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Engineers SOLVE PROBLEMS

and CHECK (proposed) SOLUTIONS



Engineers work with models (of problems and solutions)

Engineering is based on science – scientists (try to) build models of 
things in the real world, engineers (try to) build things in the real world 
from models

Architects build 
models of 
problems and 
solutions – they 
are engineers 
and scientists



Build a Requirements Model

Build a Design Model

Build an Implementation Model

Build Test Model



What is a good model ? 

What is a good modelling language ? 

What is a good modelling method ?



Natural Language 

UML

Java

Java Byte Code

Machine Code

An on-line voting system

public class Poll { ...}
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Building a  Model

Modelling Method - any technique concerned with the 
construction and/or analysis of mathematical models which 
aid the development of computer/information systems

Some toy modelling languages will help us 
explore the fundamental concepts - consistency, 
completeness, coherency, validation, 
verification, testing …

We will not be using UML/Java but the lessons are the same !!



Typographical Re-write Systems (TRS) 

A TRS is a formal system based on the ability to generate a set of 
strings following a simple set of syntactic rules. 

Each rule is calculable --- the generation of a new string from an 
old string by application of a rule always terminates 

A TRS may produce an infinite number of strings 

TRSs can be as powerful as any computing machine  

TRSs are simple to implement (simulate) 



Case Study 1 --- The MUI TRS Thanks to Hofstadter - 
https://en.wikipedia.org/wiki/Gödel,_Escher,_Bach

The model is 
executable - a 
“program”

Input - 
a string  

Output - 
true/false 
(with optional 
proof)



Case Study 1 --- The MUI TRS



Case Study 1 --- The MUI TRS

Question: before we move on ... is MU a theorem of MUI ?





Alphabet = {p,q,-} 

Axiom: 
for any such x such that 
x is a possibly empty 
sequence of ‘-’s, 
xp-qx- is an axiom 

Generation Rules: 
for any x,y,z which are 
possibly empty 
sequences of ‘-’s, 
if xpyqz is a theorem 
then xpy-qz- is a theorem

Modellers strive for consistency and completeness





Question : 
Impact on 
Requirements 
Modelling ?





Problem 1 - 

Define a TRS that can decide if a natural number 
is composite 

Define a TRS that can decide if a natural number 
is prime



http://www.meta-environment.org/doc/books/extraction-transformation/term-rewriting/term-rewriting.html

Term Re-writing - another view/mechanism - towards ADTs

inputthe program

universal computer

output

This is the 
computational 
model behind many 
Abstract Data Types 
(ADTs)



Often used to model requirements, and to specify abstract classes in OO models

ADTs are a powerful specification technique which exist in many forms/languages 

These languages are often given operational semantics in a way similar to TRSs  

Most ADTs have the following parts --- 

•A type which is made up from sorts 

•Sorts which are made up of equivalent sets 

•Equivalent sets which are made up of expressions 

For example, the integer type could be  made up of 

•sorts integer and boolean 

An equivalence set of the integer sort could be {3, 1+2, 2+1, 1+1+1} 

An equivalence set of the boolean sort could be {3=3, 1=1, not(false)}



TYPE integer SORTS integer, boolean 

OPNS  

0:-> integer 

succ: integer -> integer 

eq: integer, integer -> boolean 

+: integer, integer -> integer 

EQNS forall x,y: integer 

0 eq 0 = true; succ(x) eq succ(y) = x eq y; 

0 eq succ(x) = false; succ(x) eq 0 = false; 

0 + x = x; succ(x) + y = x + (succ(y)); 

ENDTYPE

A simple ADT specification of integer addition

How do we show, for example, 

         “1+2 = 3”   is “true” 

By a sequence of rewrite rules 

“succ(0) + succ(succ(0)) eq succ(succ(succ(0)))” 

“0 + succ(succ(succ(0)) eq succ(succ(succ(0)))” 

“succ(succ(succ(0))) eq succ(succ(succ(0)))” 

“succ(succ(0)) eq succ(succ(0))” 

“succ(0) eq succ(0)” 

“0 eq 0” 

“true”



TYPE integer SORTS integer, boolean 

OPNS  

0:-> integer 

succ: integer -> integer 

eq: integer, integer -> boolean 

+: integer, integer -> integer 

EQNS forall x,y: integer 

0 eq 0 = true; succ(x) eq succ(y) = x eq y; 

0 eq succ(x) = false; succ(x) eq 0 = false; 

0 + x = x; succ(x) + y = x + (succ(y)); 

ENDTYPE

A simple ADT specification of integer addition

Question: how do we show

•3+2 = 4+1 
•2+2 != 3+2



Question: 

Extend the model to 
include multiplication

TYPE integer SORTS integer, boolean 

OPNS  

0:-> integer 

succ: integer -> integer 

eq: integer, integer -> boolean 

+: integer, integer -> integer 

EQNS forall x,y: integer 

0 eq 0 = true; succ(x) eq succ(y) = x eq y; 

0 eq succ(x) = false; succ(x) eq 0 = false; 

0 + x = x; succ(x) + y = x + (succ(y)); 

ENDTYPE

A simple ADT specification of integer addition



Redundancy

Non-Termination

Non-Confluence

x eq y = y eq x

x eq x = false 
0 eq 0 = true

x eq x = true 
0 eq 0 = true

Important properties
TYPE integer SORTS integer, boolean 

OPNS  

0:-> integer 

succ: integer -> integer 

eq: integer, integer -> boolean 

+: integer, integer -> integer 

EQNS forall x,y: integer 

0 eq 0 = true; succ(x) eq succ(y) = x eq y; 

0 eq succ(x) = false; succ(x) eq 0 = false; 

0 + x = x; succ(x) + y = x + (succ(y)); 

ENDTYPE



Consequently, there are 4 important properties of ADT 
specifications: 

•completeness 
•consistency  
•confluence 
•terminating

Isomorphic, with respect to the interpretation

Convergent, independent of interpretation

Note - Redundancy can be both good and bad



Question: 

How do you 
interpret each of 
the operations 
and equations? 

Is this a valid 
interpretation for 
a set of integers?

TYPE Set SORTS integer, boolean 
OPNS 
empty:-> Set 
str: Set, integer -> Set 
add: Set, integer -> Set 
contains: Set, integer -> boolean 
EQNS forall s:Set, x, y :integer 
contains(empty, x) = false; 
x eq y =>          contains(str(s,x), y) = true; 
not (x eq y) => contains(str(s,x), y) = contains(s,y); 
contains(s,x) =>         add(s,x) = s; 
not(contains(s,x)) => add(s,x) = str(s,x) 
ENDTYPE

An ADT for a set of integers
Note the new syntax for 
preconditions



Question:  
add operations for -- 

•remove 
•union 
•equality

TYPE Set SORTS integer, boolean 
OPNS 
empty:-> Set 
str: Set, integer -> Set 
add: Set, integer -> Set 
contains: Set, integer -> boolean 
EQNS forall s:Set, x, y :integer 
contains(empty, x) = false; 
x eq y =>          contains(str(s,x), y) = true; 
not (x eq y) => contains(str(s,x), y) = contains(s,y); 
contains(s,x) => add(s,x) = s; 
not(contains(s,x)) => add(s,x) = str(s,x) 
ENDTYPE

An ADT for a set of integers



Set (model) verification

We would like to verify the following properties: 

•e ∉ (S-e) 

•e ∈ (S1 ∪ S2) ⇒ e ∈S1  ∨ e ∈ S2

Invariant Property: verify that a set never contains any repeated 
elements

Question: Can you sketch the proofs (for your set specification)?



Problem 2 - 

Write an ADT specification for a stack of integers 

Write an ADT specification for a queue of integers 

Compare and contrast the 2 models


