
CSC4521 Requirements Modelling J Paul Gibson 1

Génie logiciel pour la conception d'un Système
d'Information

CSC4521
Voie d'Approfondissement

Intégration et Déploiement de Systèmes d’Information
(VAP DSI)

Requirements

paul.gibson@telecom-sudparis.eu
http://jpaulgibson.synology.me/~jpaulgibson/TSP/Teaching/

CSC4521/CSC4521-Requirements.pdf

CSC4521 Requirements Modelling J Paul Gibson 2

CSC4521 Requirements Modelling J Paul Gibson 3

Requirements modelling is important in all software life cycles

Requirements should
•say what not how
•be customer oriented
•be consistent
•be complete
•be unambiguous
•be useful to designers

Requirements capture and validation is probably the most difficult part of
software engineering. It is also one of the most critical parts

CSC4521 Requirements Modelling J Paul Gibson 4

Reading Material

Requirements engineering in the year 00: A research perspective, A van
Lamsweerde, 2000

Requirements Engineering: A Roadmap, Bashar Nuseibeh and Steve
Easterbrook, 2000

On Non-Functional Requirements in Software Engineering, Lawrence
Chung and Julio Cesar Sampaio do Prado Leite, 2009

Requirements Engineering, Elizabeth Hull, Ken Jackson and Jeremy
Dick, 2005

CSC4521 Requirements Modelling J Paul Gibson 5

Requirements: the issues

The world of software engineering cannot
always agree on requirements modelling:

•formal or informal
•operational or logical
•textual or graphic
•client-led or analyst-led

CSC4521 Requirements Modelling J Paul Gibson 6

Requirements: the issues
My guidelines:

•make the model as ‘formal’ as possible/necessary
•incorporate operational and logical semantics
•let the user (client, analyst or designer) decide on how they want to
view the models (the syntax)
•where possible, let the client construct their own requirements
•animate/execute requirements specifications as a means of rapid
prototyping
•never force the client to use a vocabulary they don’t understand
•never compromise how the client structures their understanding of the
problem
•don’t let the client make implementation decisions

CSC4521 Requirements Modelling J Paul Gibson 7

The requirements model – needs to be validated

The model:
•acts as a contract between client and analyst
•improves communication by attacking risks ---

•client misunderstands
•client informs/communicates
•analyst misunderstands
•analyst misleads

•will act as contract with designers

CSC4521 Requirements Modelling J Paul Gibson 8

Requirements case study : incompleteness
A typical example is that of a stack (or queue):

•client specifies LIFO behaviour using
push and pop

•the exception case: popping from

empty is not specified so what to do -

•return to client and ask them what is
required

•leave it up to the implementers to
decide only if the client thinks that this
is best

Note: formal
methods can help
identify
incompleteness

CSC4521 Requirements Modelling J Paul Gibson 9

Requirements case study : inconsistency

A typical example is that of a double honours student

•client specifies that student can do two different subjects

•client allows students to change one of their subjects

Problem: by changing one subject, a student can end up studying two
subjects which are the same

Solution: make the client remove the inconsistency (don’t just hide a fix
away in the design/implementation)

Note: formal methods can help identify inconsistency

CSC4521 Requirements Modelling J Paul Gibson 10

Requirements case study : non-(implementable/feasible)

Try and make sure you are not asked to do
something which can’t be done :
•Implement a set of inconsistent
requirements
•Implement a set of uncomputable
requirements
•Implement a set of requirements that are
unrealistic given today’s technology

CSC4521 Requirements Modelling J Paul Gibson 11

Requirements case study : under-specification

Under-specification is easy to identify as it usually corresponds
to the expression of an idealistic goal, leaving the reader with no idea
of how one could check whether a given system actually meets the
goal, or even if such a system could exist.

An example of this is an EU e-voting requirement [standard 65]:

“The presentation of the voting options shall
be optimised for the voter.”

Under-Specification occurs when requirements are too vague

CSC4521 Requirements Modelling J Paul Gibson 12

Requirements case study : over-specification

Over-Specification occurs when requirements are too concrete

Over-specification is easy to identify as it usually manifests itself in a sentence of the form:
“you must use X because X does Y”.

Clearly, a requirements document would be better saying “you must do Y”, and it could even
state “and X is an alternative way of guaranteeing Y”.

Otherwise, if we had a machine that “uses Z to do Y” then this machine would be rejected
even though it met its requirements.

An example of this is an EU e-voting requirement [standard 66]:

“Open standards shall be used to ensure that the various technical components
[. . .] interoperate”

CSC4521 Requirements Modelling J Paul Gibson 13

Requirements case study : keeping client structure

A typical example is that of a client who structures their understanding in terms of
components with which they are familiar. For example, a client who wants:

a system of 2 stacks where we can push elements onto one stack and pop
elements of the other. When a pop is requested, all elements on the first stack
are popped off 1-by-1 and pushed onto the second stack 1-by-1.. Then, the last
element is popped off. Finally, all the remaining elements are popped off the
second stack and pushed on the first (again, 1-by-1)

Problem: this is in fact a queue!
Solution 1: explain queues to the client
Solution 2: transform automatically at the first design stage

Note: here the structure of the client’s understanding must be respected

CSC4521 Requirements Modelling J Paul Gibson 14

Problem Based Learning : a lift

Specify the requirements of a lift/elevator without making any
implementation decisions:

•say what not how
•identify and formalise the clients’/users’ vocabulary
•how easy is it to validate your specification?
•how easy is it to verify a design/implementation against your
specification?

Practical Work – working in teams (or alone) - specify – the requirements
of a lift/elevator system … then we’ll try to evaluate how good they are

CSC4521 Requirements Modelling J Paul Gibson 15

HINT - be careful about ambiguity

