spec-
ify reusable RBAC policies using UML diagram templates. The
UML diagram templates can be instantiated to obtain application-
specific RBAC policies. RBAC constraints can be specified using
OCL. Since comprehending OCL may be difficult for the end user,
we show how to represent RBAC constraint violations using object
diagram templates. Application-specific policies are expressed us-
ing object diagrams. The object diagrams can be checked to detect
any constraint violations.

A lot of work remains to be done. The work described in this

paper focuses on specifying the static structure of RBAC. A com-
plete RBAC model should also include descriptions of patterns of
behaviors supported by RBAC. In previous works [11, 18], we de-
veloped template forms of interaction diagrams that can be used to
specify interaction patterns. The interaction patterns can be used to
characterize families of allowed and prohibited behaviors.

An important question is validation of security policies. The
RBAC policies for a given application can be tested against a set
scenarios, some of which can be obtained by instantiating the in-
teraction patterns of RBAC. For example, in order to evaluate the
impact of an RBAC policy on a system, test scenarios that model
prohibited behaviors can be obtained by instantiating RBAC inter-
action patterns that describe prohibited behaviors. Such tests can be
used to determine if the manner in which the policies are addressed
in the design are sufficient to prevent unauthorized access.

8. ACKNOWLEDGEMENT

This material is based upon work funded by AFOSR under Award
No. FA9550-04-1-0102. The authors thank Dr. Robert Herklotz
for supporting this work. The authors also thank the anonymous
reviewers for their useful comments.

9.
(1]

REFERENCES

G. Ahn and R. Sandhu. The RSL99 Language for
Role-Based Separation of Duty Constraints. In Proceedings
of ACM Workshop on Role-Based Access Control, pages
43-54, 1999.

G.J. Ahn and M. E. Shin. Role-based authorization
constraints specification using object constraint language. In
Proceedings of the 10th IEEE International Workshop on
Enabling Technologies: Infrastructure for Collaborative
Enterprises (WET ICE "01), pages 157-162, Cambridge,
Massachusetts, June 2001.

S. Barker. Security Policy Specification in Logic. In
Proceedings of the International Conference on Artificial
Intelligence, pages 143-148, Las Vegas, NV, 2000.

S. Barker and A. Rosenthal. Flexible Security Policies in
SQL. In Proceedings of the 15th Annual IFIP WG 11.3
Working Conference on Data and Applications Security,
Niagara-on-the-Lake, Canada, 2001.

E. Bertino, P. Bonatti, and E. Ferrari. TRBAC: A Temporal
Role-Based Access Control Model. In Proceedings of the Sth
ACM Workshop on Role-Based Access Control, pages 21-30,
Berlin, Germany, 2000.

R. Chandramouli. Application of XML Tools for
Enterprise-Wide RBAC Implementation Tasks. In
Proceedings of the 5th ACM workshop on Role-based Access
Control, Berlin, Germany, July 2000.

F. Chen and R. Sandhu. Constraints for Role-Based Access
Control. In Proceedings of the 1st ACM Workshop on
Role-Based Access Control, Gaithersburg, MD, 1995.

N. Damianou and N. Dulay. The Ponder Policy Specification
Language. In Proceedings of the Policy Workshop, Bristol,
U.K., 2001.

P. Epstein and R. S. Sandhu. Towards a UML Based
Approach to Role Engineering. In Proceedings of the 4th
ACM Workshop on Role-Based Access Control, pages
145-152, 1999.

D.F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

R. Chandramouli. Proposed NIST Standard for Role-Based
Access Control. ACM Transactions on Information and
Systems Security, 4(3), August 2001.

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

(10]

123

[11] Geri Georg, Robert France, and Indrakshi Ray. An
Aspect-Based Approach to Modeling Security Concerns. In
Proceedings of the Workshop on Critical Systems
Development with UML, Dresden, Germany, 2002.

R. Grimm and B. Bershad. Providing Policy-Neutral and
Transparent Access Control in Extensible Systems. Technical
Report UW-CSE-98-02-02, University of Washington, 1998.
R.J. Hayton, J. M. Bacon, and K. Moody. Access Control in
Open Distributed Environment. In /EEE Symposium on
Security and Privacy, pages 3—14, Oakland, CA, May 1998.
M. Hitchens and V. Varadarajan. Tower: A Language for
Role-Based Access Control. In Proceedings of the Policy
Workshop, Bristol, U.K., 2001.

J. A. Hoagland, R. Pandey, and K. N. Levitt. Security Policy
Specification Using a Graphical Approach. Technical Report
CSE-98-3, Computer Science Department, University of
California Davis, July 1998.

S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical
Language for Expressing Authorizations. In /EEE
Symposium on Security and Privacy, pages 31-42, Oakland,
CA, May 1997.

J. Jurjens. UMLsec: Extending UML for Secure Systems
Development. In Proceedings of the 5th International
Conference on the Unified Modeling Language, pages
412-425, Dresden, Germany, October 2002.

Dae-Kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee
Song. Using Role-Based Modeling Language (RBML) as
Precise Characterizations of Model Families. In Proceedings
of the International Conference on Engineering Complex
Computing Systems (ICECCS 2002), Greenbelt, MD,
December 2002. ACM Press.

M. Koch, L. V. Mancini, and F. Parisi Presicce. A Graph
Based Formalism for RBAC. ACM Transactions on
Information and System Security, 5(3):323-365, 2002.

T. Lodderstedt, D. A. Basin, and J. Doser. SecuretUML: A
UML-Based Modeling Language for Model-Driven Security.
In Proceedings of the 5th International Conference on the
Unified Modeling Language, pages 426—441, Dresden,
Germany, October 2002.

M. Nyanchama and S. Osborn. The Role Graph Model and
Conflict of Interest. ACM Transactions on Information
Systems Security, 2:3-33, 1999.

OASIS. XACML Language Proposal, Version 0.8. Technical
report, Organization for the Advancement of Structured
Information Standards, January 2002. Available
electronically from
http://www.oasis-open.org/committees/xacml.

R. Ortalo. A Flexible Method for Information Systems
Security Policy Specification. In Proceedings of the 5th
European Symposium on Research in Computer Security,
Louvain-la-Neuve, Belgium, 1998. Springer-Verlag.

S. Osborn and Y. Guo. Modeling Users in Role-Based
Access Control. In Proceedings of the 5th ACM Workshop on
Role-Based Access Control, pages 31-37, Berlin, Germany,
July 2000.

I. Ray, N. Li, D. Kim, and R. France. Using Parameterized
UML to Specify and Compose Access Control Models. In
Proceedings of the 6th IFIP TC-11 WG 11.5 Working
Conference on Integrity and Internal Control in Information
Systems (IICIS), Lausanne, Switzerland, November 13-14
2003.

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

C. Ribeiro, A. Zuquete, and P. Ferreira. SPL: An Access
Control Language for Security Policies with Complex
Constraints. In Proceedings of the Network and Distributed
System Security Symposium, San Diego, CA, February 2001.
J. H. Saltzer and M. D. Schroeder. The Protection of
Information in Computer Systems. Proceedings of the IEEE,
63(9):1278-1308, September 1975.

E. G. Sirer, R. Grimm, A. J. Gregory, N. R. Anderson, and
B. N. Bershad. Improving the security, scalability,
manageability and performance of system services for
network computing. Technical Report UW-CSE-98-09-01,
University of Washington, September 1998.

124

[29] The Object Management Group (OMG). Unified Modeling
Language: Superstructure. Version 2.0, Final Adopted
Specification, OMG, http://www.omg.org, August 2003.

[30] J. E. Tidswell and T. Jaeger. An Access Control Model for
Simplifying Constraint Expression. In Proceedings of the 7th
ACM conference on Computer and communications security,
pages 154-163, Athens, Greece, November 2000.

[31] J. Warmer and A. Kleppe. The Object Constraint Language,
Second Edition. Addison-Wesley, 2003.

