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Abstract This work is concerned with the computational complexity of a model of

computation that is inspired by optical computers. We present lower bounds on the

computational power of the model. Parallel time on the model is shown to be at least as

powerful as sequential space. This gives one of the two inclusions that are needed to show

that the model verifies the parallel computation thesis. As a corollary we find that when the

model is restricted to simultaneously use polylogarithmic time and polynomial space, its

power is lower bounded by the class NC. By combining these results with the known upper

bounds on the model, we find that the model verifies the parallel computation thesis and,

when suitably restricted, characterises NC.

1 Introduction

Over the years, optical computers were designed and built to emulate conventional

microprocessors (digital optical computing), and for image processing over continuous

wavefronts (analog optical computing). Here we are interested in the latter class: optical

computers that store data as images. Numerous physical implementations exist and

example applications include fast pattern recognition and matrix-vector algebra (Goodman

1996; VanderLugt 1992). There have been much resources devoted to designs, imple-

mentations and algorithms for such optical information processing architectures (for
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e-mail: paul.gibson@int-evry.fr

123

Nat Comput
DOI 10.1007/s11047-007-9039-7



example see Arsenault and Sheng 1992; Caulfield 1990; Feitelson 1988; Goodman 1996;

Lee 1995; Louri and Post 1992; McAulay 1991; Naughton et al. 1999; Reif and Tyagi

1997; VanderLugt 1992; Yu et al. 2001 and their references). However the computational

complexity theory of optical computers (that is, finding lower and upper bounds on

computational power in terms of known complexity classes) has received relatively little

attention when compared with other nature-insired computing paradigms. Some authors

have even complained about the lack of suitable models (Feitelson 1988; Louri and Post

1992).

The computational model we study was originally put forward by Naughton and is

called the continuous space machine (CSM) (Naughton 2000a, b; Naughton and Woods

2001; Woods 2005a; Woods and Naughton 2005). The CSM is inspired by classical

Fourier optical computing architectures and uses complex-valued images, arranged in a

grid structure, for data storage. The program also resides in images. The CSM has the

ability to perform Fourier transformation, complex conjugation, multiplication, addition,

thresholding and resizing of images. It has simple control flow operations and is

deterministic. We analyse the model in terms of seven complexity measures inspired by

real-world resources.

A rather general variant of the model was previously shown (Woods and Naughton

2005) to decide the membership problem for all recursively enumerable languages, and as

such is unreasonable in terms of implementation. Also, the growth in resource usage was

shown for each CSM operation, which in some cases was unreasonably large (Woods and

Gibson 2005a). These results motivated the definition of the C2-CSM, a restricted CSM that

uses discrete-valued images. We have given upper (Woods 2005b) and lower (Woods and

Gibson 2005b) bounds on the computational power of the C2-CSM by showing that it

verifies the parallel computation thesis. This thesis (Chandra and Stockmeyer 1976;

Goldschlager 1977; Greenlaw et al. 1995; Karp and Ramachandran 1990; Parberry 1987;

van Emde Boas 1990) states that parallel time corresponds, within a polynomial, to

sequential space for reasonable parallel models. Furthermore we have characterised the

class NC in terms of the C2-CSM. These results are collected together in Woods (2005a).

Here we present one of the two inclusions that are necessary in order to verify the

parallel computation thesis; we show that the languages accepted by nondeterministic

Turing machines in SðnÞ ¼ Xðlog nÞ space are accepted by C2-CSMs computing in TIME

O(S4(n)).

NSPACEðSðnÞÞ � C2�CSM-timeðOðS4ðnÞÞÞ

For example, polynomial TIME C2-CSMs accept PSPACE languages. Also we show that

C2-CSMs that simultaneously use polynomial SPACE and polylogarithmic TIME accept

the class NC.

NC � C2�CSM-SPACE, TIMEðnOð1Þ; logOð1ÞnÞ

These inclusions are established via C2-CSM simulation of index-vector machines.

2 The CSM

We begin by describing the model in its most general sense, this brief overview is not

intended to be complete and more details are to be found in (Woods et al. 2005a).
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2.1 CSM

A complex-valued image (or simply, an image) is a function f : 0; 1½ Þ � 0; 1½ Þ ! C , where

0; 1½ Þ is the half-open real unit interval. We let I denote the set of complex-valued images.

Let Nþ ¼ f1;2;3; . . .g;N ¼ N
þ [ f0g, and for a given CSM M letN � I be a countable

set of images that encode M’s addresses. Additionally, for a given M there is an address
encoding function E : N! N such that E is Turing machine decidable, under some

reasonable representation of images as words. An address is an element of N� N.

Definition 1 (CSM).

A CSM is a quintuple M ¼ ðE; L; I;P;OÞ, where E : N! N is the address encoding

function,

L ¼ sn; sg
� �

; an; ag
� �

; bn; bg
� �� �

are the addresses: sta, a and b, where a 6¼ b,

I and O are finite sets of input and output addresses, respectively,

P ¼ fðf1; p1n ; p1gÞ; . . . ; ðfr; prn ; prgÞg are the r programming symbols fj and

their addresses where fj 2 ðfh; v; �; �;þ; q; st; ld; br; hltg [ N Þ � I :
Each address is an element from f0; . . . ;N� 1g � f0; . . . ;Y � 1g where N;Y 2 N

þ.

Addresses whose contents are not specified by P in a CSM definition are assumed to

contain the constant image f(x, y) = 0. We interpret this definition to mean that M is

(initially) defined on a grid of images bounded by the constants N and y, in the horizontal

and vertical directions respectively. The grid of images may grow in size as the compu-

tation progresses.

In our grid notation the first and second elements of an address tuple refer to the

horizontal and vertical axes of the grid respectively, and image (0, 0) is located at the lower

left-hand corner of the grid. The images have the same orientation as the grid. For example

the value f(0, 0) is located at the lower left-hand corner of the image f.
In Definition 1 the tuple P specifies the CSM program using programming symbol

images fj that are from the (low-level) CSM programing language (Woods 2005a; Woods

and Naughton 2005). We refrain from giving a description of this programming language

and instead describe a less cumbersome high-level language (Woods 2005a). Figure 1

gives the basic instructions of this high-level language. The copy instruction is illustrated

in Fig. 2(d). There are also if/else and while control flow instructions with conditions of the

form ðfw ¼¼ f/Þ where fw and f/ are binary symbol images (see Fig. 2(a), (b)).

Fig. 1 CSM high-level programming language instructions. In these instructions i; zl; zu 2 N� N are image
addresses and n; g 2 N. The control flow instructions are described in the main text
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Address sta is the start location for the program so the programmer should write the first

program instruction at sta. Addresses a and b define special images that are frequently used

by some program instructions. The function E is specified by the programmer and is used

to map addresses to image pairs. This enables the programmer to choose her own address

encoding scheme. We typically don’t want E to hide complicated behaviour thus the

computational power of this function should be somewhat restricted. For example, we put

such a restriction on E in Definition 7. Configurations are defined in a straightforward way

as a tuple hc; ei where c is an address called the control and e represents the grid contents.

2.2 Complexity measures

Next we define some CSM complexity measures. All resource bounding functions map

from N into N and are assumed to have the usual properties (Balcázar et al. 1988).

Definition 2 The TIME complexity of a CSM M is the number of configurations in the

computation sequence of M, beginning with the initial configuration and ending with the

first final configuration.

Definition 3 The GRID complexity of a CSM M is the minimum number of images,

arranged in a rectangular grid, for M to compute correctly on all inputs.

For example suppose M accepts language L, then the GRID complexity of M is the

minimum number of images accessible by M and arranged in a rectangular grid, such that

M accepts exactly L.

Let S : I � ðN� NÞ ! I , where S(f (x, y), (U, W)) is a raster image, with UW con-

stant-valued pixels arranged in U columns and W rows, that approximates f(x, y). If we

choose a reasonable and realistic S then the details of S are not important.

Definition 4 The SPATIALRES complexity of a CSM M is the minimum UW such that if

each image f(x, y) in the computation of M is replaced with S(f (x, y), (U, W)) then M
computes correctly on all inputs.

Definition 5 The DYRANGE complexity of a CSM M is the ceiling of the maximum of all

the amplitude values stored in all of M’s images during M’s computation.

We also use complexity measures called AMPLRES, PHASERES and FREQ (Woods 2005a;

Woods and Naughton 2005). Roughly speaking, the AMPLRES of a CSM M is the number of

discrete, evenly, spaced amplitude values per unit amplitude of the complex numbers in the

(a) (b) (c) (d)

Fig. 2 Representing binary data. The shaded areas denote value 1 and the white areas denote value 0.
Dashed lines are for illustration purposes only. (a) Binary symbol image representation of 1, and (b) of 0. (c)
List image representation of the word 1011. (d) Illustration of the instruction i ½n; nþ 3; g; g� that copies
four images to a single image that is denoted i
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range of M’s images. The PHASERES of M is the total number (per 2p) of discrete, evenly,

spaced phase values in the range of M’s images. FREQ is a measure of the optical frequency

of M’s images.

Often we wish to make analogies between space on some well-known model and CSM

‘space-like’ resources. Thus we define the following convenient term.

Definition 6 The SPACE complexity of a CSM M is the product of all of M’s complexity

measures except TIME.

More details on the complexity measures are to be found in Woods and Naughton

(2005).

2.3 C2-CSM

In previous work (Woods 2005a; Woods and Gibson 2005) we investigated the growth of

complexity resources over TIME, with respect to CSM operations. As expected, under

certain operations some measures do not grow at all. Others grow at rates comparable to

massively parallel models. By allowing operations like the Fourier transform we are

mixing the continuous and discrete worlds, hence some measures grow to infinity in one

timestep. This gave strong motivation for the C2-CSM, a restriction of the CSM.

Definition 7 (C2-CSM). A C2-CSM is a CSM whose computation TIME is defined for

t 2 f1; 2; . . . ; TðnÞg and has the following restrictions:

– For all TIME t both AMPLRES and PHASERES have constant value of 2.

– For all TIME t each of GRID, SPATIALRES and DYRANGE is O(2t) and SPACE is redefined to be

the product of all complexity measures except TIME and FREQ.

– Operations h and v compute the discrete Fourier transform (DFT) in the horizontal and

vertical directions respectively.

– Given some reasonable binary word representation of the set of addresses N , the

address encoding function E : N! N is decidable by a logspace Turing machine.

3 Index-vector machines and representations

Here we introduce vector machines, and the variant that we simulate called index-vector

machines. We then describe our image representation of vectors.

The vector machine model was originally described by Pratt et al. (1974); here we

mostly use the conventions of Pratt and Stockmeyer (1976) and Balcázar et al. (1988). A

vector V is a binary sequence that is infinite to the left only and is ultimately constant (after

a finite number of bits every bit to the left is either always 0 or always 1). An ultimately 0

sequence represents a positive number and an ultimately 1 sequence represents a negative

number. The non-‘ultimately constant’ part (v) represents a positive binary integer in the

usual way, with the rightmost vector bit representing the least significant integer bit. The

negative integer �n is represented by the bitwise complement of the vector representing n.

The length of V is denoted |V|, and is the length of the non-constant part of V. A vector
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machine (program) is a list of instructions where each is of the form given in the following

definition.

Definition 8 (Vector machine instructions and their meanings (Balcázar et al. 1988)).

Vector instruction Meaning

Vi: = x Load the positive constant binary number x into vector Vi.

Vk :¼ :Vi Bitwise parallel negation of vector Vi.

Vk :¼ Vi ^ Vj Bitwise parallel ‘and’ of two vectors.

Vk: = Vi : Vj If Vj is ultimately 0 (resp. 1) then shift Vi to the left

(resp. right) by the distance given by the binary number vj

and store the result in Vk. If Vj = 0 then Vi is copied to Vk.

Vk: = Vi ; Vj If Vj is ultimately 0 (resp. 1) then shift Vi to the right

(resp. left) by the distance given by the binary number vj

and store the result in Vk. If Vj = 0 then Vi is copied to Vk.

goto m if Vi = 0 If Vi = 0 then branch to the instruction labelled m.

goto m if Vi = 0 If Vi = 0 then branch to the instruction labelled m.

Instructions are labelled to facilitate the goto instruction. Configurations, (accepting)

computations and computation time are all defined in the obvious way. Computation space

is the maximum over all configurations, of the sum of the lengths of the vectors in each

configuration. A language accepting vector machine on input w has an input vector of the

form ...000w where w 2 1f0; 1g�. In this work we consider only deterministic vector

machines.

Definition 9 (Index-vector machines (Pratt and Stockmeyer 1976)). A vector machine is

of class VI (equivalently, an index-vector machine) if its registers are partitioned into two

disjoint sets, one set called index registers and the other called vector registers, such that (i)

each Boolean operation in the program involves either only index registers or only vector

registers; and (ii) each shift instruction is of the form

V1 :¼ V2 " I; V1 :¼ V2 # I; I :¼ J " 1; I :¼ J # 1

where V1 and V2 are vector registers, and I and J are index registers. For language

recognition the input register is a vector register.

It is straightforward to prove the following lemma by induction on t.

Lemma 1 ([Pratt and Stockmeyer 1976]). Given index-vector machine M 2 VI with n as
the maximum input length, there is a constant c such that vector length in index
(respectively vector) registers is bounded above by c+t (respectively 2cþt þ nÞ after t
timesteps.

Pratt and Stockmeyer’s (Pratt and Stockmeyer 1976) main result is a characterisation

of the power of index-vector machines. The characterisation is described by two

inclusions, proved for time bounded index-vector machines and space bounded Turing

machines:
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NSPACEðSðnÞÞ � VI-TIMEðOðSðnÞ þ log nÞ2Þ ð1Þ
VI-TIMEðTðnÞÞ � DSPACEðOðTðnÞðTðnÞ þ log nÞÞÞ ð2Þ

In other words, index-vector machines verify the parallel computation thesis and are a

member of the second machine class (van Emde Boas 1990). Modulo a polynomial,

deterministic and nondeterministic vector machines have equal power (Pratt et al.

1974).

3.1 Image representation of vectors

Let vi 2 f0; 1g� denote the non-‘ultimately constant’ part of vector Vi. If the ultimately

constant part of Vi is 0x (respectively 1x) then let signðviÞ ¼ 0 (respectively let

signðviÞ ¼ 1). In this work we use binary symbol images, number images and binary list

images. These represent binary symbols, numbers from f0;�1
2
;�1;�3

2
; . . .g, and binary

words in a straight-forward way that is illustrated in Fig. 2.

The vector Vi is represented by three images: vi , jvij and signðviÞ . The image vi is the

binary list image representation of vi. Image jvij is the natural number image represention

of |vi| (the length of vi). Accessing these images respectively incurs SPATIALRES and

DYRANGE costs that are linear in |vi|. Image signðviÞ is f0 (the binary symbol image rep-

resenting 0) if signðviÞ ¼ 0 and f1 if signðviÞ ¼ 1 . We use the same representation scheme

for vector program constants. The simulation uses natural number images as addresses,

which are clearly reasonable in the sense of the C2-CSM definition. Hence addressing

incurs a (linear) DYRANGE cost.

Another issue to consider is the layout of the grid of images; where to place input,

program constants (f0; f1; f�1; f1
2
; f2), local variables, etc. There are only a constant

number of such images hence there a number of layouts that work, a specific grid

layout is given in (Woods 2005a). Rows 0 and 1 are used to store temporary images.

The only images explicitly referred to by numerical addresses are in these two rows

(the constant number of other addresses used in the simulation have identifier names

from the outset).

4 C2-CSM simulation of index-vector machines

In this section we prove that C2-CSMs are at least as powerful as index-vector machines

(up to a polynomial in time). More precisely

VI-TIMEðTðnÞÞ � C2�CSM-TIMEðOðT2ðnÞÞÞ: ð3Þ

To prove this we simulate each index-vector machine instruction in Oðlog jVmaxjÞ TIME

where jVmaxj 2 N is the maximum length of (the non-ultimately constant part of) any of the

vectors mentioned in the instruction. Additionally we simulate the index-vector shifts in

linear TIME. From Lemma 3 this TIME bound ensures that our overall simulation executes in

quadratic TIME, which is sufficient for the inclusion given by Eq. (3). The SPACE bound on

the simulation is OðjVmaxj3Þ.
We begin by giving a straightforward simulation of vector assignment.
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Theorem 2 (Vi: = x) The vector machine assignment instruction Vi: = x is simulated by a
C2-CSM in O(1) TIME, O(1) GRID, Ojxj DYRANGE and Oðmaxðjxj; jvijÞÞ SPATIALRES.

Proof The images representing x are simply copied to those representing Vi:

assignmentðx; jxj; signðxÞ; vi; jvij;
signðviÞÞ vi  x

jvij  jxj signðviÞ  signðxÞ
end==assignment

We require Oðmaxðjxj; jvijÞÞ SPATIALRES to represent x and vi as binary list images.

DYRANGE of O(|x|) is needed to represent |x| as a natural number image. No address goes

beyond the initial grid limits hence we use constant GRID. (
A C2-CSM can quickly generate a list image g, where each list element is identical. We

state the following lemma for the specific case that each list element is a binary symbol

image fw. By simply changing the value of one input, the algorithm generalises to arbitrary

repeated lists (with a suitable change in resource use, dependent only on the complexity of

the new input image element).

Lemma 3 ðgenerate listðfw; l; gÞ) A list image g that contains l list elements, each of
which is a copy of input binary image fw, is generated in O(log l) TIME, O(l) GRID,

SPATIALRES and DYRANGE.

Proof (Sketch) The algorithm horizontally juxtaposes two copies of fw and rescales them

to a single image. This juxtaposing and rescaling is repeated on the new image; the process

is iterated a total of dlog le times to give a list of length 2dlog le, giving the stated TIME bound.

In constant TIME, the list image is then stretched to its full length across 2dlog le images, l
juxtaposed images are then selected and rescaled to a single output image g. O(l)
SPATIALRES is necessary to store the list in a single image. O(l) GRID is used to stretch the list

out to its full length. Recall that we are using natural number images for addresses, hence

O(l) DYRANGE is used to stretch the list across 2dlog le images. (

Theorem 4 (Vk :¼ :Vi) The vector machine negation instruction Vk :¼ :Vi is simulated
by a C2-CSM in Oðlog jvijÞ TIME, Ojvij GRID and DYRANGE, and Oðmaxðjvkj; jvijÞÞ SPATIAL-

RES.

Proof Program 4.1 simulates Vk :¼ :Vi . The program generates a list of �1s of length

jvij. This list image is then multiplied by vi ; changing each 1 in vi to �1 and leaving each 0
unchanged. Then we add 1 to each element in the resulting list. A simple if statement

negates signðviÞ . Each call to the function generate list(�) requires Oðlog jvijÞ TIME,

otherwise TIME is constant. The remaining resource usages are for accessing vectors and

rescaling them to their full length. (
The proof of the following straightforward lemma gives a program that decides which

of two vectors is the longer in constant TIME. It also shows that we can decide the max or

min of two integer images in constant TIME.
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Lemma 5 (maxð�Þ and minð�Þ) The max (or min) length of the vectors Vi and Vj is decided
in O(1) TIME, O(1) GRID, Oðmaxðjvkj; jvijÞÞ SPATIALRES, Oðmaxðjvkj; jvijÞÞ DYRANGE.

Proof (Sketch) The function header for maxð�Þ is formatted as follows: maxðvi; jvij,
signðviÞ; vj; jvjj; signðvjÞ; longest, jlongestj; signðlongestÞ). The encoding of �jvij is created

by the instruction � ðjvij; f�1;�jvijÞ, then the maxð�Þ algorithm thresholds the value

jvjj � jvij to the range [0, 1]. If the result is the zero image f0 then Vi is the longer vector

and its representation is copied to the three output addresses, else the representation of Vj is

output. In a similar way we decide the min length of two vector images, the function

header for min(�) has the format: minðvi; jvij; signðviÞ; vj; jvjj; signðvjÞ; shortest; jshortestj;
signðshortestÞÞ (

Theorem 6 (Vk :¼ Vi ^ Vj) The vector machine instruction Vk :¼ Vi ^ Vj is simulated by
a C2-CSM in Oðlog maxðjvij; jvjjÞÞ TIME, Oðmaxðjvij; jvjj; jvkjÞÞ SPATIALRES, and
Oðmaxðjvij; jvjjÞÞ GRID and DYRANGE.

Proof Program 4.2 simulates ^. It uses multiplication of vector images to simulate

Vi ^ Vj in parallel. However if jvij 6¼ jvjj , we first pad the shorter vector image with zeros

so that both have equal length. To find the longer and shorter of the two vectors we make

use of the maxð�Þ and minð�Þ routines given above.

The program requires Oðlog maxðjvij; jvjjÞÞ TIME for the generate listð�Þ call (the worst

case is when exactly one of the vectors is of length 0). The remainder of the program runs

in O(1) TIME, including determining which vector is longer, padding of the shorter vector

and parallel multiplication of vectors. The remaining resource usages on vector images in

the theorem statement are for accessing and storing to a single image, and stretching to full

length. h

Next we give algorithms to simulate vector left shift and right shift. The main idea is to

copy large numbers of images to simulate shifting.

Lemma 7 (left shiftðn; vi; jvij; signðviÞ; vk; jvkj; signðvkÞÞ) A left shift of distance n	 0 on
a vector Vi, to create vector Vk, is simulated in O(1) TIME, O(|vi + n|) GRID and DYRANGE,

and Oðmaxðjvi þ nj; jvkjÞÞ SPATIALRES.

Proof (Sketch) The algorithm assumes that n is given as a natural number image. We

simulate the shift by stretching vi out to its full length, placing n zero images to the right of

the stretched vi, and then selecting all of vi along with the n zeros and rescaling back to one

image. After the shift (in accordance with the definition of vector shift), 0s are to be placed

in the rightmost positions. (
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An algorithm for right shiftð�Þ would work similarly. However this time we select the

leftmost jvij � n images of the stretched vi . If n	 jvij the output is the representation of the

zero vector.

Theorem 8 (Vk :¼ Vi " Vj) The vector machine instruction Vk :¼ Vi " Vj is simulated by
a C2-CSM in OðjvjjÞ TIME, Oðjvij þ 2jvjjÞ GRID and DYRANGE, and Oðmaxðjvkj; jvij þ 2jvjjÞÞ
SPATIALRES.

Proof Program 4.3 simulates the shift by stretching Vi out to its full length; then

selecting either part of Vi, or Vi and some extra zero images; and finally rescaling back to

one image. The simulator’s addresses are represented by natural number images whereas

vectors are represented by binary list images. In order to perform the stretching, the

program converts the binary number defined by Vj to a natural number image called

shift_distance.

The while loop efficiently generates a value of Oð2jvj jÞ in OðjvjjÞ TIME. At different

stages of the algorithm each of vi and vj are rescaled to their full length, across jvij and

jvjj images respectively. We get the value Oðjvij þ 2jvjjÞ for GRID since in the worst case

Vi is left shifted by the value 2jvjj , and (when stretched) the resulting vector spans

Oðjvij þ 2jvjjÞ images. This upper bound also covers the right shift case (when Vj is

negative). Analogously we get the same value for SPATIALRES and DYRANGE (except jvkj is

also in the SPATIALRES expression as it could contain some values before the program

executes). (
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The converse shift instruction (Vk :¼ Vi # Vj) is simulated by Program 4.3 except that

the calls to right_shift(�) and left_shift(�) are exchanged. The resource usage remains the

same.

The proof of the following lemma gives a log TIME algorithm to decide if a list or vector

image represents a word that consists only of zeros. It is possible to give a constant TIME

algorithm that makes use of the FT (to ‘sum’ the entire list in constant TIME). Not using the

FT enables us to state Corollary 17.

Lemma 9 A C2-CSM that does not use Fourier transformation decides whether or not a
list (equivalently, vector) image �vi represents the word 0jvij in Oðlog jvijÞ TIME, OðjvijÞ GRID,

SPATIALRES and DYRANGE.

Proof (Sketch) The binary list image vi is padded with zeros so that it is of length

2dlog jvije. The algorithm splits vi into a left half and a right half, adds both halves (in a one

step parallel pointwise fashion), and repeats until the list is of length 1. A counter image

keeps track of list length. The resulting image is thresholded below by f0 and above by f1. If

the result is the zero image then vi represents a list of zeros, otherwise vi represents a list

with at least a single 1. (

Theorem 10 (goto m if Vi = 0). The vector machine instruction goto m if Vi = 0 (or goto

m if Vi 6¼ 0) is simulated by a C2-CSM in Oðlog jvijÞ TIME, OðjvijÞ GRID, SPATIALRES, and
DYRANGE.
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Proof Due to the vector machine number representation, there are exactly two repre-

sentations for 0; the constant sequences ...000 and ...111. Using our C2CSM representation

of vectors, if jvij ¼ 0 then the vector Vi is constant, and hence represents 0. We can test

jvij ¼ 0 in constant time with an if statement.

However, it may be the case that jvij ¼ n [ 0 and yet Vi represents 0. In this case vi

represents a list of 0s (respectively 1s) and signðviÞ represents 0 (respectively 1). A

sequential search through vi will require exponential TIME (worst case) and as such is too

slow. Instead we use the log TIME technique given by the previous lemma. In the case that

Vi is ultimately 1 we make use of the :ð�Þ program defined in Theorem 4. For the goto part

of the instruction we merely note that gotos are simulated by ifs and whiles. Clearly the

related instruction ‘goto m if Vi = 00 is simulated with the same resource usage. (
Given a vector machine M there is a C2-CSM M0 that simulates M. In particular, if

vector machine M decides a language L then we can easily modify our simulation of vector

machines so that M0 decides L.

Theorem 11 Let M be an index-vector machine that decides L [ {0, 1}* in time T(n) for
input length n. Then L is decided by a C2-CSM M0 in O(T2(n)) TIME, O(2T(n)) GRID, SPA-

TIALRES and DYRANGE.

Proof By Lemma 1 M’s index-vectors have length O(T(n)), while unrestricted vectors

have length O(2T(n)). From the above simulation theorems, any non-shifting instruction is

simulated in TIME that is log of the length of the vectors. The remaining operations, right

and left shift, are simulated in TIME that is linear in the length of their index-vector input.

From these bounds it is straightforward to work out that M decides L in O(T2(n)) TIME and

that each of GRID, SPATIALRES and DYRANGE is Oð2TðnÞÞ. (
From the previous theorem M0 uses O(23T(n)) SPACE to decide L, hence our simulation

uses SPACE that is cubic in the space of M.

Corollary 12. VI-TIMEðTðnÞÞ � C2�CSM-TIMEðOðT2ðnÞÞÞ
Let SðnÞ ¼ Xðlog nÞ. From the inclusion in Eq. (1) we get:

Corollary 13. NSPACE ðSðnÞÞ � C2�CSM-TIMEðOðS4ðnÞÞÞ
Combining this result with the upper bound on TIME bounded C2-CSM power (Woods

2005a, b]:

Corollary 14. NSPACE ðSðnÞÞ � C2�CSM-TIMEðOðS4ðnÞÞÞ � DSPACEðOðS8ðnÞÞÞ
To summarise, the C2-CSM satisfies the parallel computation thesis:

Corollary 15 NSPACE ðSOð1ÞðnÞÞ ¼ C2�CSM-TIMEðSOð1ÞðnÞÞ
This relates space bounded sequential computation and TIME bounded C2-CSM

computation. For example C2-CSM-TIME(nO(1)) = PSPACE. We strengthen this result by

restricting the C2-CSM. Let a 1D-C2-CSM be a C2-CSM with constant GRID and

SPATIALRES, in one of the vertical or the horizontal directions.

Corollary 16 The 1D-C2-CSM verifies the parallel computation thesis.

Proof The index-vector machine simulation used only constant GRID and SPATIALRES in

the vertical direction. Moreover we can rotate the grid layout and all images by 908, to
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obtain a simulation where GRID and SPATIALRES are constant in the horizontal direction

only. (

Corollary 17 The C2-CSM without the DFT operations h and v verifies the parallel
computation thesis.

Proof Our C2-CSM simulation of index-vector machines did not use h nor v. (
The thesis relates parallel time to sequential space, however in our simulations we

explicitly gave all resource bounds. As a final result we show that the class of C2-CSMs

that simultaneously use polynomial SPACE and polylogarithmic TIME decide at least the

languages in NC. Let C2�CSM-SPACE, TIMEðSðnÞ;TðnÞÞ be the class of languages

decided by C2-CSMs that use SPACE S(n) and TIME T(n). It is known (Goodman 1996) that

VI�SPACE, TIMEðnOð1Þ; logOð1Þ nÞ ¼ NC . From the resource overheads in our simula-

tions:

VI�SPACE, TIMEðOð2TðnÞÞ;TðnÞÞ
� C2�CSM-SPACE, TIMEð2OðTðnÞÞ;TOð1ÞðnÞÞ

For the case of T(n) = logO(1) n we have our final result.

Corollary 18 NC � C2�CSM-SPACE, TIMEðnOð1Þ; logOð1Þ nÞ
Previously we have shown (Woods 2005a, b) that the converse inclusion also holds.
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