
Software Engineering & Data Engineering2023: J Paul Gibson 1

CSC 7426 : Basics of Software Engineering

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu

http://jpaulgibson.synology.me/Teaching/TSP/CSC7426/

Testing

L6-TestingProblems.pdf

22023: J Paul Gibson Software Engineering & Data Engineering

Why do we need tests?

32023: J Paul Gibson Software Engineering & Data Engineering

Do we test our software like this?

42023: J Paul Gibson Software Engineering & Data Engineering

Do we test our software like this?

52023: J Paul Gibson Software Engineering & Data Engineering

Software Testing Quotes

http://testautomation.applitools.com/post/98802238427/41-awesome-
quotes-about-software-testing

https://
www.wired.com/
story/its-not-a-bug-
its-a-feature/

It’s not a bug, it’s a feature

http://testautomation.applitools.com/post/98802238427/41-awesome-quotes-about-software-testing
http://testautomation.applitools.com/post/98802238427/41-awesome-quotes-about-software-testing
https://www.wired.com/story/its-not-a-bug-its-a-feature/
https://www.wired.com/story/its-not-a-bug-its-a-feature/
https://www.wired.com/story/its-not-a-bug-its-a-feature/
https://www.wired.com/story/its-not-a-bug-its-a-feature/

62023: J Paul Gibson Software Engineering & Data Engineering

 Testing : in the V life cycle

Software Development Life Cycle Software Test Life Cycle

72023: J Paul Gibson Software Engineering & Data Engineering

 Testing : in the V life cycle

• Validation

• Intégration

• Unit

Système

Sous-système

82023: J Paul Gibson Software Engineering & Data Engineering

Black box or White box Testing

Question: advantages and disadvantages of each?

92023: J Paul Gibson Software Engineering & Data Engineering

Black box or White box Testing

Testing	safety	is	much	
easier	than	testing	
liveness

102023: J Paul Gibson Software Engineering & Data Engineering

White box permits static analysis

for (int i=0; i<n; ++i) {

if (a.get(i) ==b.get(i))

	 x[i] = x[i] + 100;

else

	 x[i] = x[i] /2;

}

n paths

1 3
2 5
3 9

10 1025
20 1048577
60 >1,15 1018

112023: J Paul Gibson Software Engineering & Data Engineering

Unit Testing

https://smartbear.com/blog/test-and-monitor/a-short-lecture-on-the-
value-and-practice-of-unit/

JUnit CUnit xUnit etc ….

Most (nearly all) programming languages have automated
tool support for unit testing (as well as other types of
testing)

Automated Unit testing is very valuable and
beginners to programming need to learn it ASAP

Whenever you learn a new programming language, learn the
testing tool(s) that come with it

http://blog.smartbear.com/automated-testing/a-short-lecture-on-the-value-and-practice-of-unit-testing/
http://blog.smartbear.com/automated-testing/a-short-lecture-on-the-value-and-practice-of-unit-testing/

122023: J Paul Gibson Software Engineering & Data Engineering

Unit Testing

Equivalence classes + boundary values

Partition	the	input	domain	into	equivalence	classes	to	be	covered	

Classes	determined	from	the	functional	requirements	(set	of	values	for	
which	functional	behavior	is	the	same)

Consider	both	valid	and	invalid	classes	(robustness	testing)	

Identify	boundary	values	for	dedicated	tests	E.g.,	-1,	0,	1,	+/-	MAXINT	

132023: J Paul Gibson Software Engineering & Data Engineering

Unit Testing

http://www.testnbug.com/2015/01/equivalence-class-partitioning-and-boundary-
value-analysis-black-box-testing-techniques/	

http://www.testnbug.com/2015/01/equivalence-class-partitioning-and-boundary-value-analysis-black-box-testing-techniques/
http://www.testnbug.com/2015/01/equivalence-class-partitioning-and-boundary-value-analysis-black-box-testing-techniques/

142023: J Paul Gibson Software Engineering & Data Engineering

Unit Testing

L4-Testing.key

152023: J Paul Gibson Software Engineering & Data Engineering

Integration Testing

Why do we not just do unit tests?

http://i.imgur.com/qSN5SFR.gifv

“2 unit tests, zero integration tests”

Why do we not just
do validation tests?

162023: J Paul Gibson Software Engineering & Data Engineering

Integration Testing

Fixing problems later
in development can
cost much more than
fixing them earlier -
but you have to
detect them first

172023: J Paul Gibson Software Engineering & Data Engineering

Integration Testing - more examples

182023: J Paul Gibson Software Engineering & Data Engineering

Big Bang –
system validation
– « if the system
works then it
must be properly
integrated? »

Test at the system interface

MAIN PROBLEMS:

•Testing produces errors, but what caused them?

•Testing misses bugs

•Testing starts after all components are coded

Integration Testing

192023: J Paul Gibson Software Engineering & Data Engineering

Integration Testing Top Down– test all
interactions between
components (from root to
leaves).

Possible integration test
sequence

5 6

2 7 8

4 31

NOTES:

•In reality, one will execute many different tests for each branch of the tree.

•Top Down integration is usually performed breadth first or depth first.

202023: J Paul Gibson Software Engineering & Data Engineering

Integration Testing
Top Down– the need
for stubs

S
1

In top down testing, we may start the tests before all components are coded. In
such a case, we may have to write stubs – pieces of dummy code that simulate
behaviour that is not yet coded. In OO, stubs simulate called methods.

NOTE: When code for other lower level components is completed, the relevant
stubs are no longer needed.

To execute an integration test on branch1 we may have
to simulate method calls between C and lower level
components that are not yet implemented.

For example, if SC2 is not yet coded we create a stub
(dummy code) which simulates the method call between
C and SC2C

SC1 SC22

2 8

SC3

stub

212023: J Paul Gibson Software Engineering & Data Engineering

Integration Testing
Bottom-Up– test all
interactions between
components (from leaves to
root).

Possible integration test
sequence

1 2

7 4 5

6 38

NOTES:

•In reality, one will execute many different tests for each branch of the tree.

•Bottom Up integration is usually performed breadth first or depth first.

222023: J Paul Gibson Software Engineering & Data Engineering

Integration Testing

Bottom-Up– the need for drivers

For example, to execute an integration test on branches
7 and 4 we may have to simulate method calls from C
(which is not yet coded) to SC1 and SC2.

So, we create a driver (dummy code) which simulates
the sequence of method calls from C to SC1 and SC2.

C

SC1

5

SC3

In bottom up testing, we may start the tests before all components are coded.
In such a case, we may have to write drivers– pieces of dummy code that
simulate behaviour that is not yet coded. In OO, drivers simulate calling
methods

NOTE; When code for other higher level components is completed, the
relevant drivers are replaced.

SC2

driver

232023: J Paul Gibson Software Engineering & Data Engineering

System Testing

Never underestimate the users’ ability to surprise

242023: J Paul Gibson Software Engineering & Data Engineering

Regression Testing

252023: J Paul Gibson Software Engineering & Data Engineering

Testing Metrics

262023: J Paul Gibson Software Engineering & Data Engineering

Testing Code Coverage

Most testing tools come/work with coverage tools

272023: J Paul Gibson Software Engineering & Data Engineering

Test first development

282023: J Paul Gibson Software Engineering & Data Engineering

Some other testing types

Functional - Nonfunctional

Performance

Usability

Security

Accessibility

Internationalisation/ localisation etc …

292023: J Paul Gibson Software Engineering & Data Engineering

Security “goto fail” – Apple’s SSL bug
. . .
hashOut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)
 goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail; /* MISTAKE! THIS LINE SHOULD NOT BE HERE */
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;

err = sslRawVerify(...);
. . .

sslKeyExchange.c

if err is zero and there is actually no error to report.
The result is that the code leaps over the vital call to sslRawVerify(), and exits the function.
This causes an immediate “exit and report success”, and the TLS connection succeeds, even though the
verification process hasn’t actually taken place.
A skilled attacker can easily exploit this

http://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

302023: J Paul Gibson Software Engineering & Data Engineering

Security Intel's AMT Vulnerability

In	April	2017,	Intel	announced	a	critical	privilege	escalation	
bug	that	was	laying	around	its	Active	Management	
Technology	(AMT)	login	page	for	the	past	seven	years.	The	
exploit	allows	a	remote	attacker	to	take	control	of	vulnerable	
devices	with	ease.

The login code for the AMT web interface incorrectly
used the strncmp function, which allowed users to gain
access when inserting an empty password at the login
screen.

http://www.cplusplus.com/reference/cstring/strncmp/

312023: J Paul Gibson Software Engineering & Data Engineering

Security

int	main	()	{

		string	realpass	=	"secret";

		string	userpass	=	"user-secret";

		int	equal	=	strncmp(realpass.c_str(),	userpass.c_str(),	userpass.size());

		if	(equal	==	0)	{

					printf	("'%s'	equals	to	'%s'",	realpass.c_str(),	userpass.c_str());

		}

		return	equal	*	equal;	//	make	sure	it's	positive

}

The	buggy	code

Question:	can	you	see	the	problem?

322023: J Paul Gibson Software Engineering & Data Engineering

The Mega Conspiracy: using The Ken
Thomson Hack
https://oded.ninja/2017/05/14/amt-n-ken-hack/

What if someone hacked into Intel's servers a few years ago, and updated their compiler to
replace this:
strncmp(realpass.c_str(),	userpass.c_str(),	realpass.size())

C++Copy

with this:
strncmp(realpass.c_str(),	userpass.c_str(),	userpass.size())

C++Copy

Essentially adding a backdoor? What if the same attacker added code that turned off the
attack when test runners were used? or when the compiler was running inside Intel's LAN?
This might sound crazy and far-fetched, but there are threat actors out there with the skill-set
to pull this off. But hey, I'm not that paranoid. I do believe the vulnerability was introduced as a
result of a human mistake... or not?

https://oded.ninja/2017/05/14/amt-n-ken-hack/

332023: J Paul Gibson Software Engineering & Data Engineering

Your test code needs testing?

342023: J Paul Gibson Software Engineering & Data Engineering

Some PBL

1. “Simple” Unit test

2. Test first Programming

3. Equivalence Classes - Line Overlap

4. Invariants

352023: J Paul Gibson Software Engineering & Data Engineering

Some PBL “Simple” Unit test

Write test code to test a function/method that calculates the

average of 2 numbers

362023: J Paul Gibson Software Engineering & Data Engineering

Some PBL Test first Programming

372023: J Paul Gibson Software Engineering & Data Engineering

Some PBL Test first Programming

382023: J Paul Gibson Software Engineering & Data Engineering

Some PBL Test first Programming

392023: J Paul Gibson Software Engineering & Data Engineering

Some PBL
Test first Programming

Putting It All Together

Working	Example:		http://blog.differentpla.net/blog/2004/01/12/test-first-roman-numeral-conversion	

std::string toRoman(int n)

{

 std::string r;

 struct TO_ROMAN {

 int num;

 const char *str;

 } to_roman[] = {

 { 1000, "M", },

 { 900, "CM", },

 { 500, "D", },

 { 400, "CD", },

 { 100, "C", },

 { 90, "XC", },

 { 50, "L", },

 { 40, "XL", },

 { 10, "X", },

 { 9, "IX", },

 { 5, "V", },

 { 4, "IV", },

 { 1, "I", },

 };

 for (int q = 0; q < sizeof(to_roman) / sizeof(to_roman[0]); ++q)

 {

 TO_ROMAN *t = &to_roman[q];

 while (n >= t->num)

 {

 n -= t->num;

 r += t->str;

 }

 }

 return r;

}

10	iterations	to	…

http://blog.differentpla.net/blog/2004/01/12/test-first-roman-numeral-conversion

402023: J Paul Gibson Software Engineering & Data Engineering

Some PBL Test first Programming

The	matches	game

Rules: This is a 2-player game. The game starts with a random
number of matches (between 15 and 30, say) on the table. Each
player must remove 1,2 or 3 matches. They play alternately until
only 1 match is left on the table. The player who is left with a single
match loses the game.

412023: J Paul Gibson Software Engineering & Data Engineering

Some PBL Test first Programming

6.b.	Develop	a	matches	game	player	following	a	TFP	approach

The player code should be a single function that takes as input the
number of matches left on the table, and returns the number of matches
to be removed. The player code should be as intelligent as possible so
that it will always win the game (if a win is possible).

Please submit your solution as a sequence of code and test pairs. The
final pair should be your best solution that passes all the tests. (I expect
the sequence will have a length between 4 and 8).

422023: J Paul Gibson Software Engineering & Data Engineering

Equivalence Classes - The Line Overlap Problem

Consider the integer number line:

… -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 …

We can define a segment on this line by a range (minimum … maximum)

… -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 …

Below, we illustrate 2 segments: (-3, 1) and (0,6)

In this example, the 2 segments are said to overlap on the
line because they share at least 1 point in common.

The overlap in this case is the segment (0, 1).

432023: J Paul Gibson Software Engineering & Data Engineering

The Line Overlap Problem

Requirements and Tests

The problem is to write a program that can calculate whether any 2
segments overlap on the integer line. It is to return the segment
overlapped as the result of the program (an “empty” segment if there
is no overlap)

6.c) You are to specify and implement a test set for this problem.
You are not to code a working solution until after your tests are
coded.

Your test code should be written in the same programming language
as the solution(s) which you will be expected to test.

The code (including tests) must be well documented.

Illustrate that your tests can find errors in an incorrect solution

442023: J Paul Gibson Software Engineering & Data Engineering

The Line Overlap Problem

Complete Tests

Given the minimum and maximum values,
how many tests must be executed if we wish
to test (exhaustively) every possible case?

452023: J Paul Gibson Software Engineering & Data Engineering

Invariants to be tested

Invariants are boolean properties on the state of a system (or system
part) that should always be true.

For example:

• if an integer is used to represent the age of somebody then this
integer must always be non negative.

• if a pair of colours (with 3 possible values - red, amber, green)
represent 2 traffic lights at a junction then it must always be true
that if one colour is amber or green then the other must be red

• in the game of poker it is always true that no card can appear more
than once in the hand of a player

Invariants that are false/broken correspond to unsafe states of
systems. Testers must check that systems cannot arrive in such unsafe
states.

462023: J Paul Gibson Software Engineering & Data Engineering

Invariants

6.d. Specify (and code) the invariant for a game of connect-4

with 2 opposing players. The code should be a boolean function
which takes as input the state of the game and returns true if it is
in a safe state (respects the game rules) and false otherwise.

