
Software and Data Engineering2023: J Paul Gibson 1

CSC7426: Basics of Software Engineering

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu

http://jpaulgibson.synology.me/Teaching/TSP/
CSC7426/

Requirements Engineering

http://jpaulgibson.synology.me/Teaching/TSP/CSC7426/Requirements.pdf

mailto:paul.gibson@telecom-sudparis.eu

Software and Data Engineering2023: J Paul Gibson 2

Software and Data Engineering2023: J Paul Gibson 3

Requirements modelling is important in all life cycles

Requirements should

•say what not how

•be customer oriented

•be consistent

•be complete

•be unambiguous

•be useful to designers

Requirements capture and validation is probably the most
difficult part of software engineering. It is also one of the
most critical parts

Software and Data Engineering2023: J Paul Gibson 4

Reading Material

• Requirements engineering in the year 00: A research
perspective, A van Lamsweerde, 2000

• Requirements Engineering: A Roadmap, Bashar Nuseibeh
and Steve Easterbrook, 2000

• On Non-Functional Requirements in Software
Engineering, Lawrence Chung and Julio Cesar Sampaio
do Prado Leite, 2009

• Requirements Engineering, Elizabeth Hull, Ken Jackson
and Jeremy Dick, 2005

Software and Data Engineering2023: J Paul Gibson 5

Reading Material

• Use cases - yesterday, today, and tomorrow, Ivar
Jacobson, 2004

• Structuring Use Cases with Goals, Alistair
Cockburn, 1997

• Writing effective use cases. Vol. 1, Alistair
Cockburn, 2000

Software and Data Engineering2023: J Paul Gibson 6

Requirements: the issues

The world of software engineering cannot always agree on
requirements modelling:

•formal or informal

•operational or logical

•textual or graphic

•client-led or analyst-led

Software and Data Engineering2023: J Paul Gibson 7

Requirements: the issues

My guidelines:

•make the model as ‘formal’ as possible/necessary

•incorporate operational and logical semantics

•let the user (client, analyst or designer) decide on how they want
to view the models (the syntax)

•where possible, let the client construct their own requirements

•animate/execute requirements specifications as a means of rapid
prototyping

•never force the client to use a vocabulary they don’t understand

•never compromise how the client structures their understanding of
the problem

•don’t let the client make implementation decisions

Software and Data Engineering2023: J Paul Gibson 8

The requirements model – needs to be validated

The model:

•acts as a contract between client and analyst

•improves communication by attacking risks ---

•client misunderstands

•client informs/communicates

•analyst misunderstands

•analyst misleads

•will act as contract with designers

Software and Data Engineering2023: J Paul Gibson 9

Requirements case study : incompleteness

A typical example is that of a stack (or queue):

•client specifies LIFO behaviour using push
and pop

•the exception case: popping from

empty is not specified so what to do -

•return to client and ask them what is
required

•leave it up to the implementers to decide
only if the client thinks that this is best

Note: formal methods can help identify incompleteness

Software and Data Engineering2023: J Paul Gibson 10

Requirements case study : inconsistency

A typical example is that of a double honours student

•client specifies that student can do two different subjects

•client allows students to change one of their subjects

Problem: by changing one subject, a student can end up
studying two subjects which are the same

Solution: make the client remove the inconsistency (don’t just
hide a fix away in the design/implementation)

Note: formal methods can help identify inconsistency

Software and Data Engineering2023: J Paul Gibson 11

Requirements case study : non-(implementable/feasible)

Try and make sure you are not asked
to do something which can’t be done :

•Implement a set of inconsistent
requirements

•Implement a set of uncomputable
requirements

•Implement a set of requirements that
are unrealistic given today’s
technology

Software and Data Engineering2023: J Paul Gibson 12

Requirements case study : under-specification

Under-specification is easy to identify as it usually corresponds

to the expression of an idealistic goal, leaving the reader with no
idea of how one could check whether a given system actually
meets the goal, or even if such a system could exist.

An example of this is an EU e-voting requirement [standard 65]:

“The presentation of the voting options shall

be optimised for the voter.”

Under-Specification occurs when requirements are too vague

Software and Data Engineering2023: J Paul Gibson 13

Requirements case study : over-specification

Over-Specification occurs when requirements are too concrete

Over-specification is easy to identify as it usually manifests itself in
a sentence of the form: “you must use X because X does Y”.

Clearly, a requirements document would be better saying “you must
do Y”, and it could even state “and X is an alternative way of
guaranteeing Y”.

Otherwise, if we had a machine that “uses Z to do Y” then this
machine would be rejected even though it met its requirements.

An example of this is an EU e-voting requirement [standard 66]:

“Open standards shall be used to ensure that the various
technical components [. . .] interoperate”

Software and Data Engineering2023: J Paul Gibson 14

Requirements case study : keeping client structure

A typical example is that of a client who structures their understanding in
terms of components with which they are familiar. For example, a client
who wants:

a system of 2 stacks where we can push elements onto one stack and
pop elements of the other. When a pop is requested, all elements on the
first stack are popped off 1-by-1 and pushed onto the second stack 1-
by-1.. Then, the last element is popped off. Finally, all the remaining
elements are popped off the second stack and pushed on the first
(again, 1-by-1)

Problem: this is in fact a queue!

Solution 1: explain queues to the client

Solution 2: transform automatically at the first design stage

Note: here the structure of the client’s understanding must be respected

Software and Data Engineering2023: J Paul Gibson 15

Problem Based Learning : a lift

Specify the requirements of a lift/elevator without making
any implementation decisions:

•say what not how

•identify and formalise the client’s vocabulary

•comment on validation

•how easy is it to verify a design/implementation?

Practical Work – working in teams (or alone) - specify –he
requirements of a lift/elevator system… you should need
about 2-3 hours …… then we’ll try to evaluate how good
they are.

Software and Data Engineering2023: J Paul Gibson 16

HINT - be careful about ambiguity

