
Génie logiciel pour la conception d'un Système
d'Information

CSC4521
Voie d'Approfondissement

Intégration et Déploiement de Systèmes d’Information
(VAP DSI)

Modelling -
Models, Languages and Methods

paul.gibson@telecom-sudparis.eu
http://jpaulgibson.synology.me/~jpaulgibson/TSP/Teaching/

CSC4521/CSC4521-Modelling.pdf

Engineers SOLVE PROBLEMS

and CHECK (proposed) SOLUTIONS

Engineers work with models (of problems and solutions)

Engineering is based on science – scientists (try to) build models of
things in the real world, engineers (try to) build things in the real world
from models

Architects build
models of
problems and
solutions – they
are engineers
and scientists

Build a Requirements Model

Build a Design Model

Build an Implementation Model

Build Test Model

What is a good model ?

What is a good modelling language ?

What is a good modelling method ?

Natural Language

UML

Java

Java Byte Code

Machine Code

An on-line voting system

public class Poll { ...}

110000010100011101000110

Building a Model

Modelling Method - any technique concerned with the
construction and/or analysis of mathematical models which
aid the development of computer/information systems

Some toy modelling languages will help us
explore the fundamental concepts - consistency,
completeness, coherency, validation,
verification, testing …

We will not be using UML/Java but the lessons are the same !!

Typographical Re-write Systems (TRS)

A TRS is a formal system based on the ability to generate a set of
strings following a simple set of syntactic rules.

Each rule is calculable --- the generation of a new string from an
old string by application of a rule always terminates

A TRS may produce an infinite number of strings

TRSs can be as powerful as any computing machine

TRSs are simple to implement (simulate)

Case Study 1 --- The MUI TRS Thanks to Hofstadter -
https://en.wikipedia.org/wiki/Gödel,_Escher,_Bach

The model is
executable - a
“program”

Input -
a string

Output -
true/false
(with optional
proof)

Case Study 1 --- The MUI TRS

Case Study 1 --- The MUI TRS

Question: before we move on ... is MU a theorem of MUI ?

Alphabet = {p,q,-}

Axiom:
for any such x such that
x is a possibly empty
sequence of ‘-’s,
xp-qx- is an axiom

Generation Rules:
for any x,y,z which are
possibly empty
sequences of ‘-’s,
if xpyqz is a theorem
then xpy-qz- is a theorem

Modellers strive for consistency and completeness

Question :
Impact on
Requirements
Modelling ?

Problem 1 -

Define a TRS that can decide if a natural number
is composite

Define a TRS that can decide if a natural number
is prime

http://www.meta-environment.org/doc/books/extraction-transformation/term-rewriting/term-rewriting.html

Term Re-writing - another view/mechanism - towards ADTs

inputthe program

universal computer

output

This is the
computational
model behind many
Abstract Data Types
(ADTs)

Often used to model requirements, and to specify abstract classes in OO models

ADTs are a powerful specification technique which exist in many forms/languages

These languages are often given operational semantics in a way similar to TRSs

Most ADTs have the following parts ---

•A type which is made up from sorts

•Sorts which are made up of equivalent sets

•Equivalent sets which are made up of expressions

For example, the integer type could be made up of

•sorts integer and boolean

An equivalence set of the integer sort could be {3, 1+2, 2+1, 1+1+1}

An equivalence set of the boolean sort could be {3=3, 1=1, not(false)}

TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean

+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;

0 + x = x; succ(x) + y = x + (succ(y));

ENDTYPE

A simple ADT specification of integer addition

How do we show, for example,

 “1+2 = 3” is “true”

By a sequence of rewrite rules

“succ(0) + succ(succ(0)) eq succ(succ(succ(0)))”

“0 + succ(succ(succ(0)) eq succ(succ(succ(0)))”

“succ(succ(succ(0))) eq succ(succ(succ(0)))”

“succ(succ(0)) eq succ(succ(0))”

“succ(0) eq succ(0)”

“0 eq 0”

“true”

TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean

+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;

0 + x = x; succ(x) + y = x + (succ(y));

ENDTYPE

A simple ADT specification of integer addition

Question: how do we show

•3+2 = 4+1
•2+2 != 3+2

Question:

Extend the model to
include multiplication

TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean

+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;

0 + x = x; succ(x) + y = x + (succ(y));

ENDTYPE

A simple ADT specification of integer addition

Redundancy

Non-Termination

Non-Confluence

x eq y = y eq x

x eq x = false
0 eq 0 = true

x eq x = true
0 eq 0 = true

Important properties
TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean

+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;

0 + x = x; succ(x) + y = x + (succ(y));

ENDTYPE

Consequently, there are 4 important properties of ADT
specifications:

•completeness
•consistency
•confluence
•terminating

Isomorphic, with respect to the interpretation

Convergent, independent of interpretation

Note - Redundancy can be both good and bad

Question:

How do you
interpret each of
the operations
and equations?

Is this a valid
interpretation for
a set of integers?

TYPE Set SORTS integer, boolean
OPNS
empty:-> Set
str: Set, integer -> Set
add: Set, integer -> Set
contains: Set, integer -> boolean
EQNS forall s:Set, x, y :integer
contains(empty, x) = false;
x eq y => contains(str(s,x), y) = true;
not (x eq y) => contains(str(s,x), y) = contains(s,y);
contains(s,x) => add(s,x) = s;
not(contains(s,x)) => add(s,x) = str(s,x)
ENDTYPE

An ADT for a set of integers
Note the new syntax for
preconditions

Question:
add operations for --

•remove
•union
•equality

TYPE Set SORTS integer, boolean
OPNS
empty:-> Set
str: Set, integer -> Set
add: Set, integer -> Set
contains: Set, integer -> boolean
EQNS forall s:Set, x, y :integer
contains(empty, x) = false;
x eq y => contains(str(s,x), y) = true;
not (x eq y) => contains(str(s,x), y) = contains(s,y);
contains(s,x) => add(s,x) = s;
not(contains(s,x)) => add(s,x) = str(s,x)
ENDTYPE

An ADT for a set of integers

Set (model) verification

We would like to verify the following properties:

•e ∉ (S-e)

•e ∈ (S1 ∪ S2) ⇒ e ∈S1 ∨ e ∈ S2

Invariant Property: verify that a set never contains any repeated
elements

Question: Can you sketch the proofs (for your set specification)?

Problem 2 -

Write an ADT specification for a stack of integers

Write an ADT specification for a queue of integers

Compare and contrast the 2 models

