
CSC4521 Design problem - faulty queues and stacks J Paul Gibson 1

Génie logiciel pour la conception d'un Système

d'Information

CSC4521

Voie d'Approfondissement

Intégration et Déploiement de Systèmes d’Information

(VAP DSI)

Design Problem -

Faulty Stacks and Queues

paul.gibson@telecom-sudparis.eu

http://jpaulgibson.synology.me/~jpaulgibson/TSP/Teaching/

CSC4521/CSC4521-DesignFaultyStackAndQueues.pdf

CSC4521 Design problem - faulty queues and stacks J Paul Gibson 2

Today's session is about architecture and design (and team work).

 You will be asked to design a solution to a problem (explained on the whiteboard).

In summary, the problem will be to implement Queues using Stacks (and Stacks using Queues) and Queues using
Stacks.

You will then be asked to evaluate and adapt your designs when the components are faulty.

This will become clear during the session.

I will share code with you (as you request it), but you can also code everything yourselves if you wish

Architecture as compositional design
Design Problem -

Faulty Stacks and Queues

CSC4521 Design problem - faulty queues and stacks J Paul Gibson 3

Given the requirements of a bounded queue (FIFO) of integer values, can
we implement it using only 2 Stack components for storing the elements??

CSC4521 Design problem - faulty queues and stacks J Paul Gibson 4

HIGH LEVEL CONCEPTUAL DESIGN

https://stackoverflow.com/questions/69192/how-to-implement-a-queue-using-two-stacks

CSC4521 Design problem - faulty queues and stacks J Paul Gibson 5

Can we improve the design if the component Stacks are faulty?

Fault Specification-

There is a percentage chance
that on every interaction with
the stack that changes its state
(i.e. the pushes and pops) that
the state of one of the other
elements of the stack will be
corrupted (incremented by 1).

The element that is corrupted
is randomly chosen.

CSC4521 Design problem - faulty queues and stacks J Paul Gibson 6

Java Code project Structure

CSC4521 Design problem - faulty queues and stacks J Paul Gibson 7

The Stack Specification - An interface + the unit tests
package specifications;

/**

 * A LIFO bounded stack of integers with a maximum number of elements (that must be at least 1)

 * @author J Paul Gibson

 */

public interface StackSpecification {

	 /**

	 *

	 * @return the maximum number of elements that the stack can hold

	 */

	 public int getSize();

	

	 /**

	 *

	 * @return the number of elements that are currently stored on the stack

	 */

	 public int getNumberOfElements();

	

	 /**

	 *

	 * @return if the stack is full

	 */

	 public boolean is_full();

	

	 /**

	 *

	 * @return if the stack is empty

	 */

	 public boolean is_empty();

CSC4521 Design problem - faulty queues and stacks J Paul Gibson 8

The Stack Specification - An interface + the unit tests
	

	 /**

	 *

	 * @param x is value being pushed onto stack

	 * @throws IllegalStateException if we try to push onto a stack that is full

	 */

	 public void push (int x) throws IllegalStateException;

	

	

	 /**

	 *

	 * @return head of stack without changing state,

	 * where the head is the element that has been in the stack for the shortest time

	 * @throws IllegalStateException if we try to read the head of an empty stack

	 */

	 public int head () throws IllegalStateException;

	

	 /**

	 * remove head of stack if it is not empty,

	 * where the head is the element that has been in the stack for the shortest time

	 * @throws IllegalStateException if we try to pop from an empty stack

	 */

	 public void pop () throws IllegalStateException;

	

	 /**

	 *

	 * @return if the stack is in a safe state

	 */

	 public boolean invariant();

	

}

CSC4521 Design problem - faulty queues and stacks J Paul Gibson 9

The Stack Specification - An interface + the unit tests

CSC4521 Design problem - faulty queues and stacks J Paul Gibson 10

The Stack Specification - With a simple validation test (console I/O)

Stack s = new Stack (3);

Stack: head -> .

s.push(1); s.push(2); s.push(3);

Stack: head -> 3-> 2-> 1-> .

s.head() = 3

s.pop();s.pop();

Stack: head -> 1-> .

s.head() = 1

CSC4521 Design problem - faulty queues and stacks J Paul Gibson 11

Problem 1:

implement a Queue from 2 stacks inside
the class QueueFromStacks, and test it.

Problem 2:

Implement a faulty queue from faulty
stacks, and test it.

Problem 3:

Design and implement a different solution.
Analyse and Compare the 2 designs.

Problem 4:

If allowed more than 2 stack components,
how could you use redundancy to make
the composed system less faulty

CSC4521 Design problem - faulty queues and stacks J Paul Gibson 12

Optional Challenge

Can you do the design
(implementation and
tests) where the system
requirements are for a
Stack and the component
parts are Queues?

