
Complexity of continuous space machine
operations

Damien Woods1 and J. Paul Gibson2

1 Boole Centre for Research in Informatics and Department of Mathematics,
University College Cork, Cork, Ireland.

Corresponding author: http://www.bcri.ucc.ie/˜dw5
2 Theoretical Aspects of Software Systems Research Group, Department of

Computer Science, National University of Ireland, Maynooth, Maynooth, Ireland.

Abstract. We investigate the computational complexity of an optical
model of computation called the continuous space machine (CSM). We
characterise worst case resource growth over time for each of the CSM’s
ten operations with respect to seven resource measures. Many operations
exhibit unreasonably large growth rates thus motivating restrictions on
the CSM, in particular we give a restriction called the C2-CSM.

1 Introduction

The computational model we study is relatively new and is called the continu-
ous space machine (CSM) [11, 12, 13, 18, 19]. The CSM is inspired by classical
Fourier optics and uses complex-valued images, arranged in a grid structure, for
data storage. The program also resides in images. The CSM has the ability to
perform Fourier transformation, complex conjugation, multiplication, addition,
thresholding and resizing of images. It has simple control flow operations and
is deterministic. To analyse such a model we define a total of seven complex-
ity measures inspired by real-world resources. For example, spatial resolution
corresponds to number of pixels.

A variant of the model with real inputs was previously shown [19] to decide
the membership problem for all recursively enumerable languages, and as such
is unreasonable in terms of implementation. Here, we build on this work by
showing the growth in resource usage for each CSM operation. This leads to a
restriction of the CSM that is more suited to the standard tools from analysis
of algorithms and complexity theory.

2 The CSM

We begin by informally describing the model, this brief overview is not intended
to be complete: Detailed definitions and discussions can be found in [18, 19].

Definition 1 (complex-valued image). A complex-valued image (or simply,
image) is a function f : [0, 1)× [0, 1) → C, where [0, 1) is the half-open real unit
interval.

We let I denote the set of all complex-valued images. N+ = {1, 2, 3, . . .} and
N = N+ ∪ {0}. For a given CSM M we let N be a countable set of images that
encode M ’s addresses. Also for a given M there is an address encoding function
E : N → N such that E is Turing machine decidable, under some reasonable3

representation of images as words. An address is simply an element of N× N.

Definition 2 (CSM). A CSM is a quintuple M = (E, L, I, P, O), where

E : N→ N is the address encoding function
L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a, and b,
I = ((ι1ξ

, ι1η
), . . . , (ιkξ

, ιkη
)) are the addresses of the k input images,

P = {(ζ1, p1ξ
, p1η

), . . . , (ζr, prξ
, prη

)} are the r programming symbols and
their addresses where ζj ∈({h, v, ∗, ·,+, ρ, st, ld, br, hlt} ∪ N) ⊂ I,

O = ((o1ξ
, o1η), . . . , (olξ , olη)) are the addresses of the l output images.

Each address is an element from {0, 1, . . . , Ξ−1}×{0, 1, . . . , Y−1} where Ξ, Y ∈
N+. Addresses a and b are distinct.

Addresses whose contents are not specified by P in a CSM definition are
assumed to contain the constant image f(x, y) = 0. We interpret this definition to
mean that M is (initially) defined on a grid of images bounded by the constants
Ξ and Y, in the horizontal and vertical directions respectively.

In our grid notation the first and second elements of an address tuple refer
to the horizontal and vertical axes of the grid respectively, and image (0, 0) is
at the bottom left-hand corner of the grid. The images in a grid have the same
orientation as the grid. Fig. 1 gives the CSM operations in this grid notation.
Configurations are defined in a straightforward way as a tuple 〈c, e〉 where c is
an address called the control and e represents the grid contents. In the sequel we
write ĉ to mean the image (or instruction) at address c. It is beyond the scope of
this paper to give CSM algorithms and so this informal description is sufficient
for our analysis in Sect. 4. For a more thourough introduction see [18, 19].

3 Complexity measures

We want our complexity measures to be straightforward to analyse, while at
the same time to be meaningful by reflecting the reality of optical computing.
All finite resource bounding functions are from N into N and have the usual
properties [1].

Definition 3. The time complexity of a CSM M is the number of configura-
tions in the computation sequence of M , beginning with the initial configuration
and ending with the first final configuration.

Definition 4. The grid complexity of a CSM M is the minimum number of
images, arranged in a rectangular grid, for M to compute correctly on all inputs.

3 Other authors have also raised this representation issue for different models, but
with similar motivations. See [18] for further discussion.

2

h : replace image in a with its horizontal 1D Fourier transform (FT).

v : replace image in a with its vertical 1D FT.

∗ : replace image in a with its complex conjugate.

· : multiply (point by point) the two images in a and b. Store result in a.

+ : perform a complex addition of a and b. Store result in a.

ρ zl zu : zl, zu ∈ I; filter the image in a by amplitude using zl and zu as lower
and upper amplitude threshold images, respectively.

st ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy the image in a into the rectangle of images
whose bottom left-hand corner address is (ξ1, η1) and whose top right-
hand corner address is (ξ2, η2).

ld ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy into a the rectangle of images whose bottom
left-hand corner address is (ξ1, η1) and top right-hand corner address is
(ξ2, η2).

br ξ η : ξ, η ∈ N; unconditionally branch to the image at address (ξ, η).

hlt : halt.

Fig. 1. The set of CSM operations, given in our informal grid notation.

From the CSM definition grid is at least Ξ Y. In previous work [11, 12, 13, 19]
the number of grid images remained constant throughout a computation. Here
we alter the CSM (by introducing the address encoding function E) so that grid
may grow over time.

Next we define spatialRes. Let a pixel λ be a constant complex function
defined on a real-valued rectangle with rational endpoints, λ : [0,W)×[0,H) → z
where z ∈ C; W,H ∈ Q; 0 < W,H 6 1; and [0,W), [0,H) ⊂ R. A raster image
is an image composed entirely of nonoverlapping pixels, each pixel is of equal
height H, equal width W , identical orientation, and arranged into Φ columns
and Ψ rows where ΦW = 1 = ΨH. Let the spatial resolution of a raster image
be ΦΨ . Let S : I × (N×N) → I, where S(f(x, y), (Φ, Ψ)) is a raster image, with
ΦΨ pixels arranged in Φ columns and Ψ rows, that approximates f(x, y). If we
choose a reasonable and realistic S then the details of S are not important.

Definition 5. The spatialRes complexity of a CSM M is the minimum
ΦΨ such that if each image f(x, y) in the computation of M is replaced with
S(f(x, y), (Φ, Ψ)) then M computes correctly on all inputs.

If no such ΦΨ exists then M has infinite spatialRes complexity.
For amplRes complexity consider the function A : I × N+ → I,

A(f(x, y), µ) =
⌊
|f(x, y)|µ +

1
2

⌋
1
µ

exp(i× arg(f(x, y))) , (1)

where | · | gives the amplitudes of its image argument, arg(·) gives the phase
angles in the range (0, 2π], and the floor operation operates separately on each
image value. The value µ is the cardinality of the set of discrete nonzero am-
plitude values that each complex value in A(f, µ) can take, per half-open unit

3

interval of amplitude. To aid in the understanding of Equation (1), recall that
f(x, y) = |f(x, y)| exp(i× arg(f(x, y))).

Definition 6. The amplRes complexity of a CSM M is the minimum µ such
that if each image f(x, y) in the computation of M is replaced by A(f(x, y), µ)
then M computes correctly on all inputs.

If no such µ exists then M has infinite amplRes complexity.
Consider the function P : I × N+ → I defined as

P (f(x, y), µ) = |f(x, y)| exp
(

i
⌊
arg(f(x, y))

µ

2π
+

1
2

⌋
2π

µ

)
. (2)

The value µ is the cardinality of the set of discrete phase values that each complex
value in P (f, µ) can take.

Definition 7. The phaseRes complexity of a CSM M is the minimum µ such
that if each image f(x, y) in the computation of M is replaced by P (f(x, y), µ)
then M computes correctly on all inputs.

If no such µ exists then M has infinite phaseRes complexity.

Definition 8. The dyRange complexity of a CSM M is the ceiling of the max-
imum of all the amplitude values stored in all of M ’s images during M ’s com-
putation.

Definition 9. The freq complexity of a CSM M is the minimum optical fre-
quency such that M computes correctly on all inputs.

The concept of minimum optical frequency is explained in [19]. If approximations
of a FT are sufficient for M , or if M does not execute h nor v, then M requires
finite freq. If the original (unbounded) definitions of h and v must hold then M
requires infinite freq. Using the traditional optical methods, any lower bound
on spatialRes will impose a lower bound on freq [19], we should be aware of
this in our complexity analysis.

Often we wish to make analogies between space on some well-known model
and ‘space-like’ resources on the CSM. For this purpose we define the following
convenient term.

Definition 10. The space complexity of a CSM M is the product of all of M ’s
complexity measures except time.

We argue that this definition is reasonable as it gives an upper bound on the
information (e.g. number of bits) stored throughout a CSM computation.

We have defined the complexity of a computation (sequence of configurations)
for each measure. We extend this definition to the complexity of a (possibly
non-final) configuration in the obvious way. Also, we sometimes talk about the
complexity of an image, this is simply the complexity of the configuration that
the image is in. A more detailed explanation of the complexity measures can be
found in [19], including a discussion on defining energy of computations in terms
of the above measures.

4

grid spatialRes amplRes dyRange phaseRes freq

h GT ∞ (1) ∞ (1) ∞ (2) ∞ (1) ∞ (1)
v GT ∞ (1) ∞ (1) ∞ (2) ∞ (1) ∞ (1)
∗ GT Rs,T Ra,T Rd,T Rp,T (3) νT

· GT Rs,T (Ra,T)2 (4) (Rd,T)2 (5) Rp,T (6) νT

+ GT Rs,T ∞ (7) 2Rd,T (8) ∞ (9) νT

ρ unbounded (10) Rs,T Ra,T Rd,T Rp,T νT

st unbounded (10) Rs,T Ra,T Rd,T Rp,T νT

ld unbounded (10) unbounded (11) Ra,T Rd,T Rp,T unbounded (11)
br GT (12) Rs,T Ra,T Rd,T Rp,T νT

hlt GT Rs,T Ra,T Rd,T Rp,T νT

Table 1. CSM resource usage after one timestep. For each operation and complexity
measure pair, the table entry defines the worst case upper bound on CSM resource
usage at time T + 1, in terms of resources used at time T : grid = GT , spatialRes
= Rs,T , amplRes = Ra,T , dyRange = Rd,T , phaseRes = Rp,T and freq = νT .
Theorems are cited in parentheses.

4 Worst case CSM resource usage

For the case of sequential computation it is usually obvious how the execution of a
single operation will effect resource usage. In parallel models, execution of a single
operation can lead to large growth in one timestep. For example a multiplication
or shift operation in a unit cost parallel model (such as Pratt and Stockmeyer’s
unrestricted vector machines [16]) can double the length of a binary string in
one step. When binary strings are interpreted as numbers, such multiplications
and shifts quickly generate large values. Characterising resource growth is useful
for proving upper bounds on power and setting model restrictions [1].

In this section we investigate the growth of complexity resources over time,
with respect to CSM operations. We tackle this question for each operation and
complexity measure pair. As expected, under certain operations some measures
do not grow at all. Others grow at rates comparable to massively parallel models.
By allowing operations like the FT we are mixing the continuous and discrete
worlds, hence some measures grow to infinity in one timestep. This gives strong
motivation for CSM restrictions and raises some interesting questions.

Table 1 summarises our results; the table defines the value of a complexity
measure after execution of an operation (at time T + 1). The complexity of a
configuration at time T+1 is at least the value it was at time T , since complexity
functions are nondecreasing. Our definition of time assigns unit time cost to each
operation, hence we do not have a time column. Many entries are immediate
from the definitions, otherwise a theorem is cited to the right of the entry.

In the sequel 〈c, e〉T is an an arbitrary CSM configuration at time T and ĉ is
the instruction pointed to by the program control c. Also, GT , RsT

, RaT
, RdT

,
RpT

and νT are the grid, spatialRes, amplRes, dyRange, phaseRes and
freq respectively of configuration 〈c, e〉T . Our resource growth analysis is worst
case, hence we assume that at each computation step we want to preserve all

5

information in each image (however for specific computations this may not be
the case). Each of Theorems 1–12 trivially hold if the resources in question are
infinite at time T , proofs are given only for the non-trivial finite case. We begin
with resource usage after operations h or v for a number of complexity measures.

Theorem 1. (h/v & spatialRes, amplRes, phaseRes and freq) Let either
ĉ = h or ĉ = v. Then RsT+1 = RaT+1 = RpT+1 = νT+1 = ∞.

Proof. We give a proof for the non-trivial case where each measure is finite at
time T . The statement is proved for the measure in question if there is no finite
minimum value for that measure at time T + 1. We use any rectangular step
image, such as

a(x, y) =

{
1

RaT
, if 1

2 − 1
RsxT

6 x < 1
2 and 1

2 − 1
RsyT

6 y < 1
2 ,

0, otherwise .

RsxT
and RsxT

are the spatial resolutions in the horizontal and vertical direc-
tions respectively. The image a(x, y) is representable with finite spatialRes,
amplRes, phaseRes and freq. However its (horizontal or vertical) Fourier
spectrum is a sinc function containing an infinite number of spatially separated
components and is therefore not representable by finite spatialRes nor freq.
The amplitudes of the peaks in this Fourier spectrum monotonically decrease in
value, never reaching zero, and hence are not representable by finite amplRes.

Goodman and Silvestri [9] discuss a method of phase quantisation that is
equivalent to phaseRes. They prove that phase quantisation in the Fourier
domain causes degradation in the resulting inverse FT, in general. In particular
they show that the step function can not be perfectly reconstructed from its
phase discretised FT, thus we need infinite phaseRes to represent its FT. ut

All theorems in this section are a worst case analysis. The previous theorem
tells us that applying standard complexity theory to analyse continuous FTs is
pointless. Obviously the result is of little relevance to CSMs that do not use the
FT, or only use approximations of the FT. Typically in optical setups it will be
the case that at some point of the computation, discretisations are introduced.

Theorem 2. (h/v & dyRange) Let either ĉ = h or ĉ = v. Then RdT+1 = ∞.

Proof. Take the constant image a = 1. The horizontal FT h(a) has value 0 every-
where except at x = 0 where it is a δ function, for all y. Hence there is no finite
minimum dyRange that bounds the value at h(a(0, y)). A similar argument
holds for v, the only difference is that we get the δ function at v(a(x, 0)). ut
It is worthwhile noting that restrictions on images (e.g. finite spatialRes) en-
able us to use Rayleigh’s theorem [3, page 112] to specify a finite upper bound
on the dyRange of h(a) in terms of the complexity of image a [18].

Lemma 1. Let z ∈ C, µ ∈ N+ and given P from Equation (2), then

P (z, µ) ∈
{

z′ | z′ = |z| exp
(

iµ′
2π

µ

)
, µ′ ∈ {1, 2, . . . , µ}

}
.

6

Proof. Let j =
⌊
arg(z) µ

2π + 1
2

⌋
, hence j ∈ Z. Let arg(z) have range 0 < arg(z) 6

2π. By substituting for arg(z) in j it is clear that j ∈ µ′ ∪ {0}. Since we are
working in radians, j = 0 gives the same value in P as j = µ, hence j ∈ µ′. ut
Theorem 3. (∗ & phaseRes) Let ĉ = ∗. Then RpT+1 = RpT

.

Proof (Sketch). We give a proof for the non-trivial case of finite phaseRes.
The ∗ operation affects only image a. By Lemma 1 the set of phase angles in
range(a) at time T is of the form {Θ |Θ = µ′(2π/µ)}. Our notation is in radians
hence nΘ, for all n ∈ Z, is in the above set of µ angles. For the case of complex
conjugation, n = −1. Thus the set of possible phases in range(a) at time T + 1
is a subset of the set of phases in range(a) at time T . For details see [18]. ut
Theorem 4. (· & amplRes) Let ĉ = · , then RaT+1 = RaT

2 .

Proof. We give a proof for the non-trivial case of finite amplRes. The · op-
eration affects only image a. For any x, y ∈ [0, 1), let za = range(a(x, y)),
zb = range(b(x, y)). At time T + 1, a(x, y) is replaced with a′(x, y) = zazb =
|za||zb| exp(i(arg(a(x, y)) + arg(b(x, y)))). Let RaT

= µ in Equation (1), the val-
ues in a and b at time T are of the form

A(z, µ) =
⌊
|z|µ +

1
2

⌋
1
µ

exp(i× arg(z)) .

We are interested only in amplRes so we ignore the phase term. At time T +1

|A(za, µ)||A(zb, µ)| =
⌊
|za|µ +

1
2

⌋⌊
|zb|µ +

1
2

⌋
1
µ2

.

We are proving the theorem for the case that amplRes is finite, hence we know
that at time T , |za| and |zb| are rationals, moreover they are of the form |za| =
n/µ and |zb| = m/µ for some n,m ∈ N. By substitution we simplify the above
expression to get |A(za, µ)||A(zb, µ)| = nm/µ2 In the worst case we require
amplRes µ2 = RaT

2 to represent the values in image a at time T + 1. ut
Theorem 5. (· & dyRange) Let ĉ = · , then RdT+1 = RdT

2.

Proof. We give a proof for the non-trivial case of finite dyRange. The · opera-
tion affects only image a. Let za and zb be defined as above. If |za| = |zb| = RdT

then at time T + 1 we get the worst case of RdT+1 = |a(x, y)| = RdT

2. It is easy
to see that for all other values of |za| and |zb|, RdT+1 < RdT

2 . ut
Unlike amplRes and dyRange, phaseRes is unaffected by multiplication:

Theorem 6. (· & phaseRes) Let ĉ = · , then RpT+1 = RpT
.

Proof. We give a proof for the non-trivial case of finite phaseRes. The operation
· affects only image a. We will show that the set of possible phases in range(a)
at time T + 1 is a subset of the possible phases in range(a) ∪ range(b) at time
T . For some (x, y) let za = a(x, y) and zb = b(x, y). By definition ·(za, zb) =

7

|za||zb| exp (i(arg za + arg zb)). At time T (from Equation (2)), arg za = n
RpT

2π

and arg zb = m
RpT

2π, where n, m ∈ N. Thus ·(za, zb) = |za||zb| exp
(
i
(

n+m
RpT

)
2π

)

which is in the set of possible phase values in range(a)∪ range(b) at time T . ut
Theorem 7. (+ & amplRes) Let ĉ = +. Then RaT+1 = ∞.

Proof. Suppose RaT
= 1 and RpT

= 4, then let a(x, y) = i and b(x, y) = 1. After
the + operation, at time T +1, image a has value a(x, y) = 1+ i =

√
2ei 14 π. The

CSM requires ∞ amplRes to represent the amplitude value
√

2. ut
If we restrict phaseRes to be 1 or 2 then we don’t meet the worst case scenario
described in the previous theorem, we introduce this restriction in Section 5.

Theorem 8. (+ & dyRange) Let ĉ = +. Then RdT+1 = 2RdT
.

Proof. The operation + has no effect on spatialRes hence without loss of gen-
erality we assume that a and b are everywhere constant, a(x, y) = za = raeiΘa2π

and b(x, y) = zb = rbe
iΘb2π. Let za = zb and |za| = RdT

, in this case za + zb =
2za = 2raeiΘa2π and hence RdT+1 = 2RdT

. In fact this is the worst case since
adding any pair of complex values that lie on the origin-centred disk of radius
RdT

gives a new complex value on the origin-centred disk of radius 2RdT
. ut

Theorem 9. (+ & phaseRes) Let ĉ = +. Then RpT+1 = ∞.

Proof. We give a proof for the non-trivial case of finite phaseRes. The operation
+ has no effect on spatialRes hence without loss of generality we assume that
a and b are everywhere constant. Let a = 2 and b = i = ei 12 π. At time T +1, a =√

5 exp
(
i tan−1 (1/2)π

)
. Niven [14], Corollary 3.12, shows that (tan−1 (1/2))/π

is irrational, thus we require infinite phaseRes for addition. ut
Theorem 10. (st/ld/ρ & grid) Let either ĉ = st, ĉ = ld or ĉ = ρ. Then there
is no upper bound on the value of GT+1.

Proof. The address decoding function E−1 : N → N is Turing machine decidable.
This is the only specific restriction on E−1. Thus there is no upper bound on the
natural number that an address parameter of st maps to. After a st operation
we cannot bound grid in terms of GT , or any other complexity measure. The
same argument holds for ld and ρ. ut

The previous theorem highlights the caveat of reasonableness in the defini-
tion of E in Section 2. When we defined E we did not wish to restrict the CSM
programmer from coming up with a novel E suited to her needs. However, for
reasonable addressing functions we should expect the growth rate of E−1, with
respect to the ordering on N , to be reasonable. For example, in Section 5 we
restrict E to being logspace Turing machine computable, which is an agreed
notion of reasonableness in parallel complexity theory. As one can imagine, a
complicated E will leave lots of headaches for the optical engineer who has to
implement it. Not only that, we would also have an incomplete complexity anal-
ysis of the CSM in question (unless of course we work the growth rate of E into
our analysis). The same remark applies to the next theorem.

8

Theorem 11. (ld & spatialRes/ freq) Let ĉ = ld. Then there is no upper
bound on the value of RsT+1 nor νT .

Proof. After a ld operation with parameters ξ1, ξ2, η1, η2 ∈ N, image a has spa-
tialRes RsT+1 = RsT

(ξ2 − ξ1 + 1)(η2 − η1 + 1). From Theorem 10 there is
no upper bound on the growth of E−1. Thus there is no upper bound on the
ld parameters. After a st operation there is no upper bound on spatialRes in
terms of RsT

, or any other complexity measure. Analogously, for freq the upper
bound is in terms of E−1 rather than any of the complexity measures. ut
If we have agreed upon a reasonable (bound on) E, then it is straightforward to
derive an upper bound on spatialRes and freq at time T + 1.

Even though br has address parameters, the previous arguments do not apply.

Theorem 12. (br & grid/ freq) Let ĉ = br. Then GT+1 = GT .

Proof. From the definition of a CSM configuration [19] the control must always
be inside the initial (time 1) grid. Branching outside the current grid will always
result in an undefined computation, hence br does not increase grid. ut

5 C2-CSM

Motivated by a desire to apply standard complexity theory tools to the model,
we define a restricted class of CSM.

Definition 11 (C2-CSM). A C2-CSM is a CSM whose computation time is
defined for t ∈ {1, 2, . . . , T (n)} and has the following restrictions:
– For all time t both amplRes and phaseRes have constant value of 2.
– For all time t each of grid, spatialRes and dyRange is O(2t) and space

is redefined to be the product of all complexity measures except time and
freq.

– Operations h and v compute the discrete FT (DFT) in the horizontal and
vertical directions respectively.

– Given some reasonable binary word representation of the set of addresses N ,
the address encoding function E : N → N is decidable by a logspace Turing
machine.

We have replaced the FT with the DFT [3]. freq is now solely dependent
on spatialRes (rescaling the Fourier spectrum by changing freq is no longer
necessary); hence freq is not an interesting complexity measure for C2-CSMs.
The DFT is defined over a ring. Since dyRange is bounded, and amplRes
and phaseRes are constant, we satisfy the definition of the DFT. The space
restriction is not unique to our model, such restrictions can be found in [15, 7].

In Sect. 2 we stated that address encoding functions should be Turing ma-
chine computable, here we strengthen this condition. At first glance sequential
logspace computability may perhaps seem like a strong restriction, but in fact it
is quite weak. From an optical implementation point of view it should be the case

9

that E is not complicated, otherwise we cannot assume fast addressing. Other
(sequential/parallel) models usually have a very restricted ‘addressing function’:
in most cases it is simply the identity function on N. Without an explicit or
implicit restriction on the computational complexity of E, finding non-trivial
upper bounds on the power of C2-CSMs is impossible as E could encode an arbi-
trarily complex halting Turing machine. As a weaker restriction we could give a
specific E. However, this restricts the generality of the model and prohibits the
programmer from developing novel, reasonable, addressing schemes.

A C2-CSM resource usage table would contain no “∞” or “unbounded” en-
tries. In further work we will give exact characterisations of the power of this
model.

6 Discussion

We have analysed the growth of CSM complexity measures with respect to its
operations over time. Table 1 shows that many variations on the CSM can not
be analysed if we restrict ourselves to the standard tools from complexity theory.

The results in this paper are independent of any particular data representa-
tions or program restrictions. If we restrict ourselves to certain (continuous or
discrete) data representations then clearly we change the properties of compu-
tations and can reduce the upper bounds on resource growth. Another way to
restrict the model is to place restrictions on the syntactic structure of programs.

Earlier CSM versions [11, 12, 13, 19] used constant grid. The function E al-
lows grid to be a more useful complexity resource (see [18] for further remarks).

Table 1 describes growth in complexity if inputs are finite. The irrational
values that give rise to the infinities in Table 1 are computable reals (say, in
the sense of [17]). It would be interesting to analyse this aspect of the model by
making use of results from the framework of real recursive function theory [10,
4, 5] or other approaches to analog or real computation [2, 17]. There has been
little work towards a parallel complexity theory for analog computation, this
would be interesting future work.

The results from this paper are not only interesting from a computational
complexity viewpoint, but from a physical viewpoint also. For example Good-
man [9] studies phaseRes in the same way we do, and is motivated by practical
concerns (reconstructing digital holograms). The C2-CSM is more realistic than
the CSM in terms of optical implementation; many optical information process-
ing devices are pixellated (e.g. liquid-crystal displays and digital cameras) and
operate over a finite set of grey levels [8]. Positive and negative rationals are
routinely represented in optical architectures [6]. Clearly, the space limitation
decreases the difficulty of implementation.

This work is a starting point for developing CSM restrictions; in particular
we defined the C2-CSM. Any restriction will exhibit resource growth less than or
equal to that given by Table 1. Interesting future work would be to characterise
the power of such restrictions. In further publications we will exactly characterise
standard sequential and parallel complexity classes in terms of the C2-CSM.

10

For example, we will show that the C2-CSM satisfies the parallel computation
thesis [1, 7, 15] and that the class NC is characterised in terms of the C2-CSM [18].

Acknowledgements

We thank Tom Naughton for many fruitful discussions and in particular for his
collaboration on the CSM definition. The first author is funded by the Irish
Research Council for Science, Engineering and Technology.

References

[1] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity, volumes I and II.
EATCS Monographs on Theoretical Computer Science. Springer, Berlin, 1988.

[2] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation.
Springer, New York, 1997.

[3] R. N. Bracewell. The Fourier transform and its applications. Electrical and
electronic engineering series. McGraw-Hill, second edition, 1978.

[4] M. L. Campagnolo. Computational Complexity of Real Valued Recursive Functions
and Analog Circuits. PhD thesis, Universidade Técnica de Lisboa, 2001.

[5] D. da Silva Graça. The general purpose analog computer and recursive functions
over the reals. Master’s thesis, IST, Universidade Técnica de Lisboa, 2002.

[6] D. G. Feitelson. Optical Computing. MIT Press, 1988.
[7] L. M. Goldschlager. A universal interconnection pattern for parallel computers.

Journal of the ACM, 29(4):1073–1086, Oct. 1982.
[8] J. W. Goodman. Introduction to Fourier optics. McGraw-Hill, New York, second

edition, 1996.
[9] J. W. Goodman and A. M. Silvestri. Some effects of Fourier domain phase quan-

tization. IBM Journal of research and development, 14:478–484, Sept. 1970.
[10] C. Moore. Recursion theory on the reals and continuous-time computation. The-

oretical Computer Science, 162(1):23–44, Aug. 1996.
[11] T. J. Naughton. Continuous-space model of computation is Turing universal.

In S. Bains and L. J. Irakliotis, editors, Critical Technologies for the Future of
Computing, Proceedings of SPIE vol. 4109, San Diego, California, Aug. 2000.

[12] T. J. Naughton. A model of computation for Fourier optical processors. In R. A.
Lessard and T. Galstian, editors, Optics in Computing 2000, Proc. SPIE vol. 4089,
pages 24–34, Quebec, Canada, June 2000.

[13] T. J. Naughton and D. Woods. On the computational power of a continuous-space
optical model of computation. In M. Margenstern and Y. Rogozhin, editors, Ma-
chines, Computations and Universality: Third International Conference, volume
2055 of LNCS, pages 288–299, Chişinău, Moldova, May 2001. Springer.

[14] I. Niven. Irrational numbers, volume 11 of The Carus Mathematical Monographs.
The Mathematical Association of America, Wiley, 1956.

[15] I. Parberry. Parallel complexity theory. Wiley, 1987.
[16] V. R. Pratt and L. J. Stockmeyer. A characterisation of the power of vector

machines. Journal of Computer and Systems Sciences, 12:198–221, 1976.
[17] K. Weihrauch. Computable Analysis: An Introduction. Springer, Berlin, 2000.
[18] D. Woods. Computational complexity of an optical model of computation. PhD

thesis, National University of Ireland, Maynooth, 2004. Submitted.
[19] D. Woods and T. J. Naughton. An optical model of computation. Theoretical

Computer Science, 2005. In print.

11

