CSC 7426 : Basics of Software Engineering

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu

http://jpaulgibson.synology.me/Teaching/TSP/CSC7426/

Testing

L6-TestingProblems.pdf

2023: J Paul Gibson Software Engineering & Data Engineering

Why do we need tests?

SOFTWHRE

{ COIMIX =2

ENGINEERING ﬁ\w"?’g A

we've irwerted
Perrection Pilfs.

\‘_\\ -

----------- . % Great.
rakemw tmmes NDW WE can fire
myw(aever all those G4 guys.
make a mistake!

Badlide’a¥
wHL N _Mr.Manager.

“|there can't be any bugs..”

all the differencein the
world between saying,
"we have this pill, s0

~and Knowing\

there aren't any bugs

because you looked.

.. andbesides,
somebody might forget
to take his pill#/

2023: J Paul Gibson

Software Engineering & Data Engineering

Do we test our software like this?

HOW DO THEY KNOW THE
LOAD LIMIT ON BRIDGES,
PAD? ' _—

THEY DRIVE BIGGER AND
BIGRER TRUGKS OVER THE
BRIDGE UNTIL \T BREAKS

TUEN THEY WEIGH THE
LAST TRUCK AND
REBUILD THE BRIDGE.

OH. I DEAR, IF YOU
SUOULD'VE | DONT KNON
QUESSED. | THE ANSWER,

JUST TELL

2023: J Paul Gibson

Software Engineering & Data Engineering

Do we test our software like this?

HOW TO PASS ALL YOUR TESTS
NO BUGS, NO COMPLAINTS, NO MORE RE-TESTING

WRITE TESTS
WRITE CODE EXECUTE CODE FROM VIEWING EXECUTE TESTS

THE EXECUTION

52 582 o 2

A
Andy Glover cartoontester.blogspot.com Copyright 2010

2023: J Paul Gibson Software Engineering & Data Engineering

Software Testing Quotes

https://
www.wired.com/
story/its-not-a-bug-
its-a-feature/

It's not a bug, it’s a feature

http://testautomation.applitools.com/post/98802238427/41-awesome-
quotes-about-software-testing

2023: J Paul Gibson Software Engineering & Data Engineering 5

http://testautomation.applitools.com/post/98802238427/41-awesome-quotes-about-software-testing
http://testautomation.applitools.com/post/98802238427/41-awesome-quotes-about-software-testing
https://www.wired.com/story/its-not-a-bug-its-a-feature/
https://www.wired.com/story/its-not-a-bug-its-a-feature/
https://www.wired.com/story/its-not-a-bug-its-a-feature/
https://www.wired.com/story/its-not-a-bug-its-a-feature/

Testing : in the V life cycle

Software Development Life Cycle Software Test Life Cycle

SDLC STLC
| User Acceptance
| Test Plans

A

[Requirement] [l‘ser Acceptance]

System Test Plans

[Functional Specification System Testing

Integrated Test Plans

h 4
A

h

«

[High Level Design

[Integration Testing]

Unit Test Plans

[Detailed Design/Program J [Unit Testing]

\
|

CODE

2023: J Paul Gibson Software Engineering & Data Engineering

Testing : in the V life cycle

 Validation
* Integration
e Unit

2023: J Paul Gibson Software Engineering & Data Engineering

Black box or White box Testing

Application Code

Test Case Input Application Test Case Output

Test Case Input Test Case Output

BLACK BOX TESTING APPROACH WHITE BOX TESTING APPROACH

Question: advantages and disadvantages of each?

2023: J Paul Gibson Software Engineering & Data Engineering

Black box or White box Testing

Testing safety is much
easier than testing

liveness
SAFETY LIVENESS
NOTHING BAD SOMETHING GOOD
WIiLL HAPPEWN wIiLL PEFIMITELY

HAPPEN

Q

2023: J Paul Gibson Software Engineering & Data Engineering

White box permits static analysis

for (int i=0; i<n; ++i) {
if (a.get(i) ==b.get(i))
x[i] = x[i] + 100;

else
X[i] = X[i] /2;
}
n paths
1 3
2 3}
3 9
10 1025
20 1048577
60 >1,15 1018

v

2023: J Paul Gibson

Software Engineering & Data Engineering

10

Unit Testing

Most (nearly all) programming languages have automated
tool support for unit testing (as well as other types of
testing)

JUnit CUnit xUnit etc

Whenever you learn a new programming language, learn the
testing tool(s) that come with 1t

Automated Unit testing is very valuable and
beginners to programming need to learn it ASAP

https://smartbear.com/blog/test-and-monitor/a-short-lecture-on-the-
value-and-practice-of-unit/

2023: J Paul Gibson Software Engineering & Data Engineering 11

http://blog.smartbear.com/automated-testing/a-short-lecture-on-the-value-and-practice-of-unit-testing/
http://blog.smartbear.com/automated-testing/a-short-lecture-on-the-value-and-practice-of-unit-testing/

Unit Testing

Equivalence classes + boundary values

Partition the input domain into equivalence classes to be covered

Classes determined from the functional requirements (set of values for
which functional behavior is the same)

Consider both valid and invalid classes (robustness testing)

|dentify boundary values for dedicated tests E.g., -1, 0, 1, +/- MAXINT

2023: J Paul Gibson Software Engineering & Data Engineering 12

Unit Testing

Inputs

Inputs

&

/!

Equivalence cfasses

http://www.testnbug.com/2015/01/equivalence-class-partitioning-and-boundar
value-analysis-black-box-testing-techniques/

2023: J Paul Gibson Software Engineering & Data Engineering 13

http://www.testnbug.com/2015/01/equivalence-class-partitioning-and-boundary-value-analysis-black-box-testing-techniques/
http://www.testnbug.com/2015/01/equivalence-class-partitioning-and-boundary-value-analysis-black-box-testing-techniques/

Unit Testing

L &N | 4+t |CNIIIIC KN/ W

2023: J Paul Gibson Software Engineering & Data Engineering

Integration Testing

Why do we not just do unit tests?

“2 unit tests, zero integration tests”’

http://1.1mgur.com/qSNSSFR.gifv

Why do we not just
do validation tests?

2023: J Paul Gibson Software Engineering & Data Engineering

15

Integration Testing

Fixing problems later
in development can
cost much more than
fixing them earlier -
but you have to
detect them first

Migalignment

[wrr You guys are
| building a Tlg)l\?:lEL?
Ny

R

/[WTF!Youguys are
building a B?Z#)GE?

Henrik Kniberg

2023: J Paul Gibson

Software Engineering & Data Engineering

16

Integration Testing - more examples

2023: J Paul Gibson Software Engineering & Data Engineering

17

Integration Testing

Big Bang —
system validation
— « 1f the system
works then 1t
must be properly

N T~
integrated? » Q\ . .

/
/0,
Wl

MAIN PROBLEMS:

Test at the system interface

O

0@

*Testing produces errors, but what caused them?

*Testing misses bugs

*Testing starts after all components are coded

2023: J Paul Gibson

Software Engineering & Data Engineering

18

Integration Testing Top Down— test all
interactions between
components (from root to
leaves).

Possible integration test

sequence ;/ 4\.\3.
2, N8
5/[: | '
- e
NOTES:

*In reality, one will execute many different tests for each branch of the tree.
*Top Down integration is usually performed breadth first or depth first.

2023: J Paul Gibson Software Engineering & Data Engineering 19

Integration Testing
Top Down— the need

for stubs

In top down testing, we may start the tests before all components are coded. In
such a case, we may have to write stubs — pieces of dummy code that simulate
behaviour that is not yet coded. In OO, stubs simulate called methods.

NOTE: When code for other lower level components is completed, the relevant
stubs are no longer needed.

To execute an integration test on branchl we may have
to simulate method calls between C and lower level
components that are not yet implemented.

1
/ For example, 1f SC2 is not yet coded we create a stub
(dummy code) which simulates the method call between
8 C and SC2

stub

w2
ﬂ
\9)

2023: J Paul Gibson Software Engineering & Data Engineering

20

Integration Testing

Bottom-Up— test all
interactions between

components (from leaves to
root).

Possible integration test D
sequence]

1/[:]
-, .

NOTES:

*In reality, one will execute many different tests for each branch of the tree.
*Bottom Up integration 1s usually performed breadth first or depth first.

2023: J Paul Gibson

Software Engineering & Data Engineering 21

Integration Testing

Bottom-Up— the need for drivers

In bottom up testing, we may start the tests before all components are coded.
In such a case, we may have to write drivers— pieces of dummy code that
simulate behaviour that 1s not yet coded. In OO, drivers simulate calling
methods

NOTE; When code for other higher level components is completed, the
relevant drivers are replaced.

For example, to execute an integration test on branches
5 7 and 4 we may have to simulate method calls from C
(which is not yet coded) to SC1 and SC2.

s S—
L7 driver

So, we create a driver (dummy code) which simulates
the sequence of method calls from C to SC1 and SC2.

2023: J Paul Gibson Software Engineering & Data Engineering

22

System Testing

its not what
the software does.
it's what the
USeg does.

@hu o\

Never underestimate the users’ ability to surprise

o

2023: J Paul Gibson Software Engineering & Data Engineering 23

Regression Testing

Regression:
"when you fix one bug, you
introduce several newer bugs."

2023: J Paul Gibson Software Engineering & Data Engineering

24

Testing Metrics

The problem with software testing metrics

May have

May not
have found

5
SO _~

"“This pie chart shows the bugs I may
have found and may not have found
while making this chart."

- -
Andy Glover cartoontester.blogspot.com © 2012

2023: J Paul Gibson

Software Engineering & Data Engineering

25

Testing Code Coverage

100%] Hightesting
procuctivity

Coverage

Low testing

productivity

0% 1<

Effort (time)
Figure 1: Coverage rate

Hightesting
productiaty

Low testing

productivity

Effort (time)
Figure 2: Failure discovery rate

Most testing tools come/work with coverage tools

2023: J Paul Gibson Software Engineering & Data Engineering

Test first development

2023: J Paul Gibson

Software Engineering & Data Engineering

27

Some other testing types

Functional - Nonfunctional
Performance

Usability

Security

Accessibility

Internationalisation/ localisation etc ...

2023: J Paul Gibson Software Engineering & Data Engineering

28

Security “goto fail” — Apple’s SSL bug

hashOut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;

if (Cerr
goto
if (Cerr
goto
if (Cerr
goto
if (Cerr
goto
if (Cerr
goto
goto
if (Cerr
goto

= SSLFreeBuffer(&hashCtx)) !'= 0)

fail;

= ReadyHash(&SSLHashSHA1l, &hashCtx)) != @)

fail;

= SSLHashSHAl.update(&hashCtx, &clientRandom)) != 0)
fail;

= SSLHashSHA1.update(&hashCtx, &serverRandom)) != @)
fail;

= SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
fail;

fail; /* MISTAKE! THIS LINE SHOULD NOT BE HERE */

= SSLHashSHA1. final (&hashCtx, &hashOut)) != @)

fail;

err = sslRawVerify(...);

if err is zero and there is actually no error to report.

The result is that the code leaps over the vital call to ss1RawVerify(), and exits the function.
This causes an immediate “exit and report success”, and the TLS connection succeeds, even though the

verification process hasn’t actually taken place.
A skilled attacker can easily exploit this

sslKeyExchange.c

2023: J Paul Gibson

Software Engineering & Data Engineering

29

http://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

security |ntel's AMT Vulnerability

In April 2017, Intel announced a critical privilege escalation
bug that was laying around its Active Management
Technology (AMT) login page for the past seven years. The
exploit allows a remote attacker to take control of vulnerable
devices with ease.

The login code for the AMT web interface incorrectly
used the strncmp function, which allowed users to gain
access when inserting an empty password at the login
screen.

2023: J Paul Gibson Software Engineering & Data Engineering

30

http://www.cplusplus.com/reference/cstring/strncmp/

Security

int main () {
string realpass = "secret”;
string userpass = "user-secret”;
int equal = strncmp(realpass.c str(), userpass.c_str(), userpass.size());
if (equal == 0) {
printf ("'%s' equals to '%s'", realpass.c_str(), userpass.c_str());

}

return equal * equal; // make sure it's positive

Question: can you see the problem?

2023: J Paul Gibson Software Engineering & Data Engineering 31

The Mega Conspiracy: using The Ken

Thomson Hack
https://oded.ninja/2017/05/14/amt-n-ken-hack/

What if someone hacked into Intel's servers a few years ago, and updated their compiler to

replace this:
strncmp(realpass.c_str(), userpass.c_str(), realpass.size())

with this:
strncmp(realpass.c_str(), userpass.c _str(), userpass.size())

Essentially adding a backdoor? What if the same attacker added code that turned off the
attack when test runners were used? or when the compiler was running inside Intel's LAN?
This might sound crazy and far-fetched, but there are threat actors out there with the skill-set
to pull this off. But hey, I'm not that paranoid. | do believe the vulnerability was introduced as a
result of a human mistake... or not?

2023: J Paul Gibson Software Engineering & Data Engineering

32

https://oded.ninja/2017/05/14/amt-n-ken-hack/

Your test code needs testing?

AND I WROTE A

TEST SCRIPT TO

TEST DILBERTS
TEST SCRIPT.

I SPENT THE WEEK
WRITING A TEST
SCRIPT FOR OUR
PRODUCT.

YOUR SCRIPT WAS
ALMOST PERFECT.
KEEP UP THE GOOD
WORK, BUDDY.

©2011 Scott Adams, Inc./Dist. by UFS, Inc.

Dilbert.com DilbertCartoonist@gmail.com

324

2023: J Paul Gibson Software Engineering & Data Engineering 33

Some PBL

“Simple” Unit test
Test first Programming
Equivalence Classes - Line Overlap

Invariants

2023: J Paul Gibson

Software Engineering & Data Engineering

34

Some PBL. “Simple” Unit test

Write test code to test a function/method that calculates the
average of 2 numbers

2023: J Paul Gibson Software Engineering & Data Engineering

35

Some PBL Test first Programming

Test-First Programming

The tests should drive you to write the code,
the reason you write code is to get a test to
succeed, and you should only write the
minimal code to do so. Note that test-first-
design is more than just unit testing. Unit
testing by itself does not change the design of
the code. In addition to documenting how code
should be used, test-first-design helps you keep
the design simple right from the start, and
keeps the design easy to change.

2023: J Paul Gibson

Software Engineering & Data Engineering

36

Some PBL Test first Programming

Test-First Programming

As project complexity grows, you may
notice that writing automated tests gets
harder to do. This is your early warning
system of overcomplicated design. Simplify
the design until tests become easy to write
again, and maintain this simplicity over the
course of the project.

2023: J Paul Gibson

Software Engineering & Data Engineering

37

Some PBL Test first Programming

Test-Code-Simplify Cycle

Write a single test

Compile it. It shouldn't compile, because you
haven't written the implementation code it calls

Implement just enough code to get the test to
compile

Run the test and see it fail

Implement just enough code to get the test to pass
Run the test and see it pass

Refactor for clarity and "once and only once"
Repeat

2023: J Paul Gibson

Software Engineering & Data Engineering

38

Some PBL

Putting It All Together

Working Example: htt

10 iterations to ...

Test first Programming

blog.differentpla.net/blog/2004/01/12/test-first-roman-numeral-conversion

2023: J Paul Gibson

std::string toRoman(int n)

{

std::string r;

struct TO_ROMAN {
int num;
const char xstr;
} to_roman[] = {
1000, "M", I,
900, "CM", 1},
500, "D", I,
400, "CD", 1%,
100, "C", 1},
90, "XC", 1,
50' IILII’ }'
40, "XL", I},
10' IIXII' }’
, "IXY, b,
, IIVII’ }'
, “IV", }'
, IIIII’ }’

P N N = W= s Sy M e W S S |

= A~UU1TO

b

for (int q = 0; q < sizeof(to_roman) / sizeof(to_roman[0]); ++q)

TO_ROMAN *t = &to_roman(ql;
while (n >= t->num)

n —= t->num;
r += t->str;

return r;

by

Software Engineering & Data Engineering

39

http://blog.differentpla.net/blog/2004/01/12/test-first-roman-numeral-conversion

Some PBL Test first Programming

The matches game

1 T e

Rules: This 1s a 2-player game. The game starts with a random
number of matches (between 15 and 30, say) on the table. Each
player must remove 1,2 or 3 matches. They play alternately until
only 1 match 1s left on the table. The player who 1s left with a single
match loses the game.

2023: J Paul Gibson Software Engineering & Data Engineering

40

Some PBL. Test first Programming

6.b. Develop a matches game player following a TFP approach

The player code should be a single function that takes as input the
number of matches left on the table, and returns the number of matches
to be removed. The player code should be as intelligent as possible so
that 1t will always win the game (if a win 1s possible).

Please submit your solution as a sequence of code and test pairs. The
final pair should be your best solution that passes all the tests. (I expect
the sequence will have a length between 4 and 8).

2023: J Paul Gibson Software Engineering & Data Engineering 41

Equivalence Classes - The Line Overlap Problem

Consider the integer number line:

.-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7 +8 ...

We can define a segment on this line by a range (minimum ... maximum)

Below, we illustrate 2 segments: (-3, 1) and (0,6)

L.-8-7-6-5432-10+1+24+34+4+5+6+7 +8 ...

In this example, the 2 segments are said to overlap on the
line because they share at least 1 point in common.
The overlap 1n this case 1s the segment (0, 1).

2023: J Paul Gibson Software Engineering & Data Engineering 42

The Line Overlap Problem

Requirements and Tests

The problem i1s to write a program that can calculate whether any 2
segments overlap on the integer line. It 1s to return the segment
overlapped as the result of the program (an “empty” segment if there
1s no overlap)

6.c) You are to specify and implement a test set for this problem.
You are not to code a working solution until after your tests are

coded.

Your test code should be written in the same programming language
as the solution(s) which you will be expected to test.

The code (including tests) must be well documented.

[llustrate that your tests can find errors in an incorrect solution

2023: J Paul Gibson Software Engineering & Data Engineering

43

The Line Overlap Problem

Complete Tests

Given the minimum and maximum values,
how many tests must be executed 1f we wish
to test (exhaustively) every possible case?

2023: J Paul Gibson Software Engineering & Data Engineering

44

Invariants to be tested

Invariants are boolean properties on the state of a system (or system
part) that should always be true.

For example:

* if an integer is used to represent the age of somebody then this
integer must always be non negative.

* if a pair of colours (with 3 possible values - red, amber, green)
represent 2 traffic lights at a junction then it must always be true
that if one colour is amber or green then the other must be red

* in the game of poker it is always true that no card can appear more
than once in the hand of a player

Invariants that are false/broken correspond to unsafe states of
systems. Testers must check that systems cannot arrive in such unsafe
states.

2023: J Paul Gibson Software Engineering & Data Engineering

45

Invariants

6.d. Specify (and code) the invariant for a game of connect-4
with 2 opposing players. The code should be a boolean function
which takes as mput the state of the game and returns true 1f 1t 1s
in a safe state (respects the game rules) and false otherwise.

2023: J Paul Gibson Software Engineering & Data Engineering 46

