Analog recurrent neural network
simulation, ©(log, n) unordered search, and
bitonic sort with an optically-inspired
model of computation

Damien Woods, Thomas J. Naughton and J. Paul Gibson

TASS Research Group,

Department of Computer Science,
National University of Ireland, Maynooth, Ireland.
Email: {dwoods ,tomn ,pgibson }@cs.may.ie

URL: http://www.cs.may.ie/TASS

Date: 03 September 2001

Technical Report: NUIM-CS-2001-TR-06

Key words: model of computation, unconventional model of computation,
analog computation, optical computing, computability, computational
complexity, analog recurrent neural network, Fourier transform, unordered

search, bitonic sort.

Abstract

We prove computability and complexity results for an original model of
computation. Our model is inspired by the theory of Fourier optics. We
prove our model can simulate analog recurrent neural networks, thus estab-
lishing a lower bound on its computational power. We also prove some com-

putational complexity results for searching and sorting algorithms expressed
with our model.

1 Introduction

In this paper we prove some computability and complexity results for an original
continuous-space model of computation. The model was developed for the anal-
ysis of (analog) Fourier optical computing architectures and algorithms, specifi-
cally pattern recognition and matrix algebra processors [12, 13]. The functionality
of the model is limited to operations routinely performed by information process-
ing optical scientists and engineers. The model operates in discrete timesteps over
a finite number of two dimensional (2-D) images of finite size and infinite reso-
lution. It can navigate, copy, and perform other optical operations on its images.
A useful analogy would be to describe the model as a random access machine,
without conditional branching and with registers that hold continuous images. It
has recently been proven that the model can simulate Turing machines and Type-2
machines [14]. However, the model’s exact computational power has not yet been
characterised.

In Sect. 2, we define our optical model of computation and give the data repre-
sentations that will used in Sects. 3 and 4. In Sect. 3 we demonstrate a lower bound
on computational power by proving our model can simulate a type of dynamical
system called Analog Recurrent Neural Networks (ARNNS) [18, 17]. This sim-
ulation result proves our analog model can decide any language in finite time.
Our model admits some extremely efficient algorithms for standard searching and
sorting algorithms. In Sect. 4, @(log, n) binary search algorithm that can be
applied to certain unordered search problems and a sorting algorithm based on a
bitonic sort are investigated.

2 Computational model

Each instance of our machine consists of a memory containing a program (an
ordered list of operations) and an input. The memory structure is in the form of

a 2-D grid of rectangular elements, as shown in Fig. 1(a). The grid has finite size
and a scheme to address each element uniquely. Each grid element holds a 2-D
infinite resolution complex-valued image. There is a program start locateon

and a small number of ‘well-known’ addresses labelgo, ¢, and so on. The two

most basic operations available to the programraegnd st (parameterised by

two column addresses and two row addresses), copy rectamgular subsets of

the grid into and out of imaga, respectively. Upon such loading and storing the
image contents are rescaled to the full extent of the target location [as depicted in

0|l a |b |sta dj{2|3|1]3

1 2 3 a b sta

(a) (b)

Figure 1. Schematics of (a) the grid memory structure of our model of computa-
tion, showing example locations for the well-known addressdsandsta, and

(b) loading (and automatically rescaling) a subset of the grid into grid eleanent
The progrania[2[371[3].. . instructs the machine to load into default location
athe portion of the grid addressed by columns 2 through 3 and rows 1 through 3.

Fig. 1(b)]. The complete set of atomic operations is given in Fig. 2.

In this paper, a complex-valued image is a functfonR} x R} — C where
Ry = {z:2x € RA0 <z <1}. LetZ be the set of such images. Each instance
of our machine is a quadruple = (D, L, I, P), in which

e D= (m,n), m,n € N:grid dimensions

o L = (sx,Sy,ax, ay,bx, by,...), s,a,b € N: locations ofstaand the well-
known locations

o I = [(t1x, %1y Y1) -, (ikxs Gy, k)], @ € N, ¢ € T : thek inputs and
their locations

o P = [(plmply,ﬂ'l);---a(pZXaplyﬂTl)], p € N, m € {{|d, st, h, v,x, -, +,
br, hit, /} UN} C T : thel programming symbols, for a given instance of
the machine, and each of their location¥. is the set of row and column
addresses encoded as images.

As might be expected for an analog processor, its programming language does
not support comparison of arbitrary image values. Fortunately, not having such a
comparison operator will not impede us from implementing a conditional branch-
ing instruction (see Sect. 2.3). In addition, address resolution is possible since (i)
our set of possible image addresses is finite (each memory grid has a fixed size),

3

’ Id ‘ cl ‘ c2 ‘ rl ‘ r2 ‘ 2 ‘ 2y ‘: cl,c2,r1,r2 € N; 2z, zy € Q; copy intoathe rect;

Istlcl[e2[r1|r2] 2|2]cl,e2,rl,r2 €N; 2,2 € Q; copy the image i

[h |: perform a horizontal 1-D Fourier transform on
: perform a vertical 1-D Fourier transform on the ?

[- | multiply (point by point) the two images ia and

[+ |: perform a complex addition @fandb. Store resu

*
[hit |: halt.

angle of images defined by the image at coordin
(c1, r1) and the image atc®, r2). Two additiona

real-valued paramete(s, z,), specifying lower and

ates
I

upper cut-off amplitudes respectively, filter the rect-

angle’s contents by amplitude before rescaling
defined by

21, it [f(@,0)] <2
p(f(laj)azlazU): ’f(%])‘v if ZlS’f(Z7]>‘§ZU
Zu, it £, 5)] > 2u -

In general we use a filter @f), 1) in this paper, writ

ten as(0/1,1/1), where the symbol /" is used to

express rationals as the ratio of two integers.

into the rectangle defined by the coordinatels (1)
and ¢2, r2).

2-D image ina. Store result ira.

image ina. Store result ira.

b. Store result ira.

in a.

: replacea with the complex conjugate @

: ¢l,r1 € N; unconditionally branch to the instry
tion at the image with coordinatesl(r1).

Figure 2: The set of atomic operations permitted in the model.

, as

the

2-D

—

C-

and (ii) we anticipate no false positives (we will never seek an address not from
this finite set). A more formal treatment of this point is given in Sect. 2.2.

2.1 Encoding numerical values as images

There are many ways to encode finite, countable, and uncountable sets as images.
We outline a number of techniques that will be used later in the paper. Consider
an image that contains a high amplitude peak at its centre and zero everywhere
else,

1, ifz,y=0.5
0, otherwise.

f(@,y)] = { 1)
Such an image encodes the symbol ‘1’. An empty imAge y) = 0 encodes ‘0’.
Images encoding symbols ‘0’ and ‘1’ can be combined using a stepwise rescaling
technique (an image ‘stack’) or with a single rescale operation (an image ‘list’)
to encode nonnegative integers in unary and binary notations. These concepts are
illustrated in Fig. 3. A stack encoding of the integer 2 in unary could be accom-
plished as follows. Take an empty image, representing an empty stack, and an
imagei encoding a ‘1’ that that we will ‘push’ onto the stack. A push is accom-
plished by placing the images side-by-side witto the left and rescaling both
into the stack location. The image at this location, a stack with a single ‘1’, would
be regarded as a stack encoding of the integer 1. Take another jnesmgeding
a ‘l’, place it to the left of the stack, and rescale both into the stack location once
again. The unary stack image contains two peaks at particular locations that tes-
tify that it is an encoding of the integer 2. To decrement the value in the stack, a
‘pop’ operation is applied. Rescale the stack image over any two image locations
positioned side-by-side. The image to the left will contain the symbol that had
been at the top of the stack and the image to the right will contain the remainder
of the stack. The stack can be repeatedly rescaled over two images popping a
single image each time. Binary representations of nonnegative integers would be
encoded in a similar manner. A unary stack encoding of the integer 2 could be
regarded as a binary stack encoding of the integer 3. Our convention is to encode
binary strings with the least significant bit at the top of the stack. Therefoje, if
in the preceding example had instead encoded a ‘0’ the resulting push operation
would have created a binary encoding of the integer 2. As a convenient pseu-
docode, we use statements sucltgsish(‘1’) andc.pop() to increment
and decrement the unary string encoded in well-known image location

In the ‘list’ encoding of a unary or binary string, each of the rescaled ‘0’ and

5

(a) . Idfab] | .

® | - |- idfab] | . -

a b a

© |- st [ab| .
—

a a b
(d) st [ab)

a a b
(e 7 -

3 4 5 a
(f) 1xC| o o eem Rx1 . RxC| |

; [d

Figure 3: Encoding numbers in images through the positioning of amplitude
peaks. In the illustrations, the nonzero peaks are coloured black and the white
areas denote zero amplitude. (a) To encode the integer 1 in unary notation we
could use a ‘stack’ structure. We ‘push’ a symbol ‘1’ (imageonto an empty
stack (imagé) using the commanias. The result by default is stored & (b)
Pushing a ‘1’ onto a stack encoding the integer 1 in unary to create the encoding
of 2 in unary. (c) ‘Popping’ a stack encoding the number 1, resulting in a popped
symbol ‘1’ (in a) and an empty stack ib. (d) Popping an empty stack results

in the symbol ‘0’ and the stack remains empty. (e) Encoding the integer 3 in
unary in a ‘list’ structure. (f) lllustration of the matrix images used in the ARNN
simulation.

‘1’ images are equally spaced in the list image (in contrast to the Cantor dust
encoding used for stacks). A unary list encoding of the integer 3 would involve
positioning three ‘1’ symbols side-by-side in three contiguous image locations
and rescaling them into a single image in a single step [see Fig. 3(e)]. The choice
of encoding (stack or list) is usually driven by computational complexity consid-
erations. It is possible to enhance this encoding by allowing the peaks to have
real-valued amplitudes, and by using both dimensions of the image. This en-
hanced encoding is used in the ARNN simulation of Sect. 3. In this simulation,
the stack encoding of a finite number of real-valued amplitude peaks is referred to
as al x C' matrix image (when encoded in the horizontal direction), ang& anl
matrix image (when encoded in the vertical direction), an&anC’ matrix image
[when both dimensions are used — see Fig. 3()].

2.2 Transformation from continuous image to finite address

Our model uses symbols from a finite set in its addressing scheme and employs

an address resolution technique to effect decisions (see Sect. 2.3). Therefore,

during branching and looping, variables encoded in continuous images must be

transformed to the finite set of address locations. In one of the possible address-

ing schemes available to us, we use symbols from theg/&dt}. We choose

B = {0107 : 4,5 > 0Ai+j=m+n— 1} as our underlying set of address

words. Each of then column andn row address locations will be a unique bi-

nary word in the finite seB. An ordered pair of such binary words identifies

a particular image in the grid. Each address word will have an image encoding.

N is the set of such image encodings, witti| = m + n. In order to facilitate

an optical implementation of our model we cannot presuppose any particular en-

coding strategy for the sét (such as the simple stack or list binary encodings

of Sect. 2.1). Our address resolution technique (our transformationZrtni)

must be general enough to resolve addresses that use any sensible encoding.
Given an images € Z we wish to determine which address worfde B

is encoded by. In general, comparing a continuous imageith the elements

of N to determine membership is not guaranteed to terminate. However, since

it will always be the case that (§ € N, (ii) that || is finite, and (iii) that\/

contains distinct images, we need only search for the single closest match between

s and the elements of". We choose a transformation based on cross-correlation

(effected through a sequence of Fourier transform and image multiplication steps)

combined with a thresholding operation.

The transformation : Z x 7 — B is specified by
t(s,P)=1(P®s) , (2)

wheres encodes an unknown addressing symibis a list image that contains a
predefined ordering of the elements\éf ® denotes a cross-correlation operation,
and is a thresholding operation. The cross-correlation operation produces an
image

flu,v) =P®s = P(z,y)s"(z + u,y + v)dzxdy |, (3)
/1

where(x,y) and(u, v) are the coordinates of the input and output spaces of the
correlation operation, respectively. In the theoretical machijite,v) could be
produced by the code fragmemtpP[r]vsyb[d[s[h[v][+]-[h]v], Where a multipli-
cation in the Fourier domain is used to effect cross-correlation. According to
Eg. (3), the point of maximum amplitude jf(«, v) will be a nonzero value at a
position identical to the relative positioning of the encoded symbél that most
closely matches. All other points inf(u,v) will contain a value less than this
cross-correlation value. The thresholding operation of Eq. (2) is defined

L i [f (u, v)] = max(]f (u, v)])

. (4)
0, if [f(u, 0)] < max([f(u,v)]) -

7 (f(u,v)) :{

This produces an image with a peak at image coordir(s}%%, 0.5) for one and

only one positive integetin the rangg0, m + n — 1]. Given the definition of a

list encoding of a binary string (Sect. 2.1), we can see that these unique identifiers
are exactly the images that encode the integefs. .., 20"t~} This gives

us a function from continuous images to a finite set of addrelsses x 7 +—

{0, 1},

2.3 Conditional branching from unconditional branching

Our model does not have a conditional branching operation as a primitive; it was
felt that giving the model the capability for arbitrary comparison of continuous

images would rule out any possible implementation. However, we can effect in-
direct addressing through a combination of program self-modification and direct
addressing. We can then implement conditional branching by combining indirect

addressing and unconditional branching. This is based on a technique by Ro-
jas [15] that relies on the fact tha/| is finite. Without loss of generality, we
could restrict ourselves to two possible symbols ‘0’ and ‘1’. Then, the condi-
tional branching instruction “if¢='1") then jump to addres<, else jump taY™”

is written as the unconditional branching instruction “jump to addré'ssWe

are required only to ensure that the code corresponding to addréssegY” is
always at addresses ‘1’ and ‘0, respectively. In a 2-D memory (with an extra ad-
dressing coordinate in the horizontal direction) many such branching instructions
are possible in a single machine.

2.4 A general iteration construct

Our iteration construct is based on the conditional branching instruction outlined
in Sect. 2.3. Consider a loop of the following general form, written in some un-
specified language,

SX
while (e > 0)
SY
e =e -1
end while
Sz

where variable contains a nonnegative integer specifying the number of remain-
ing iterations, an&X SY, andSZ are arbitrary lists of statements. Without loss
of generality, we assume that stateme®¥sdo not write toe and do not branch
to outside of the loop. 1€ is represented by a unary stack image, this code could
be rewritten as
SX
while (e.pop() = ‘1)

SY
end while
Sz

and compiled to a machine as shown in Fig. 4. In this macherspecifies
the number of remaining iterations in unary and is encoded as a stack image. A
second well-known addresk unused by the statements in the body of the loop,
holds the value popped fromand must be positioned immediately to the left
of e. The fragmenfrofd is shorthand for a piece of indirect addressing code,
and means “branch to the instruction at the intersection of column 0 and the row
specified by the contents of well-known image locatitin

9

99

SX| br
SY| br

=
o|o
2=

Figure 4. Machine description of a while loop.

2.5 Complexity measures

The standard computational complexity measures of time and space could be used
to analyse instances of our machinBIME would be measured by counting the
number of times any of the primitive operations of Fig. 2 was executed. Particular
operations could be weightetd ¢ould have a different cost tar) and parameter
values taken into accountl(andst would have costs proportional to the number
of grid elements accessed, anmdcould have a cost proportional to the distance
of the jump). This would also accommodate addressing schemes where decoding
a numerical value from an image takaesie proportional to the size of that value.
It is important to recognise that the temporal cost of grid element accesses would
differ by no more than a constant (worst case being the size of the grid) and does
not otherwise depend on the amount or type of information stored in an image.

SPACE could be a straightforward static measure of the number of elements in
the grid. Such a measure would include storage of the program and input data. A
more standard costing would count the number of grid elements that were over-
written at least once. This latter measure does not count the grid elements reserved
for the program or the iInputRESOLUTIONiS a measure of the spatial compres-
sion of image data due to rescaling, relative to the input resolution. For optical
algorithms that use stack encodinggsoLUTIONIs of critical concern. A final
measure IRANGE, which is used to describe the amplitude resolution or ampli-
tude quantisation (if applicable) of the images stored in the machine.

In this paper we use a uniform cost measurementrfoe (each primitive
operation costs one unit}PACEIs the number of elements in the grid, aRES
OLUTION is as defined above.

10

3 Computability results

In this section we prove our model can simulate ARNNs with real-valued weights.

3.1 Boolean circuits and ARNNs

LetX = {0,1}, let¥* = [J;2, ¥, and letst = |2, X°.

Informally, a Boolean circuit, or simply a circuit, is a directed acyclic graph
where each node is an element of one of the following three §&tsz, =} (called
gates with respective in-degrees of 2,2, 1)1, zo, ..., x,} (z; € {0,1}, inputs
in-degree 0){0, 1} (constantsin-degree 0). A circuit family is a set of circuits
C = {c,,n € N}. Alanguagel. C X* is decided by the circuit family" if
the characteristic function of the languagen {0, 1}™ is computed by, for
eachn € N. When the circuits are of exponential size (with respect to input
word length and where circuit size is the number gates in a circuit) circuit families
can decide all languagds C >*. It is possible to encode a circuit by a finite
symbol sequence, and a circuit family by an infinite symbol sequence. For a more
thorough introduction to circuits we refer the reader to [4].

ARNNSs are finite size feedback first-order neural networks with real weights [18,
17]. The state of each neuron at timhe- 1 is given by an update equation of the
form

N M
ilfl(t—i—l) =0 (Z@ijj(t>+2bljuj<t)+cl> s 1= 1,,N (5)
j=1 j=1

whereN is the number of neurond/ is the number of inputs;;(¢) € R are the
states of the neurons at time; () € X" are the inputs at timg anda;;, b;;, ¢; €

R are the weights. An ARNN update equation is a function of discrete time
1,2,3,... . The network’s weights, states and inputs are often written in matrix
notation a4, B, ¢, z(t), andu(t). The functions is defined as

0 fx<O
olx)y:=¢ z fF0<z<1 (6)
1 ifxz>1.
A subsetP of the N neurons,P = {z;,,...,z;,}, P C {x1,..., 2y}, are

called thep output neurons. The output from an ARNN computation is defined as
the stategx;, (), ..., z;,(t)} of thesep neurons for time¢ = 1,2,3,... .

11

Deciding languages using formal nets

ARNN input/output mappings can be defined in many ways [18]. In this paper we
give a simulation of the general form ARNN which has update equation Eq. (5).
A specific type of ARNN, called a formal net [18], decides languages. Formal
nets are ARNNs with the following input and output encodings. A formal net
has two binary input lines, called the input data lii&) @nd the input validation
line (V), respectively. IfD is activeat a given time thenD(¢) € {0, 1}, where
D(t) represents a symbol from the input word to be decided, othet®fse= 0.

V(t) = 1 whenD is active, and/(t) = 0 thereafter. An input to a formal net at
time ¢ has the formu(t) = (D(t),V(t)) € {0,1}% A formal net has two output
neuronsOy(t), O,(t) € {x1,...,xx} which are called the output data line and
output validation line, respectively.

We wish to decide if a worad € X1 is in languagel.. An ARNN to decidel
is givenw as input. For someif O,(t) = 1 andO,(t) = 1 thenw € L. For some
t,if O,(t) = 1andOy,(t) = 0thenw ¢ L.

In [18] Siegelmann and Sontag prove that for each language X there
exists an ARNNN, to decidel, hence proving the ARNN model to be compu-
tationally more powerful than the Turing machine modal; contains one real
weight. This weight encodes a circuit family that decidesFor a given input
wordw € X+, Ny, retrieves the encoding of the corresponding cireyit from
its real weight and uses this encoding to decide i in L. In polynomial time
ARNNSs can decide the nonuniform language cl&goly. Given exponential
time ARNNSs can decide all languages.

3.2 Simulation encoding scheme

In our ARNN simulation we use image amplitude values to represent arbitrary real
numbersr € R is represented by the amplitude value at coordinéi€s0.5) of

an imagef € Z; | f(0.5,0.5)] = r. Such an image representing one real number
is called a scalar image. Ax C' matrix image is composed 6f amplitude peaks

in the horizontal direction, a® x 1 matrix image is composed d? amplitude
peaks in the vertical direction, and &hx C' matrix image is composed @ x C
amplitude peaks, as shown in Fig. 3(f).

12

3.3 ARNN representation

In our notatiorw is the image encoding of symbel The ARNN weight matrices
A andB are represented by x N andN x M matrix images4 and B respec-
tively. The weight vector and state vectar(t) are represented by x 1 matrix
imagesc andz(t) respectively.

The input vectow(t) is represented by Bx M matrix imageu(t). Before our
simulation program begins executing we assume a stack daiadodes all input
vectorsu(t) fort = 1,2,3,... . Attimet, the top element of stackis al x M
matrix image representing the ARNN input vectdt). ARNNs are defined over
finite length input wordso. Thereforel’s topn stack elements encode an ARNN
inputw asn successivé x M matrix images and all other elements of the stack
encode the value 0.

The p output neurons are represented by /dnx 1 matrix imageP. We
use P to extract thep output states from th&/ encoded neuron states ift).
Z(t) containsN amplitude peaks, each at specific coordinates as illustrated in
Fig. 3(f). p of these peaks represent théARNN output states and have coor-
dinates{(z1,v1), ..., (z,,y,)} I Z(¢). In P the amplitude values at coordinates
{(z1,%), ..., (z,,y,)} each encode the value 1, all other coordinater inave
amplitude values encoding 0. We multigiyt) by P. This multiplication re-
sults in an output image(t) that contains the encoding of theARNN outputs
at the coordinate$(z1,v1), ..., (z,,yp)}. o(t) encodes the value 0O at all other
coordinates. At each timestephe simulator pushest) to an output stack.

3.4 ARNN simulation overview

From the neuron state update equation Eq. (5), ea@) is a component of the
state vector:(t). Fromz(t) we can derive théV x N matrix X (¢) where each
column of X (¢) is a copy of the vectat(¢). X (¢) has components;;(t), where
i,7 € {1,...,N}. Fromu(t) we can derive the&V x M matrix U(t) where each
row of U(t) is a copy of the vector(t). U(t) has components;;(t), where
ie{l,...,N}andj € {1,..., M}. Using X (t) andU (t) we rewrite Eq. (5) as
N M
j=1 j=1
In our simulation we generat®¥ x N andN x M matrix imagesX (¢) andU (t)
representingX (¢) andU (t) respectively. We then simulate the affine combination
in Eq. (7) using our model’s- and- operators.

13

Recall from the model's definition in Sect. 2 that tltkand st operations
effect amplitude filtering. We use this amplitude filtering to simulate the ARNN
o function. From the definition g in Fig. 2, we set; = 0 andz, = 1 to give

0, if [f(i,7)] <0
p(f(0,5),0,1) = ¢ 1@,)], HO<|f(,5) <1 (8)
1, if |f(i,5)]>1.

Using our encoding schemg(z, 0, 1) simulatess(z).

3.5 ARNN simulation algorithm

For brevity and ease of understanding we outline our simulation algorithm in a
high-level pseudocode, followed by an explanation of each algorithm step.

(i) a(t) == 1pop)

(i) X(t) := pushz(t) onto itself horizontallyN — 1 times
(iii) AX(t) = A-X(1)

(iv) SAX() = £, AX(t)-pop()

(v) U(t) := pushu(t) onto itself verticallyN — 1 times
(vi) BU(t) := B-U(t)

(vii) YBU(t) = %, BU(t).pop()

(viii) affine-comb := YAX(t) + XBU(t) +¢

(ix) Z(t+1) = p(affine-comb0, 1)

(X) O.pushP - z(t + 1))

(xi) Goto step (i)

In step (i) we pop an image from input statknd call the popped imaggt).
u(t) is al x M matrix image that represents the ARNN’s inputs at timka step
(ii) we generate théV x N matrix imageX (¢) by pushingV —1 identical copies of
Z(t) onto a copy ofi(t). In step (iii), X (¢) is point by point multiplied by matrix
imageA. This single multiplication of two matrix images efficiently simulates (in
parallel) the matrix multiplicatiom,;x;(t) for all i, j € {1,..., N} (as described
in Sect. 3.4). Step (iv) simulates the ARNN summatjg))’ , a;;z;(t). Each of

the N columns of AX (¢) are popped and added (using theoperation) to the
previous expanded image.

In step (v) we are treating(¢) in a similar way to our treatment af(¢) in
step (ii), except here we push vertically. In step (vi) we eff@ct/(¢), efficiently

14

simulating (in parallel) the multiplicatioh;;u;(¢) for all ¢ € {1,...,N},j €
{1,..., M}. Step (vii) simulates the ARNN summati(Ejj‘i1 b;ju;(t) using the
same technique used in step (iv).

In step (viii) we simulate the addition of the three terms in the ARNN affine
combination. In our simulator this addition is effected in two simple image addi-
tion steps. In step (ix) we simulate the ARNN'Sunction by amplitude filtering
using ourp function with the parameter®, 1) as described in Sect. 3.4. We call
the result of this amplitude filtering(¢ + 1); it represents the ARNN state vector
x(t +1). In step (x) we multiplyz(¢ + 1) by the output mask’ (as described
in Sect. 3.3). The result, which represents the ARNN output at time 1)
is then pushed to the output staCk The final step in our algorithm sends us
back to step (i). Notice our algorithm never halts as ARNNSs are defined for time
t=1,2,3,... .

15

QL
~ 2]
0
+ [@)
o [l
® Q
= 5 |
© c k=] c Q <t
ol &)
—
iy &8 % & ®
S, o| o o Sl
= =
o
o= Ml B e = = o
IS 18—
=
AL B |% 7 Bl [°
—
=
« N
| +¢;<:Z' +lal+ |-z T
W
Q| BI= Reliols SB e~z |©
—
~ =2 RS R e ”’Q
— —
= BE] RE|CR] Rl)
N—r
©| =T » — | o | R (‘Ow
= B et Pl el Pl k7 A k= A I (Sl Rl k7 R k= k70 Y (oW @
S
= ®
o~ N
=<l BIBBBlsleBEBltlal+oz|TN e
0 o
Q
S o
F
— — — — — ~
) N“QQS‘GEQ%EVJX@QOHE’
E = =TS < o
W =
=
- ol 5
= = S n|n o U)QO-E
o — O o © To} —
m:ﬁﬁ‘—n—i N~ © < on N o
== 2 > > > > 2 X X
N N N N N N N N N N N

Figure 5: Simulating an ARNN on our model of computation. The machine is in
two parts for clarity. The larger is a universal ARNN simulator and the smaller

is the inserted ARNN. The simulator is written in a compact shorthand notation.
The expansions into sequences of atomic operations are shown in Fig. 6 and the
simulation program is explained in Sect. 3.6.

16

(@) [1d | —~ [d [5]5]9[9[0[/[1[1]/]1
st tla | — | st |[11]12[99(99|0 (/|1 1]/ |1
st | —~ st [5]5[9(99 |0/ [1|1]|7[1
Id il — [d [11[11[99[99|0 |/ [1|1|7[1
st | u® | — [st| 1 |1]99[99(0]|/|1[1|/]1
Id x®) | - [1d | 0[0[99[99 0|/ |1 |1[/|1
st tl — st [11][11[99[99|0 /[T |1|7 |1
Id tla | — | d |[11]12[99(99|0 |/ |1 |1]|/ |1
st b — st [13[13[99[99|0 |/ [1|1|7[1
Id A —~ [Md [1T(11[0|0 0|/ [T|1[/|1
st ab | —» [st |12[13[99|99 0|/ |1 |1/ |1
Id b — [1d [13[13[99[99|0 |/ [1|1|7[1
st bt2 | — [st |[13|14|99]|99 0|/ |1 |1/ |1
Id 2 — [d [14[14[99[99|0 /[T 1|71
st |SAX(D) | — | st | 2| 2[99 [0]|/|1[1|/]1
Id u® | — [1d | 1| 1]99[99[0]|/|1[1|/]1
st 3 — st (12|12 (1414|071 |1|7[1
Id a3 | — | 1d |12 1214|990 |/ |1 1|/ |1
Id B —~ [d[12(12[00|07/ [T|1[/|1
d [SAX(®) | - | 1d | 2299|990/ |1 |1|/|1
Id c —~ [d |00 [183[13|0[/[1|1]|7[1
Id P —~|d oo 14140/ (11|71
Id o) —~ 1d [6]6 990/ 11|71
st o) —~ st [6699990/ 11|71

() [WhI [N2 [...]end]

Figure 6: Time-saving shorthand conventions. (a) Short-hand instructions used
in the simulator in Fig. 5. (b) Expands to initialisation instructions and the while
loop code given in Fig. 4.

17

3.6 Explanation of Figs. 5 and 6

The ARRN simulation with our model is shown in Fig. 5. The numerals (i)—(xi)
are present to assist the reader in understanding the program; they correspond to
steps (i)—(xi) in the high-level pseudocode in Sect. 3.5. Our ARNN simulator
program is written in a shorthand notation (including shorthand versions of the
operationdd, st, andbr from Fig. 2) that is expanded using Fig. 6. Before the
simulator begins executing a simple preprocessor or compiler could be used to
update the shorthand to the standard long-form notation.

The machine consists of two parts (separated in the diagram for clarity). The
larger is the universal ARNN simulator. Addresgest,, andt; are used as tem-
porary storage locations during a run of the simulator [note: addsesdocated
at grid coordinate$12, 14)]. In the simulator oum notation denotes the image
encoding ofy, and also acts as an address identifier for the image representing
Locationsz(t) andu(t) are used to store our representation of the neurons’ states
and inputs during a computatioR.AX () is a temporary storage location used to
store the result of step (iv). LocationgandM store our representation of the di-
mensions of:(¢) andu(t) (necessary for bounding our while loops). The contents
of N andM must be supplied as input to the simulator. At timeur representa-
tion of the ARNN inputu(t) is at the top of the stack This input is popped off
the stack and placed in memory locatioft). The computation then proceeds as
described by the high-level pseudocode algorithm in Sect 3.5. The output mem-
ory locationO stores the sequence of outputs as described in Sect. 3.3. Program
execution begins at well-known locatiata and proceeds according to the rules
for our model’s programming language which are given in Sect. 2.

The smaller part of Fig. 5 illustrates how an ARNN definition must be inserted
into the universal ARNN simulator. The address identifid;sB and ¢ store
our encoding of the corresponding ARNN matrices, @hdtores our mask for
extracting thep output states from th& neuron states, as described in Sect. 3.3.

The code fragmerjiviiT ctr [... [end] iS shorthand for code to initialise and
implement the while loop given in Sect. 2.4. The instructions betvetenand
end are executedtr times. Thewhl routine hasIME complexity4+-ctr(s+4),
RESOLUTION complexity 2°" + maxres, and constastACE complexity, where
ctr € Nis the number of times the body of the while loop is executed,the
number of operations in the body of the while loop, and maxres is the maximum
resolution of any image accessed during execution of the coderfor

18

3.7 Complexity analysis of simulation algorithm

In our simulation pushing (or popping)scalar images to (or from) ax 1 or
1 x p 1-D matrix image requiresiIME O(p), RESOLUTIONO(2P~!), and constant
SPACE Pushingg p x 1 or1 x p 1-D matrix images to form g x g or g x p 2-D
matrix image requiresiME O(g), RESOLUTIONO(2P™4~2), and constansPACE
If the ARNN being simulated has time= 1,2,3,... , M as the length of the
input vectoru(t) and N neurons, and: is the number of image stack elements
used to encode the finite input to our simulator, then our simulation program takes
TIME

T(N,M,t,n) =t(21N +9M + 16) + 1 9)

Our simulation takesIME linear in N, M andt, and independent of. It takes
constantsPACE and exponentigRESOLUTION

R(N, M, t, n) _ max(2(nft+M71)’ 2(2N72)’ 2(]\”er2)7 2(N+t71)) . (10)

3.8 Deciding languages

Let us assume we are simulating a formal Aetnd the language decided Byis
called L. On input wordw, F' decides ifw is in L in time ¢x(w), that is for F's
output validation lineO,,, O,(tr(w)) = 1. SimulatingF' (on inputw) with our
ARNN simulator takes lineariMe T'(Ng, Mp, tp(w), n,), €xponentiaRESOLU-
TION R(Np, Mp,tr(w),n,) and constansPACEto produce our representation of
O,(tr(w)) = 1. By way of ARNN simulation our model decides all languages
with these complexity bounds.

4 Complexity Results

Sorting and searching [10] provide standard challenges to computer scientists in
the field of algorithms, computation, and complexity. In this paper we focus on
a binary search algorithm (with our model this algorithm can be applied to un-
ordered lists) and an implementation of the bitonic sort, firstintroduced by Batcher
[5] as one of the fastest sorting networks.

4.1 Unordered search

Consider an unordered list afelements. For a given property, each element could
be represented by a bit key denoting whether the element satisfies that property or

19

procedure search(il, i2)
e = i2
c =0
while (e.pop() = ‘1)
ab =il
select ([[a)
case ‘1"
i1 :=a
c.push(‘0’)
case ‘0
i1 :=Db
c.push(‘1’)
end select
end while
a:.=¢c
end

Figure 7: Algorithm to perform & (log, n) search on an unsorted binary list.

not. If only one element satisfies that property, the problem of finding its index
becomes one of searching an unsorted binary list for a single ‘1’. This problem
was posed by Grover in [9]. His quantum computer algorithm requivggn)
comparison operations on average. Bennett et al. [6] have shown the work of
Grover is optimal up to a multiplicative constant, and that in fact any quantum
mechanical system will requife(,/n) comparisons. Algorithms for conventional
models of computation requil@(n) comparisons in the worst case to solve the
problem. We present an algorithm that requigg$og, n), in the worst case, with

a model of computation that has promising future implementation prospects.

The algorithm in Fig. 7 takes two inputs, one a list image and the other a
stack image. (Unary and binary stack images and list images were introduced in
Sect. 2.1.) The first inputl, is the binary list of lengtm, represented by a list
image withn equally spaced amplitude peak positions in the horizontal direction.
The image contains only one peak (a ‘1’) and the rest of the positions (and the rest
of the image) has zero amplitude (‘0’'s). We assume thata power of 2. The
numberlog, n is also supplied as inpui?). This is used to bound the iteration
and is stored in unary in a stack image. The algorithm uses a well-known location
c as it constructs, bit by bit, the index of the only ‘1'iR. This index is stored
in binary in a stack image. This index is returned through locatiavhen the
algorithm terminates.

20

0| w

0w
br

c

br

c
Id | bc| st

Id | bc| st
b

st

e
b
tlv

d
st
Id

c
to!
i1

b
Id
st

a
il
b

Id

ab| st
ab

3
w
*a
st
st

0
0
8
i1
i1

sta
br
br
br
Id
Id

*d
st
h
2

1
0
01
0
5

Id
*

de| br
e

b

ab| br
3

st
st
st
st
hit

2

i2
e
i2
Y,
i1
c
1

i1
d
Id
h
Id
Id
0

99
w
3

2

1

0

Figure 8: Machine to perform@(log, n) search on an unsorted binary list.

An instance of our model implementing this algorithm is shown in Fig. 8. In
this machine, the computation begins by branching to locdtios) to execute the
two assignment statements before evaluating the loop guard. The code in row 2
corresponds to the linestlect ([[a) " from the algorithm above. This oper-
ation transforms the list ia into the symbol ‘1’ if there had been a ‘1’ anywhere
in the list, and into the symbol ‘0’ otherwise. It does this by integrating all of the
power ina and positioning it ad’'s centre. The computation halts as soon as the
stack at locatiore is exhausted and control branches to locatir).

4.2 Bitonic sort

Bitonic sort is an important algorithm for facilitating efficient parallel imple-
mentations because the sequence of comparisons is not data-dependent. Bitonic
sort consists 0©)(n(log, n)?) comparisons irO((log, n)?) stages. This is non-
optimal — [1] identifies a sorting network with on{y(n log, n) comparisons but

a very large constant factor. However, bitonic sort continues to be faster than
theoretically optimal solutions for all practical problem sizes.

In [3, 2] Akl provides a review of the history of parallel sorting and classi-
fies the bitonic sort as being one of many compare-and-exchange (CAE) based
sorts. Such sorts can be efficiently implemented on many different parallel archi-
tectures, whose commonality is the CAE component as a fundamental building
block. In [16] we see an optimal CAE sort algorithm for mesh-connected com-
puters which requires enormous electronic resources: this solution is complex
and difficult to build due to the electronic nature of the underlying implemen-
tation architecture. Stirk and Athale [19] provide one of the first treatments of
a parallel CAE sort with partial optical implementation. The optics eliminates
communication bottlenecks and interconnection problems by providing massive
parallelism free of electromagnetic interference. This work is built upon in [7]
where the bitonic sort is implemented on a parallel sorting architecture using hy-
brid optoelectronic technology. This system is proposed as a functional extension
of electronic computers and the main originality is in the smart optical interface
devices between parallel optical memories and electronic processors (the authors
do not advocate the development of an all-optical computer). In [11] a constant
time optical CAE sort is introduced. Their claim of constant time suggests that
the complexity of the algorithm is constant. However, there are upper bounds on
the number of elements that can be sorted.

We propose a novel optical implementation of the bitonic sort on our model.
A Java sequential implementation of our bitonic sort is given in Appendix A.

22

(Bitonic sorting is similar to MergeSort in that it requires a list of elements to
be split into two even sublists, recursively sorted and then merged. However, in
the bitonic merge step the lists to be sorted are bitonically ordered rather than
ordered.)

We followed a technique similar to [8] in order to verify the correctness of our
algorithm. The complexity of the sequential implementatioDis:(log, n)?).
The complexity of the implementation on our optical computer is dependent on
the complexity of theébitonicMerge operation. As with a classical multipro-
cessor system (where the number of processors required is linear with respect
to the size of the lists to be merged) thitkonicMerge can be implemented
optically with complexityO(log, n), given that we can provide a fully parallel
implementation of the CAEs contained within the iteration (see comment in the
code in Appendix A). In this case, the depth of our bitonic sort computation is
defined by the recurrence relatidtm) = d(n/2) + log, n. This corresponds to a
O((log, n)?) implementation — the same as is seen with the multiprocessor imple-
mentations referenced above. The advantage of our proposed implementation over
the electronic and optoelectronic implementations is that we execute the algorithm
on a single (optical) processor, where there is no theoretical bound on the number
of elements in our input list. (Although optoelectronic devices may be required
for input and output, no electronic circuitry is necessary for the computation.) In
the case of the implementations we reviewed that contain electronic circuitry, an
upper bound is hard-wired into the computation. Furthermore, our optical imple-
mentation can be viewed as a software solution, running on a universal computer,
not requiring dedicated hardware resources.

References

[1] M. Ajati, J. Kmolos, and S. Szemeredi. AN N log N) sorting network. In
Proc. 25th ACM Symposium on Theory of Compytpages 1-9, 1983.

[2] S.G. Akl. Parallel Sorting Algorithms Academic Press Inc., 1985.
[3] S.G. Akl. Parallel Computation Models and MethodBrentice Hall, 1997.

[4] Jo< Luis Bal@zar, Josep 2z, and Joaquim GabarrStructural Complex-
ity, volume 1. Springer-Verlag, Berlin, 1988.

[5] K.E Batcher. Sorting networks and their applicationsPtac. AFIPS Spring
Joint Computing Conferengeolume 32, pages 307-314, 1968.

23

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum comput8igM Journal on Com-
puting, 26(5):1510-1523, 1997.

F.R. Beyette, P.A. Mitkas, and C.W. Wilmsen. Bitonic sorting using an op-
toelectronic recirculating architecturépplied Optics 33(35):8164-8172,
1994,

R. Couturier. Formal engineering of the bitonic sort using PV2nd Irish
Workshop on Formal Method<Cork, Ireland, July 1998. BCS electronic
workshops in computing (eWiC).

L. K. Grover. A fast quantum mechanical algorithm for database search. In
Proc. 28th Annual ACM Symposium on Theory of Compuiiages 212—
219, may 1996.

D.E Knuth. The Art of Computer Programming, Vol 3: Sorting and Search-
ing. Addison-Wesley, 1973.

A. Louri, J.A. Hatch, and J. Na. Constant-time parallel sorting algorithm and
its optical implementation using smart pixefgoplied Optics34(17):3087—
3097, 1995.

Thomas Naughton, Zohreh Javadpour, John Keating,3lbma, and Ji
Rott. General-purpose acousto-optic connectionist proce@gaical Engi-
neering 38(7):1170-1177, July 1999.

Thomas J. Naughton. A model of computation for Fourier optical processors.
In Roger A. Lessard and Tigran Galstian, edit@gptics in Computing 20Q0
Proc. SPIE vol. 4089, pages 24-34, Quebec, Canada, June 2000.

Thomas J. Naughton and Damien Woods. On the computational power
of a continuous-space optical model of computation. In Maurice Margen-
stern and Yurii Rogozhin, editor§achines, Computations and Universal-
ity: Third International Conferencesolume 2055 ot.ecture Notes in Com-
puter Sciencegpages 288-299, Chigin, Moldova, May 2001.

Rall Rojas. Conditional branching is not necessary for universal computa-
tion in von Neumann computerslournal of Universal Computer Science
2(11):756-768, 1996.

24

[16] C.P. Schnorr and A. Shamir. An optical sorting algorithm for mesh-
connected computers. kroc. 18th ACM Symposium on Theory of Com-
puting pages 255-261, 1986.

[17] Hava T. Siegelmanmeural networks and analog computation: beyond the
Turing limit. Progress in theoretical computer science. Bikder, Boston,
1999.

[18] Hava T. Siegelmann and Eduardo D. Sontag. Analog computation via neural
networks.Theoretical Computer SciencE31(2):331-360, September 1994.

[19] C.W. Stirk and R.A. Athale. Sorting with optical compare-and-exchange
modules.Applied Optics27(9):1721-1726, 1988.

A Bitonic sort code

/I Java sequential implementation of bitonic sort

/I Parallelisation is commented in code

/I The array to be sorted is defined by variable a
/[This array must contain 2°k elements

public void sort(){bitonicSort(0, size, INC);}

private void bitonicSort(int low, int high, boolean dir){
if (high>1){
int mid=high/2;
bitonicSort(low, mid, INC); bitonicSort(low+mid, mid, DEC);
bitonicMerge(low, high, dir);

}
}
private void bitonicMerge(int low, int high, boolean dir){
if (high>1){
int mid=high/2;

for (int i=low; i<low+mid; i++) // in parallel
CAE(i, i+mid, dir);
bitonicMerge(low, mid, dir); bitonicMerge(low+mid, mid, dir);

25

/l The compare and exchange (CAE) fundamental component
private void CAE(int i, int j, boolean dir){
it (dir==(a[i]>ali)}{
/[if in wrong order then swap
int temp=a][i];ali]=a[j];alj]=temp;

26

