FEATURE

There is little to

instruct software project
managers on how fo
handle risk in o way
that ensures the success
of contingency planning
and avoids crisis. This
seven-step procedure
describes how fo
identify risk factors,
calculate their
probability and effect on
a project, and plan for
and conduct risk
management.

RICHARD FAIRLEY
Software Engineering Management
Associotes

RISK MANAGEMENT

FOR SOFTWARE PROJECTS

any software projects fail to
deliver acceptable systems
within schedule and budget. Many of
these failures might have been avoided
had the project team properly assessed
and mitigated the risk factors, yet risk
management is seldom applied as an
explicit project-management activity.
One reason risk management is not
practiced is that very few guidelines
are available that offer a practical,
step-by-step approach to managing
risk. To address this deficiency, I have
created a seven-step process for risk
management that can be applied to all
types of software projects.
I base the process on several years
of work with numerous organizations
to identify and overcome risk factors

in software projects. My clients and I
have used a variety of risk-manage-
ment techniques within the frame-
work of the process. I describe one set
of techniques here, which incorporates
regression-based cost modeling, but
other techniques, such as decision the-
ory, risk tables, and spiral process
models, are equally applicable.’

ELEMENTS OF RISK MANAGEMENT

"The seven steps of my risk-man-
agement process are

1. Identify risk factors. A risk is a
potential problem; a problem is a risk
that has materialized. Exactly when
the transformation takes place is
somewhat subjective. A schedule delay

{EEE SOFTWARE

0740-7459/94/%04.00 © 1994 IEEE

57

FEATURE

of one week might not be cause for
concern, but a delay of one month
could have serious consequences. The
important thing is that all parties who
may be affected by a schedule delay
agree in advance on the point at
which a risk will become a problem.
That way, when the risk does become
a problem, it is mitigated by the
planned corrective actions. In identi-
fying a risk, you must take care to dis-
tinguish symptoms from underlying
risk factors. A potential schedule delay
may in fact be a symptom of difficult
technical issues or inadequate
resources.

Whether you identify a situation as
a risk or an opportunity depends on

your point of view. Is the glass half full |

or half empty? Situations with hlgh ;

potential for failure often have the po-
tential for high payback as well. Risk

management is not the same as risk |

aversion. Competitive pressures and
the demands of modern society re-
quire that you take risks to be success-
ful.

2. Assess risk probabilities and effects
on the project. Because risk implies a
potential loss, you must estimate two
elements of a risk: the probability that
the risk will become a problem and
the effect the problem would have on
the project’s desired outcome. For
software projects, the desired out-
come is an acceptable product deliv-

ered on time and within budgert.
Factors that influence product accept-
ability include delivered functionality,
performance, resource use, safety,
reliability, versatility, ease of learning,
ease of use, and ease of modification.

Depending on the situation, failure
to meet one or more of these criteria
within the constraints of schedule and
budget can precipitate a crisis for the
developer, the customer, and/or the
user community. Thus, the primary
goal of risk management is to identfy
and confront risk factors with enough
lead time to avoid a crisis.

The approach I describe here is to
assess the probability of a risk by com-
puting probability distributions for

REGRESSION-BASED COST MODELING
You develop a regression-based cost inodel by collecting
data from past projects for relationships of interest (like soft-
ware size and required effort), deriving a regression equa-
tion, and incorporating additional cost factors to explain
deviations of actual project costs from the costs predicted by
the regression equation.
A commonly used approach to regression-based cost
modeling is to derive a linear equation in the log-log domain
. (log Effort, E, as a linear slope-intercept function of log Size,
| S) that minimizes the residuals hetween the equation and the

log E (EHfort)

10,000

1,000 -

“logE=toga+b.log$
f=g.5

o legSisue)
1,000 10,000K

10K 100K

their effects.

' wh#eWnﬂwaMmtﬁm hxchxstheprod

data points for actual projects. Transforming the lincar cqua
tion, log I/ = I()g a +b+log S, from the log-log domain to the
re ‘11 domain gives you an exponential rel: m(mshlp of the torm

=ax* J; Figure A illustrates this approach, where Fis mea-
surcd in person-months and S is measured in thousands of
lines of source code (KLOC).

As the figure shows, it is not untypical to ohserve wide
scatter in actual project data. which indicates large variations
in the effort predicted by the regression equation and the
actual effort. Residual error is one measure of the variations.
A large residual error means that factors in addition to size
exert a strong influence on required effort. If size were a per-
fect predictor of effort, every data point in Figure A would lie
on the line of the equation, and the residual error would be
Zero.

The next step in regression-based cost modeling is to iden-
tify the factors that cause variations between predicted and
actual effort. We might, by examining our past projects, deter-
mine that 80 percent of the variation in required effort for pro-
jects of similar size and type can be explained by variations in
stability of the requirements, familiarity of the development

team with the application domain, and involvement of
users during the development cycle. As illustrated in Table A,
you can assign weighting factors to these variables to model

ﬂew basedcostmodeluﬂ)mofﬂxefom

efthe eﬁnmuﬁpber valties fmm Tabl

58

MAY 1884

code size and complexity and use them
to determine the effect of limited tar-
get memory and execution time on
overall project effort. I then use
Monte Carlo simulation to compute
the distribution of estimated project
effort as a function of size, complexity,
timing, and memory, using regression-
based modeling.

This approach uses estimated effort
as the metric to assess the impact of
risk factors. Because effort is the pri-
mary cost factor for most software
projects, you can use it as a measure of
overall project cost, especially when
using loaded salaries (burdened with
facilites, computer time, and manage-
ment, for example).

medium application experience, and lose user imvolvement
ANV
ments volatility, medium application experience, and high
user involvement would result inan FAF of 0.64 (0.8 *
The former situation wor i require 56 percent more
etfort than the nominal estimate, while the latter would
require 36 percent less effort than the nominal case.

would resultinan FAI of 1560 (1.2

0.8).

Using eftort multipliers to adjust an estimate implies that

3. Develop strategies to mitigare iden-
tified risks. In general, a risk becomes a
problem when the value of a quantita-
tive metric crosses a predetermined
threshold. For that reason, two essen-
tial parts of risk management are set-
ting thresholds, beyond which some
corrective action is required, and
determining ahead of time what that
corrective action will be. Without
such planning, you quickly realize the
truth in the answer to Fred Brooks’
rhetorical question, “How does a pro-
ject get to be a year late?” One day at
a time.’

Risk mitigation involves two types
of strategies. Action planning addresses

ate response. To address the risk of
insufficient experience with a new
hardware architecture, for example,
the action plan could provide for
training the development team, hiring
experienced personnel, or finding a
consultant to work with the project
team. Of course, you should not spend
more on training or hiring than would
be paid back in increased productivity.
If you estimate that training and hiring
can increase productivity by 10 per-
cent, for example, you should not
spend more than 10 percent of the
project’s personnel budget in this
manner.

Contingency planning, on the other

risks that can be mitigated by immedi- | hand, addresses risks that require mon-

1.3 Tow require-

K Cost driver

Requirements volatility

Application experience

—

TABLE A

ORT mumbuns FOR A SOFTWARE PROJECT

Effort multiplier

Low Medium High
0.8 1.0 1.2
1.4 [0 (I
1.3 1.0 0.8

factors not accounted for in the model do not change from
past projects to the one being estimated. For example, the
model presented in Figure A and Table A does not incorpo-
rate factors such as personnel capabilites or stability of the
development environment. If these factors should change,
the corresponding impacts (positive or negative) must be
incorporated into the estimate for a future project. Failure to
do so increases risk.

Examples. Barry Boehm’s Cocomo (Constructive Cost
Model) is perhaps the best known example of a regression-
based cost model. Cocomo is based on data from 63 projects,
collected by Boehm during the mid-to-late 1970s. He clus-
tered the data into three groupings, which he called modes.
He then derived two linear equations for each mode in the
log-log domain; one equation for estimated effort as a func-
tion of software size and one for estimated development time
as a function of estimated effort.

* Boehm and his colleagues identified 15 cost drivers as
tlme ﬁmﬁmmnmbuted most to the observed varia-

i User involvement

‘antd other factors; and e estimation tool (CoStar), wlﬁch

Boehm illustrated, by example, how to construct a regres-
sion-based cost model; henee the name of the model. The
model does not work without recalibration to allow for dif-
ferences in Boehm’s environment and the environment of
interest, however. When organizations use the equations
and tables without doing so, ttie estimates may be seriously
skewed. Cocomo equations and tables should not be used as
published without recalibrating the model in the local
environment.

Automation concerns. Several tools are available that automate
regression-based cost modeling. One of the best tool sets,
for versatility and ease of use, is from the Softstar Systems
Company of Amherst, New Hampshire. The Softstar tools
include a tool (Calico) for entering local project data and

“deriving regression equations tailored to the local environ-

ment, a tool (Dbedit) to edit the effort-and schedule distri-
‘bution tables, cost-driver values, hours per work-motith,

uses the outputs | from Calico and Dbedit as the basis fcr
émmates :

IEEE SCFTWARE

59

FEATURE

itoring for some future response |

should the need arise. To mitigate the
risk of late delivery by a hardware
vendor, for example, the contingency
plan could provide for monitoring the
vendor’s progress and developing a
software emulator for the target ma-
chine.

Of course, the risk of late hard-
ware delivery must justify the added
cost of preparing the contingency
plan, monitoring the situation, and
implementing the plan’s actions. If
the cost is justified, plan preparation
and vendor monitoring might be im-
plemented immediately, but the
action to develop an emulator might
be postponed until the risk of late
delivery became a problem (the ven-
dor’s schedule slipped beyond a
predetermined threshold). This
brings up the issue of sufficient lead
time. When do you start to develop
the emulator? The answer lies in ana-
lyzing the probability of late delivery.
As that probability increases, the
urgency of developing the emulator
becomes greater.

4. Monitor risk factors. You must
monitor the values of risk metrics,
taking care that the metrics data is
objective, timely, and accurate. If
metrics are based on subjective fac-
tors, your project will quickly be
reported as 90 percent complete and
remain there for many months. You
must avoid situations in which the
tirst 90 percent of the project takes
the first 90 percent of the schedule,
while the remaining 10 percent of the
project takes another 90 percent of
the schedule.

5. Invoke a contingency plan. A con-
tingency plan is invoked when a
quantitative risk indicator crosses a
predetermined threshold. You may
find it difficult to convince the af-
fected parties that a serious problem
has developed, especially in the early
stages of a project. A typical response
is to plan on catching up during the
next reporting period, but most pro-
jects never catch up without the ex-
plicit, planned corrective actions of a

contingency plan. You must also
specify the duration of each contin-
gency plan to avoid contingent
actions of interminable duration. If
the team cannot solve the problem
within a specified period (typically
one to two weeks), they must invoke a
crisis-management plan.

6. Manage the crisis. Despite a
team’s best efforts, the contingency
plan may fail, in which case the pro-
ject enters crisis mode. There must
be some plan for seeing a project
through this phase, including allocat-
ing sufficient resources and specifying
a drop-dead date, at which time man-
agement must reevaluate the project
for more drastic corrective action
(possibly major redirection or cancel-
lation of the project).

7. Recover from a crisis. After a cri-
sis, certain actions are required, such
as rewarding personnel who have
worked in burnout mode for an ex-
tended period and reevaluating cost
and schedule in light of the drain on
resources from managing the crisis.

I illustrate these seven steps for a
project to implement a telecommuni-
cations protocol. The project, which is
actually a composite of several real
projects, gave me the opportunity to
explore key risk-management issues,
such as the likelihood that an undesired
situation might occur, the resulting
effect of the risk situation, the cost of
mitigating the risk, the degree of
urgency in mitigation, and the lead
time required to avoid a crisis.

CASE STUDY

The project’s goal was to im-
plement a telecommunications proto-
col for a network gateway using a 10-
MHz microprocessor with a 256-
Kbyte memory. The project had sev-
eral constraints that challenged risk
management. The project team could
not enlarge the memory because the
processor was provided by the cus-
tomer and its use was mandatory. The
maximum execution time for message
processing was 10 ms.

Risk identification. 1 used a regression-
based cost model to identify and assess
the impact of risk factors on estimated
project effort. The box on pp. 58-59
describes regression-based cost model-
ing in more detail, as well as some
tools for automating it. For the tele-
com project, [used a regression-based
cost model for real-time telecommuni-
cations systems on microprocessors,
which T had developed for the client,
using historical data from similar pro-
jects.

The regression equation I derived
to relate effort to product size is

. . 125
Effort = 3.6 * (Size) * EAF

where EAF is the effort-adjustment
factor. EAF is the product of 15 cost
factors taken from Barry Boehm’s Co-
como model:* Required software relia-
bility (Rely), ratio of database size to
source-code size (Data), software com-
plexity (Cplx), execution time con-
straint on the target machine (Time),
memory constraint on the target
machine (Stor), volatility of the devel-
opment machine and software (Virt),
response time of the development
environment (Turn), analyst capability
(Acap), applications experience for the
development team (Aexp), programmer
capability (Pcap), team experience on
the development environment (Vexp),
team experience with the program-
ming language (Lexp), use of modern
programming practices (Modp), use of
software tools (Tool), and required
development schedule (Sced).

Using these cost drivers as a check-
list for the telecom project, I identi-
fied five risk factors and added one
(Size):

¢ Cplx. Effect of algorithmic
complexity

¢ Time. 10-ms timing constraint

¢ Stor. 256K memory of the target
processor

¢ Vexp. Lack of experience with the
target processor

¢ Tool Lack of adequate software
tools for the target processor

60

MAY 1894

¢ Size. Uncertainty in estimated
code size.

These six facrors are interrelated:
[t the algorithms are complex, code
size s likely to increase; it size in-
creases, more memory and execution
tme will be required. With more ex-
perience on the target processor ar-
chitecture and with better software
tools, the team might better control
the code size, execution time, and
memory requirements.

Probability and effects assessment. Ac-
cording to evidence from similar
projects and some analysis, I estmat-
ed that the size of the telecom pro-
ject’s code would be no less than 9
KLOC and no more than 15 KILOC,
with the most likely size being
approximately 10 KLOC, as Figure
la shows. Figure 1h is the probabili-
tv-density function for the probable
effect of algorithmic complexity
(Cplx) on project effort. As the figure
shows, 1 estimated the most likely
impact to be 1.3, with a normal dis-
tribution of 1.0 to 1.6. The function
for Cplx models the impact that
uncertainty in target-machine
experience (Vexp) and lack of tools
(Tool) will have on the ability to
control the complexity of the pro-
gram that implements the communi-
cation algorithms. 1 used these prob-
ability-density functions to derive a
distribution of probable project
effort, as the box on p. 62 describes.

Thus, the risk factors to be mod-
cled are software size, algorithmic
complexity, and the memory and
execution-time constraints of the tar-
get machine. To assess the effect of
uncertainty in size, complexity,
execution time, and the memory
constraint on the required effore, |
constructed a probabilistic cost
model and used Monte Carlo simula-
tion. The simulation model is of the
form

Fifort =
3.0 * (Size)

1.25

AT

IEEE SOFTWARE

where EAF is the product of Sror,
Time, and Cplx, and where Size and
Cplx are modeled by the probability
distributions in Figure 1. Stor and
Time are dependent on Size.

I determined values for Stor by
first randomly selecting a value from
the inverse probability distribution

for Size. [then used a code-expan-
sion factor of 16 (based on a rato of
1 to 4 for source-to-object instruc-
tions and 1 to 4 for object instruc-
tions to object bytes), multiplied by
Size, and divided by 236K (the mem-
ory size) to get the pereentage of
memory used. That s,

TABLE 1

EFFECTS OF LIMITED MEMORY AND TIME ON PROJECT EFFORT

Memory used Stor Time used Time
Less than 50% 1.00 [Less than 50% 1.00

L 70% 1.06 70% L1l
85% 1.21 85% 1.30

L 95% 1.56 95% 1.66

1
(N I T I [1 l | Ssze
i 7 g 10 1 12 13 15 KoC

Figure 1. Two probability distribution cure

o1 the telecom project. (A) Size dis-

tribution and (B) effect of algorithmic complexity (Cplx) on project efforr.

61

PROBABILITY-DENSITY AND DISTRIBUTION FUNCTIONS

Probability-density functions [ptxijare the continuous counterparts of dis-
crete ';)r(;bnl)i’lir;' hi.st(;gr;\ms (the relative number of times you can expect event
v to occur). A probability-distribution function is the integral oﬁp(x)..
Integrating p(¥) from negative infinity to }is the probability that v will be less
than or equal to ¥:

P(x<Y)= | Py dx

where p(x) 1s the lognormal distribution function in Figure | in the main text,
for example. The intégral A} < x < Z) is the continuous counterpart of sum-
ming the values of a discrete probability histogram from 1 to Z:

7

P(Y<xsZ)=| px)dx

This integral.is the probability that x will be in the range Y to Z for exam-
ple, the prl)ﬁabﬂi;y that Size will be in the range of 10,000 to 12,000 lines of
code is:

P(10<size<12)= | px) dx

where p(x) is the probability-density functioninFigure 'ain the main.text.

The inverse distribution function, P-1(x), provides yalues of x that corre-
spond to given values of P(x). Inverse probability-distribution functions are used
in Monte Carlo simulation to compute values of x that correspond to randomly
sclected probability values, P(x).)

In practice, you can calculate P~Y(x) by table lookup for certain well-defined
probability distributions (Z tables for normal distributions, for example) or by
sampling techniques such as the Latin Hypercube sampling method.!

Monte Carlo simulation is a technique for modeling probabilistic situations
that are too complex to solve analytically. Probability distributions are specified
for the input variables to the model. A random number generator is used to
select independent sample points from the inverse probability distributions f?r
cach of the input variables. These sample values are used to compute one point
on the specified output distribution(s). Repeating the process a few hundred toa
few thousand times produces a histogram that approximates the resultant prob-
ability distributions to any desired degree of accuracy. .

Until recently, Monte Carlo simulation was the province of modeling spe-
cialists. Introduction of PC-based and Macintosh-based simulation packages has
made Monte Carlo simfation accessible to anyone who knows statistics and

Los Angeles and Crystal Ball from Decisioneering Corp. of Denver, both of
which run in conjunction with a spreadsheet. For the telecom project deseribed
1o specify probability distributions for the

Percentage of memory =

100 = [16 = SIZE] / 256

values of Stor and Time taken from
Cocomo.? In the first two columns are
the values of Stor for various percent-
ages of use. From the table, I interpo-
lated that Stor is approximately 1.55

@

For example, I determined that the

percentage of memory used is 93.75
when Size is 15 KLOC. Table 1 shows

when the percentage of memory is
93.75.

The last two columns of Table 1
show how execution time affects pro-
ject effort. Time, which is also de-
pendent on Size, is modeled as

Percentage of time = 100 =*
[(172) = (1/3) * (4 *

SIZE)] / 10 3)
where 1/2 is the average cycle time in
milliseconds for instruction processing

. on the target processor (five clock
- ticks at 10 MHz); a third of the object

bytes are instructions executed by the
main timing loop (an assumption) and
' the remainder are data cells and ex-
ception-handling code; and 4 * Size is
the expansion factor from source in-
structions to object instructions. I then
 divide Time by 10 ms (the timing con-
! straint) to determine the percentage of
. time. The percentage of time is 100
| when Size is 15 KLOC.
i Although, as this analysis shows,
E the timing constraint dominates the
| memory constraint, I tracked both fac-
! tors because the assumption used to
derive the percentage of time equation
(Time) was not certain and because
both Stor and Time affect project
effort. In reality, memory could
become the dominant factor.
To compute the probable effort for

- ¢ the telecom project, I used Monte
PCs. Two toals for Monte Carlo simuiation are @Risk from Palisade Corp. of <" projecs

Carlo simulation and the Crystal Ball
simulation tool from Decisioneering

; Corp., which randomly selected data
3 points from the inverse probability-

distribution functions for Size and

4 Cplx and used the value of Size along

with Table 1 to determine values for
Time and Stor. The tool then used the
values of Size, Cplx, Time, and Stor in
the regression equation to compute a
point on the probability-density his-
togram for effort. The tool should
repeat this computation at least a few
hundred times to produce a reasonable
approximation of the probability-den-
sity function for estimated effort.
Figure 2 shows the probable effort
for the telecom project converted to
dollars, because effort was the prima-
ry driver of this project’s cost. The
conversion factor was a loaded salary

62

MAY 1894

of $10,000 per person month, loaded
i meaning that indirect and overhead
costs are included. The right vertcal
axis indicates the actual number of
times the tool computed a given cost.
The left vertical axis indicates the
probability of that cost occurring, as
computed by the ratio of the number
of occurrences to total occurrences.
The summation of probabilities
i up to any given dollar amount is the
probability that the project can be
corpleted for that amount of money
or less. Table 2 presents some esti-
mated costs and associated probabili-
ties. For example, it is 70 percent
probable that the project can be
completed for $600,000 or less (60
person months of effort at $10,000
per person month). This cost might
involve scheduling six people for 10
months or five people for 12 months.
As illustrated in Figure 2 and
Table 2, low complexity and a small
product size, with associated small

would be high.

The next issue to face is commit-
ment to a schedule and budget. To
distinguish estimates from commit-
ments, | used the equation

Commitment = Fstimate +
Contingency

That is, the difference between esti-
mate and commitment is the contin-
gency reserve for the project. In this

dealing with the impact of uncertain-
tv in source-code size and complexi-
ty, and the resulting effects of timing
and memory constraints on estimated
effort.

In one organization T work with,
project teams and management rou-
tinely set their development sched-
ules and budgets at 70 percent proba-
bility of success, but commit to their
customers at 90 percent. The 20 per-
cent difference is a contingency
reserve for each project.

values of Time and Stor, would result |
in low cost. 1f the product is large .
and complex, the resulting cost |

case, the contingency reserve is for |

Risk mitigation. Boehm recom-
mends avoidance, transfer, and .
acceptance as potential risk-mitiga-
tion strategies.' For the telecom pro-
ject, avoidance techniques might be
to buy more memory or a faster
processor or to decline the project.
Transter techniques might include |
implementing the lowest layers of |
the communications protocol in
hardware, placing the top levels of
the protocol on a network server, or
subcontracting the work to special-
ists in communication software.
Acceprance techniques require that
all affected parties (customers, users,
managers, developers), publicly
acknowledge the risk factors and
“accept them. They also involve
preparing action, contingency, and
crisis-management plans for the
identified risks.

Action planning. To mitigate the risks of
insufficient experience with the target
© processor, the project manager might
" provide training for the present staff

or hire additional, more experienced

personnel as consultants or staff. To
¢ deal with the lack of adequate soft-
ware tools, the manager might acquire
more effective tools and provide train-
ing. However, he or she would have
to evaluate the risk caused by inade-
quate tools against the risk of insuffi-
cient knowledge of the replacement
tools.

I used Boehm’s Cocomo cost dri-
vers to determinc investment strate-
gies for training, consultants, and
tools. If training and consultants are
expected to lower the effort multiplier
for target-machine experience by 10
percent, six percent of this could be
invested in training and consultants to

TABLE 2
PROBABLE COST OF EFFORT FOR THE TELECOM PROJECT

Percentile Cost
‘ 50th $570K
} 70th $600K
85th $667K
95th $762K

300 trials

"

667K

.nmnlhll”ﬂ!"ll

X)

I‘I | lllll !lll
76

Figure 2. Probability density of cost for the telecom project.

IEEE SOFTWARE

B3

———————

produce a four percent savings in esti-
mated project cost.

Another action plan is to invest-
gate the possibility of buying more
memory and/or a faster processor.
For the telecom project, the existing
processor and memory were provided
by the customer and thus required (as
in government-furnished equipment),
although buying your way out of po-
tential software problems with more

and better hardware is sometimes g |

feasible alternative.

This solution might also involve
buying some of the software rather
than building it all. However, buying
commercial off-the-shelf software is
not without risk, especially if you are
going to incorporate it into a larger
system. ‘The box on the facing page
describes some of these risks.

The size and complexity of softw-
are in the telecom project were factors
for which no immediate actions were
apparent: the communication proto-
cols were specified, the team had to
use the specified hardware and algo-
rithms, and they could not prioritize
requirements and eliminate those that
were desirable, but not
essential.

WITH NO
SCIENTIFIC
BASIS FOR
SOFTWARE
DESIGN, IT IS
HARD TO
SCALE UP
SIMULATION
RESULTS.

Contingency planning.
Contingency planning
involves preparing a
contingency plan, a cri-
sis-management plan,
and a crisis-recovery
procedure. Con-
tingency plans address
the risks not addressed
m the action plans. A
crisis-management plan
is the backup plan to be
used if the contingency
plan fails to solve a
problem within 2 specified time. A cri-
sis-recovery procedure is invoked
when the crisis is over, whether the
outcome is positive or negative.

The contingency plan for the tele-
com project is concerned with con-
trolling the timing budget and mem-

ory use on the target processor. It !

64

|

|
|

takes into consideration that the prob-
able source size truncates at 15
KLOC, which the code expansion fac-
tor of 16 dictates if the major timing
loop is to execute in no more than 10
ms.

Thus, preparation of a contingency
plan involves

¢ Specifying the nature of the poten-
tial problem. For the telecom project
this was the effect of memory size and
execution time on project effore and
schedule.

¢ Considering alternative approaches.
For the telecom project, these in-
cluded building a prototype, using
memory overlays, using a faster proc-
essor, buying more memory, or pursu-
ing incremental development and
monitoring the timing and execution-
time budgets. Another approach that
is usually considered is to eliminate
unessential (desirable but not vital) re-
quirements. However, there are no
unessential requirements in a commu-
nications protocol.

¢ Specifying constraints. For the tele-
com project, these were a memory size
of 256 Kbytes, an execution time of 10
ms, and the mandatory
use of the existing
processor and memory.

¢ Analyzing alterna-
tives. Building a proto-
type would require that
the team know how to
scale up timing and
memory requirements.
Using memory overlays
would have incurred an
unacceptable penalty on
execution time. Using a
faster processor wasn’t
possible because use of
the current processor
was mandatory. Buying
more memory wasn’t feasible because
the processor’s address space was lim-
ited to 256 Kbytes.

¢ Selecting an approach. Thus, only
the last alternative was viable: pursue
incremental development and monitor
the allocated memory and timing bud-
gets. To do this, the team had to parti-

tion the design into a series of builds,
allocate memory and timing budgets
to each build, and track actual versus
budgeted amounts of time and memo-
ry for each demonstrated build as the
product evolved. A contingency plan
was to be invoked when the per-
formance index for actual versus bud-
geted memory or execution time
exceeded a predetermined threshold.

In allocating the timing and memo-
ry budgets, the team held back a
contingency reserve. According to
equations 2 and 3, a code size of 15
KLOC would result in 93.75 percent
use of memory and 100 percent use of
execution time. Backsolving equation
3 showed that developers needed to
limit the code size to 13.5 KLOC if
they wished to hold 10 percent of the
execution time in reserve.

The next step was to form the
contingency plan, which involves spec-
ifying

¢ Risk factors. In the telecom project,
these were the 10-ms timing constraint
and the 256-Kbyte memory constraint.

¢ Tracking methods. For the telecom
project, these were weekly demon-
strations of incremental builds and the
monitoring of the memory and execu-
tion-time budgets

¢ Responsible parties. For the telecom
project, two members of the project
team were assigned to monitor per-
formance indices and execute the con-
tingency plan if necessary.

¢ Thresholds. The conditions under
which the contingency plan would be
invoked. The threshold for the telecom
project was a performance index
greater than 1.1 for budgeted memory
or budgeted execution time.

¢ Resource authorizations. The re-
sponsible parties in the telecom project
were to be allowed unlimited overtime
for two weeks to solve the memory
and/or execution-time problem.

¢ Constraints. For the telecom pro-
ject, the project manager specified that
recovery efforts were not to affect the
ongoing activities of other project per-
sonnel.

MAY 1994

Two items in the contingency plan i

|

are particularly important: the thresh-
old for initiating the plan (10 percent
overrun) and the time limit allotted to
fix the problem (two weceks). Because
10 percent of the timing budget is to
be withheld, exceeding the perfor-
mance index for memory or time by
less than 10 percent would still yield
an acceptable system. A more conser-
vative approach would have been to
set the threshold at five percent, while
retaining the same 10 percent contin-
gency reserve.

Risk monitoring and contingency plan-
ning. To compute the performance
indices specified in the contingency
plan, the responsible parties compared
the actual amount of resources used
(time or memory) to the budgeted
amount for each incremental build
using

PT =X (AA/BA)

where AA is the actual amount of time
or memory required to implement the
current build, BA is the cumulative
amount of time or memory budgeted
for all builds up to and including the
current build, and the summation is
over all system elements in the cur-
rent build.

Each weekly build adds functional-
ity to the previous build, so the per-
formance indices track overall growth
of time and memory use as the im-
plemented features evolve. Periodi-
cally demonstrating implemented ca-
pabilities is the only way to accurately
track the timing and memory budgets
for an evolving software product.

Because software is not a physical
entity, there are no physical laws or
mathematical theories to guide the
development of engineering models
that will let us design software to
specified levels of reliability, perform-
ance, or resource use. The lack of a
scientific basis for software design, in
terms of traditional engineering pa-
rameters, also makes it impossible to
scale the results of prototyping and
simulation to a full-scale system. This

USING COTS: A DIFFERENT SET OF RISKS

An increasingly popular approach to constructing software systems is to pur-
chase commercial off-the-shelf packages from vendors and integrate them
rather than build all the needed components. In many cases this buyv-and-inte-
grate strategy is a viable approach to constructing a svstem. However, many or-
ganizations are so enamored with this latest silver bullet that they overlook the
inherent nsk factors:

o [ntegration. Integrating data tormats and communication protocols of vari-
ous packages can be tricky. In some cases, it may take more etfort to integrate
the packages than to build the components from scratch. In other cases, subtle
“gotchas” in a package may render it useless in your environment, and they may
not be apparent until you have already invested substantial etfort in the integri-
tion. C

& Upgrading. There are often ditficulties in upgrading a vendor's package.
The new version may not have the same interface or feature set as the old ver-
sion. The data formats and communication protocols may be ditterent, and the
new version may require more memory and run more slowly than the old ver-

it

modify it.

I am not advocating that you never "uy COTS, of course, merely that you

be aware of the risks.

sion. If you stay with the old version, the vendor will eventually stop supporting

¢ N source code. If you need to enhance the system, you may only have the
object code. In most cases, vendors are understandably reluctant to provide
source code. In the rare instances that they do, the code is usually so ditficult to
understand that it is very ditficult to modify correctly.

o Vendor faitures or buyours. What happens to your system if the vendor coes
out of business or is bought out? In some cases, purchasers of COTS have made
vendors place the source code in escrow, to be available should the vendor's
business fail or be acquired by another company. Again, however, haviny the
source code does not guarantee that anyone can understand it well enough to

inability, more than any other factor,
differentiates software engineering
from the traditional engineering dis-
ciplines. The only recourse in soft-
ware is the approach taken in the tele-
com project: design partitioning, allo-
cation of resource budgets, incre-
mental development, monitoring of
budgeted vs. demonstrated values, and
contingency plans to control confor-
mance of actual capabilities to re-
quirements.

Crisis management. A crisis is a show-
stopper. All project effort and re-
sources must be dedicated to resolving
the situation. You can define some
elements of crisis management, such
as the responsible parties and drop-
dead date, before the crisis material-
izes, but you may not be able to for-
mulate the exact details until the crisis
occurs.

The elements of crisis manage-
ment are to

& Announce and generally publicize |

the problem. For the telecom project, a

" crisis was said to occur if the contin-

gency plan failed to resolve the over-
run of memory or timing budget
within two weeks. A crisis occurred
after the team had implemented half
the required functions, overrun the
memory budget by 12 percent, and
two weeks of contingency actions had
not fixed the problem.

& Assign vesponsibilities and autbori-
ties. Both of the responsible parties
and two other team members stopped
all other work to concentrate on the
problem. The crisis team had access
to all necessary resources, subject to
the project manager’s approval.

o Update status frequently. The pro-
ject team held daily 15-minute stand-
up meetings at 11:00 am and 6:00 pm.

¢ Relax resource constraints. Man-
agement dedicated all needed re-
sources to solving the problem,
including flying in two additional tar-
get machines. They also provided
resources to support personnel work-

IEEE SOFTWARE

65

TABLE 3
CURRENT STATUS OF THE TELECOM PROJECY

Project adivity

Design elements coded:

Tested modules integrated

Degree of completeness

75 of 100 coded (75%)

3

20 of 100 integrated (20%)

TABLE 4
DISTRIBUTION OF TELECOM PROJECT EFFORT

Adtivity

ing around the clock, including cater-
ing meals and providing sleeping fa-
cilities on site.

¢ Have project personnel operate in
burnout mode. The crisis team worked
as many hours as were humanly pos-
sible. All other project personnel were
on 24-hour call to assist them until the
problem was solved.

¢ Establish a drop-dead date. Efforts
to resolve the problem were not to
continue longer than 30 days. If the
problem was not solved by then, mar-
keting and upper management would
reevaluate project feasibility. As it
turned out, the team resolved the crisis
before the 30-day deadline.

¢ Clear out unessential personnel.
Management requested that all per-
sonnel not assigned to the telecom
project continue with normal work
activities, as long as they did not inter-
fere with the crisis team’s work.

One of the most important steps in
crisis management is to set a drop-
dead date because no one can sustain
this kind of effort indefinitely. If the
timing problem had not been fixed in
30 days, management would have
stopped crisis mode and reconsidered
carlier approaches that had been re-
jected because of project constraints,
such as using a different processor or
subcontracting the work to telecom-
munication specialists. They might
also have considered moving the upper
levels of the protocol to a network
server, or even canceling the project
altogether.

Percent

Crisis recovery. It is important to exam-
ine what went wrong, evaluate how the
budget and schedule have been affected,
and reward key crisis-management per-
sonnel.

As part of crisis-recovery, you should

¢ Conduct a crisis postmortern. This
gives you the opportunity to fix any
systemic problems that may have pre-
cipitated the crisis and to document
any lessons learned. For the telecom
project, the postmortem revealed that
the design was overly complex in a key
area and that a simpler design would
have yielded a smaller, faster program.
The root cause was the team’s overall
lack of experience in designing softw-
are for the target processor.

¢ Calculate cost to complete the project.
It is important to know how the crisis
has affected the project’s budget and
schedule. To determine this, I used a
technique developed by Karen Pullen
of Mitre Corp.,* which involves mult-
plying the expected percentage of total
effort for each type of work activity by
the actual percentage of completion for
each activity. This gave me the current
percentage of project completion.

Table 3 shows the status of the tele-
com project after the crisis. Table 4
summarizes the effort distribution
among activities for similar projects.
The information in Table 3 indicates
an incremental development process;
that is, each activity is progressing in
parallel with the others. This is consis-
tent with the approach the telecom
project team took: Build the product in

]

stages and compare budgeted to actual
memory and tming.

Had they taken a waterfall
approach, they would have designed
all the requirements before beginning
coding and completed all coding
before beginning acceptance testing.
The disadvantage of the waterfall
approach is that you don’t know if you
have an acceptable product until the
end of the project. The team would
have had to wait too long to find out if
the software would fit in available
memory and run within an acceptable
time — this risk was unacceptable.

Tables 3 and 4 show that the pro-
ject was 90 percent complete with 17
percent of the estimated project effort
(design); 75 percent complete with 26
percent of the effort (coding), and so
on. Therefore, the project was 56 per-
cent complete at crisis recovery.

90(.17)+75(.26)+50(.35)
+20(.10)+14(.12) = 56

From project data, I knew that 36 |
person-months of effort had been ex-
pended when the crisis occurred.
Therefore, 28 person-months of effort |
would be required to complete the
project, assuming the tasks completed
were representative of the remaining
tasks. However, the remaining work
may be more or less difficult than the
work already done, so this assumption
must be checked for validity.

Also, I knew that the team had ex-
pended six calendar months of a 10-
month schedule, with a current staffing
level of six people (36/6). Using six
people, and assuming that effort to date
was representative of future effort and that
no further crises would arise, the project
could be completed in another five |
months (28/6). This would result in an
overall development cycle of 11
months (6+5), plus the time spent on
preparing and executing contingency
plans and managing the crisis. In the
end, the 10-month project was com-
pleted in 12 months with 68 person-
months of effort. Referring to Figure 2

]

66

MAY 1994

and Table 2, we see that the project
was completed at the 87th percentile
of probable effort.

o Update plans, schedules, and work
assignments. Time and resources have
been expended on the contingency
plan and crisis management, so origi-
nal project budget and schedule are
likely invalid. For the telecom project,
mangement added 12 person-months
to the budget ($120,000) and extend-
ed the project schedule by two
months. The contingency plan
remained in effect but was not
invoked again.

o Compensate workers for extraordi-
nary efforts. Bonuses and overtime pay
are appropriate forms of compensa-
tion. However, there is no substitute
for resting, regrouping, and recharg-

ing. This means time off. The amount

of time depends of the level of stress
encountered during the crisis. Project
managers should factor in that time
off when they replan project schedules
and assignments. Each member of the
telecom project’s crisis team was given
three days off to recover.

¢ Formally vecognize outstanding

performers and their families. This may
include formal letters of commenda-
tion, accelerated promotions, and let-
ters to the families of those who
worked around the clock. Free din-
ners and weekend vacations are other
ideas. For the telecom project’s crisis
team, management provided letters of
appreciation and dinner certificates.

Many techniques can be used to
implement the seven steps of risk
management. I have illustrated one
approach. Others are certainly possi-
ble. Risk management is an ongoing
process continually iterated through-
out the life of a project; some poten-
tial problems never materialize; others
materialize and are dealt with; new
risks are identified and mitigation
strategies are devised as necessary; and
some potential problems submerge,
only to resurface later. Following the
risk-management procedures illustrat-
ed here can increase the probability
that potential problems will be identi-
fied, confronted, and overcome before
they become crisis situations. L 4

REFERENCES

1. B. Boehm, Tutorial: Software Risk Management; IEEE CS Press, Los Alamitos, Calif., 1989.

2. F. Brooks, The Mythical Man-Month, Addison-Wesley, Reading, Mass., 1975.

3. B. Boehm, Software Engineering Economic, Prentice-Hall, Englewood Cliffs, N J., 1981.

4. K. Pullen, “Uncertainty Analysis with Cocomo,” Proc. Cocomo Users Group, Software Eng. Institute,

Pittsburgh, Pa., 1987.

Richard Fairley is the founder and principal associate of Software Engineering
Management Associates, Inc. He is also a distinguished visiting professor of soft-
ware engineering at Drexel University and has more than 20 years experience as
university professor, lecturer, and consultant. His research interests are risk man-
agement, software systems engineering, project management, cost and schedule
estimation, project planning and control, and process improvement.

Fairley received a BS from the University of Missouri and an MS from the
University of New Mexico, both in electrical engineering, and a PhD in computer
science from the University of California at Los Angeles.

Address questions about this article to Fairley at Software Engineering Management Assoc., PO Box 728,

Woodland Park, CO 80866; fax (719) 687-6041.

IEEE SOFTWARE

“New! Object models

and C++, side-by-side,
continuously up-to-date.”
What if you could have your OOA/OOD

model and all of your C++ code continu-
ously up-to-date, all the time, throughout
your development effort?

Consider the possibilities...

In one window, you see an object model, with
automatic, semi-automatic, and manual
layout modes, plus complete view manage-
ment. Side-by-side, in another window, you
see fully-parsed C++ code. You edit in one
window or the other. Press a key. Both
windows agree with each other. Together.

Or suppose that you are working on a project
with some existing code. (That’s no surprise;
who'd consider developing in C++ without
some off-the-shelf classes?) You read the code
in. Hit a button. And seconds later, you see
an object model, automatically laid out for
you, ready for you to study side-by side with
the C++ code itself. Together.

Or suppose you are building software with
other people (that’s no surprise either). You
collaborate with others and develop software
with a lot less hassle, because the fully
integrated configuration management
features help you keep it all...Together.
The name of this product? It’s earned the
name...

Together/l_Z+*

continuously up-to-date
object modeling and C++ programming

Key features. Continuously up-to-date object
modeling and C++ programming, side-by-
side, so you can work back-and-forth between
the two (and let the tool keep them in-sync).

Automatic, semi-automatic, and manual
layout of object models, so you can feed in
existing class libraries and quickly see a
meaningful object model.

Object modeling view management, including
view control over model elements, files, and
directories, essential for presenting meaning-
ful subsets of a fully-detailed object model.

And much more, including configuration
management, documentation generation, and
SQL options.

Money-back guarantee. Purchase To-
gether/C++ and try it out risk-free for 30
days. (We're that confident about Together/
C++. You see, Together/C++ has already
helped software developers deliver better
systems, with success stories in telecommuni-
cations, insurance, and natural resource
management.)

How to order. Order Together/C++ by
purchase order, check, or credit card. To
order, or for more 1nformat10n please call
1-800-OOA-2-OOP (1-800-662-2667, 24 hours,
7 days a week). Or contact:

Object International, Inc.
Education - Tools - Consulting
8140 N. MoPac 4-200
Austin TX 78759 USA
1-512-795-0202 - fax 795-0332

Outside of North America, contact:
Object Int’l Ltd.
Eduard-Pfeiffer-Str. 73
D-70192 Stuttgart, Germany
++49-711-225-740 - fax ++49-711- 299 1032
©1994 Object Int'l, Inc. All rights reserved.
“Together” is a trademark of Object Int, Inc.
IEEE594

