Génie logiciel pour la conception d'un Systéme
d'Information
CSC4521
Voie d'Approfondissement
Intégration et Déploiement de Systemes d’Information
(VAP DSI)

paul.gibson@telecom-sudparis.eu
http://jpaulgibson.synology.me/~jpaulgibson/TSP/Teaching/
CSC4521/CSC4521-Modelling.pdf

Engineers SOLVE PROBLEMS

Verification Validation

ProbI:m 3

LN
e

¥| Problem Statement |, - static analysis
: (Specification) : 8 (
E- proofs of

ci I ; correctness

g:| Implementation ‘
(Program Code)

gl and CHECK (proposed) SOLUTIONS

Engineers work with models (of problems and solutions)

Engineering is based on science — scientists (try to) build models of

things in the real world, engineers (try to) build things in the real world
from models

ARCGHITECTS THEN..

Architects build
models of
problems and
solutions — they
are engineers
and scientists

New tools, same slouch

”~

Probl:m

Situation Build a Requirements Model

e, VO Hfication

-¥| Problem Statement :
j (Specification) | i : 8 Build a Design Model
3
! ¥
: ; 3P
g . Build an Implementation Model
:I Implementation |~
(Program Code) :
Build Test Model
A &

What is a good model ?
What is a good modelling language ?

What is a good modelling method ?

WHAT DO 1 GHOOSE?

Natural Language An on-line voting system

|

= collected_vote
+poll ID . .
U M L + poll_voters_ID e Cand.;date_nd
+ Candidate id << Get Votes Count>> | +Poll_id .
Ml — 1.. +get Votes Count()
+ Display(cand_id)
+ Submit Vote()

+ Cancel Vote()

Java public class Poll { ...}

118 new §#68 <Class javax/realtime/PerlodicParameters>
121 dup
122 aload i
124 aload 5

Java Byte Code 126 aload 8
128 aload 5
130 aconst_null

v

Machine Code 110000010100011101000110

Building a Model

Modelling Method - any technique concerned with the
construction and/or analysis of mathematical models which
aid the development of computer/information systems

Some toy modelling languages will help us
explore the fundamental concepts - consistency,
completeness, coherency, validation,
verification, testing ...

We will not be using UML/Java but the lessons are the same !!

Typographical Re-write Systems (TRS)

A TRS is a formal system based on the ability to generate a set of
strings following a simple set of syntactic rules.

Each rule is calculable --- the generation of a new string from an
old string by application of a rule always terminates

A TRS may produce an infinite number of strings
TRSs can be as powerful as any computing machine

TRSs are simple to implement (simulate)

Case Study 1 --- The MUI TRS Thanks to Hofstadter -

https://en.wikipedia.org/wiki/Gddel, Escher, Bach

Alphabet = {M,L,U}

Strings: any sequence of characters found in the alphabet

Axiom: MI The model is
Generation Rules: for all strings such that x and vy are strings of MUI or * *: executable - a
*1) xTI can generate xTU “prog ram”

*2) Mx can generate Mxx
*3) xIITIy can generate xUy

*4) xUUy can generate xy Inpuf[-
a string

A theorem of a TRS is any string which can be generated from the axioms
(or any other theorem)

Output -
true/false
(with optional
proof)

A proof of a theorem corresponds to the set of rules which have been
followed to generate that theorem

Case Study 1 --- The MUI TRS

Alphabet = {M,LU}
Strings: any sequence of characters found in the alphabet
Axiom: MI

*1) xI can generate xIU
*2) Mx can generate Mxx
*3) xIIly can generate xUy
*4) xUUy can generate xy

Generation Rules: for all strings such that x is a string of MUI or x =*":

Question: can you prove the theorem MUIIU?

Input

Question: can we automate the process of :
string

testing for theoremhood of a given string in a
finite period of time?

Such a machine would be a decision procedure of MUI

machine

True or
False

Case Study 1 --- The MUI TRS

Alphabet = {M,LU}
Strings: any sequence of characters found in the alphabet
Axiom: MI

Generation Rules: for all strings such that x 1s a string of MUI or x =" :

*1) xI can generate xIU
*2) MXx can generate Mxx
*3) xIIly can generate xUy
*4) xUUy can generate xy

Question: 1s ITTTUUUITIIUUUT atheorem of the system?

Question: before we move on ... is MU a theorem of MUI ?

Case Study 2 --- The pg- TRS

Alphabet = {psqs'}
Axiom: for any such x such that x is a possibly empty sequence of ‘-’s,
Xp-gx- 1S an axiom

Generation Rules: for any x,y,z which are possibly empty sequences of *-’s,

if xpygz 1s atheorem then xpy—-gz- 1s a theorem

Question: is there a decision procedure for this formal system?

Hint: all re-write rules lengthen the string so ...?

Alphabet = {p,q,-}

Axiom:

for any such x such that
X is a possibly empty
sequence of ‘-s,

Xp-gx- is an axiom

Generation Rules:

for any x,y,z which are
possibly empty
sequences of ‘-’s,

if Xxpyqz is a theorem
then xpy-qz- is a theorem

Case Study 2 --- The pq- TRS interpretation

If we interpret
*p as plus
*q as equals
*and a sequence of n ‘-’s as the integer n
then we have
a means of checking x+y=z for all non-negative integers X,y and z

We say that pg- is consistent (under the given interpretation) because all
theorems are true after interpretation

We say that pg- is complete if all true statements (in the domain of
interpretation) can be generated as theorems in the system.

We say that the interpretation is isomorphic to the system if the system is
both complete and consistent

Case Study 2 --- The pq- TRS extension

The pg- system 1s isomorphic to a very limited domain of interpretation (but
maybe that is all that 1s required!)

Normally, to widen a domain we can
add an axiom
add a generating rule

For example, what happens if we add the axiom:
Xp—gx.

Using this, we can generate many new theorems!

Question: with this new axiom what about completeness and consistency?

Case Study 2 --- The extended pq- TRS reinterpreted

After extension,

--p--g--- 1s now a theorem but 2+1=2 is not true

To solve this problem we can re-interpret for consistency ---
interpet q as “>=*

However, we have now lost completeness ---
“2+5 >=4"is true (in our domain of interpretation) but

— g---- 18 a non-theorem

Note: this is a big problem of mathematics (c.f Church) ---

it is not possible to have a complete, decidable system of
mathematical properties which is consistent

if all the theorems that can be checked are consistent then there are
some things which we would like to be able to prove as theorems
which the system is not strong enough for us to do

Question :
Impact on
Requirements
Modelling ?

Case Study 3 --- A tq- TRS

Question:

can you define a TRS for modelling the multiplication of
two integers

*can you show that it is complete and consistent
Interpretation:
*t as times
*q as equals

ssequences of ‘-’s as integers

Problem 1 -

Define a TRS that can decide if a natural number
IS composite

Define a TRS that can decide if a natural number
IS prime

Term Re-writing - another view/mechanism - towards ADTs

Rewrite rules Initial term T

This is the
computational
model behind many
Abstract Data Types
(ADTs)

Normal form T’ .

http://www.meta-environment.org/doc/books/extraction-transformation/term-rewriting/term-rewriting.html

ADTs are a powerful specification technique which exist in many forms/languages
These languages are often given operational semantics in a way similar to TRSs
Most ADTs have the following parts ---

A type which is made up from sorts

*Sorts which are made up of equivalent sets

*Equivalent sets which are made up of expressions
For example, the integer type could be made up of

esorts integer and boolean
An equivalence set of the integer sort could be {3, 1+2, 2+1, 1+1+1}

An equivalence set of the boolean sort could be {3=3, 1=1, not(false)}

Often used to model requirements, and to specify abstract classes in OO models

A simple ADT specification of integer addition

TYPE integer SORTS integer, boolean
OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean

+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) =x €qy;
0 eq succ(x) = false; succ(x) eq 0 = false;
0 + x =Xx; succ(x) + y =x + (succ(y));
ENDTYPE

How do we show, for example,

“1+2 =3 is “true”
By a sequence of rewrite rules
“succ(0) + succ(succ(0)) eq succ(succ(succ(0)))”
“0 + succ(succ(succ(0)) eq succ(succ(succ(0)))”
“succ(succ(succ(0))) eq succ(succ(succ(0)))”
“succ(succ(0)) eq succ(succ(0))”
“succ(0) eq succ(0)”
“0eq0”

“true”

A simple ADT specification of integer addition

TYPE integer SORTS integer, boolean
OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean

+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) =x €qy;
0 eq succ(x) = false; succ(x) eq 0 = false;
0 + x =Xx; succ(x) + y =x + (succ(y));
ENDTYPE

Question: how do we show
3+2 = 4+1
2+2 1= 3+2

A simple ADT specification of integer addition

TYPE integer SORTS integer, boolean
OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean

+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) =x eqy;
0 eq succ(x) = false; succ(x) eq 0 = false;
0 + x = X; succ(x) + y =x + (succ(y));
ENDTYPE

Question:

Extend the model to
include multiplication

TYPE integer SORTS integer, boolean
Important properties

OPNS

0:-> integer Redundancy

succ: integer -> integer X eq X = true
eq: integer, integer -> boolean 0eq0=true

+: integer, integer -> integer Non-Termination
EQNS forall x,y: integer Xeqy=yeq X
0 eq 0 = true; succ(x) eq succ(y) =x eqy;

0 eq succ(x) = false; succ(x) eq 0 = false; Non-Confluence
0 +x =X; succ(x) + y =x + (succ(y)); X eq x = false

ENDTYPE 0 eq 0 = true

Consequently, there are 4 important properties of ADT
specifications:

ccompleteness S . |
. Isomorphic, with respect to the interpretation

econsistency

econfluence | | |

sterminating Convergent, independent of interpretation

Note - Redundancy can be both good and bad

An ADT for a set of integers

TYPE Set SORTS integer, boolean

OPNS

empty:-> Set

str: Set, integer -> Set

add: Set, integer -> Set

contains: Set, integer -> boolean

EQNS forall s:Set, x, y :integer
contains(empty, x) = false;

Xeqy=> contains(str(s,Xx), y) = true;
not (x eq y) => contains(str(s,X), y) = contains(s,y);
contains(s,x) => add(s,x) =s;
not(contains(s,x)) => add(s,x) = str(s,x)
ENDTYPE

Note the new syntax for
preconditions

Question:

How do you
interpret each of
the operations
and equations?

Is this a valid
interpretation for
a set of integers?

An ADT for a set of integers

TYPE Set SORTS integer, boolean

OPNS

empty:-> Set

str: Set, integer -> Set

add: Set, integer -> Set

contains: Set, integer -> boolean

EQNS forall s:Set, x, y :integer
contains(empty, x) = false;

Xeqy=> contains(str(s,Xx), y) = true;
not (x eq y) => contains(str(s,x), y) = contains(s,y);
contains(s,x) => add(s,x) =s;
not(contains(s,x)) => add(s,x) = str(s,Xx)
ENDTYPE

Question:
add operations for --

remove
eunion

scquality

Set (model) verification

Invariant Property: verify that a set never contains any repeated
clements

We would like to verify the following properties:
¢ & (S-¢)
e € (SIUS2)=¢e€&S1 ve&S2

Question: Can you sketch the proofs (for your set specification)?

Problem 2 -

Write an ADT specification for a stack of integers
Write an ADT specification for a queue of integers

Compare and contrast the 2 models

