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Abstract—In mobile crowdsensing, one of the participants’
main concerns is the cost for 3G data usage, which affects
their willingness to participate in a crowdsensing task. In this
paper, we present the design and implementation of a mobile
crowdsensing data uploading mechanism – ecoSense – to help
reduce additional 3G data cost incurred by the whole crowd
of sensing participants. By considering the two most-common
real-life 3G price plans – Unlimited Data Plan (UnDP) and
Pay As You Go (PAYG), ecoSense partitions all the users into
two groups corresponding to these two price plans at the
beginning of each month, with the objective of minimizing the
total refunding budget for all participants. The partitioning
is based on predicting users’ mobility patterns and sensed
data size. The ecoSense mechanism is designed inspired by
the observation that during the data uploading cycles, UnDP
users could opportunistically relay PAYG users’ data to the
crowdsensing server without extra 3G cost, provided the two
types of users are able to “meet” on a common local cost-
free network (e.g. Bluetooth or WiFi Direct). We conduct
our experiments using both the MIT Reality Mining and
the SWIM simulation datasets. Evaluation results show that
ecoSense could reduce total 3G data cost by up to ∼50%,
when compared to the direct-assignment method that assigns
each participant to UnDP or PAYG directly according to the
size of her sensed data.

Index Terms—3G data cost, incentive, mobile crowdsensing,
delay-tolerant data uploading, data relay

I. INTRODUCTION

NOWADAYS, mobile crowdsensing (MCS) [1], [2] is
becoming an effective and practical way to carry

out various sensing tasks, as rich-sensor equipped smart-
phones are getting more and more popular. However, some
obstacles severely stop users from participating in MCS
tasks. For example, participating in MCS tasks will incur
additional 3G data usage for a user, which might lead to
more fees paid to the telecom operators. This issue, which
we will refer to as 3G data cost, is one of the major
concerns for MCS participants [3], [4].

To deal with this issue, some existing MCS projects
ask users to delay uploading sensed data until they have a
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WiFi connection; apparently this method might lead to long
uncontrollable delay between data sensing and uploading.
Such a long uncontrollable delay might harm many MCS
tasks. On one hand, uncontrollable delay might not be
tolerable for most real-time monitoring applications, as
the delayed sensed data becomes valueless; even if an
MCS task allows some delay, uncontrollable delay may
still exceed the maximum tolerable delay. On the other
hand, long uncontrollable delay increases the probability
of sensed data loss due to abnormal events on participants’
mobile phones (e.g. running out of storage space).

Another effective way to mitigate participants’ 3G data
cost concern is providing participants with incentives to
cover any additional 3G data cost arising from participa-
tion in the MCS task. Compared to WiFi-only uploading,
refunding 3G data cost encourages participants to willingly
upload data at any specific time via 3G, which can reduce
and control the delay between data sensing and uploading.
However, 3G data refund increases an organizer’s total
MCS task budget. For MCS tasks which need a big number
of participants, in particular, this 3G data refund budget can
be significant. Thus, “how to reduce the 3G data refund
budget” becomes a critical problem for MCS organizers.

In this paper, we try to address the above problem. First,
we study the common price plans of 3G data cost. Currently
two price plans are widely used by most telecom operators:
Unlimited Data Plan and Pay As You Go.
• Unlimited Data Plan (UnDP): with Unlimited Data

Plan, a user can transfer an unlimited amount of data
during a period of time (usually for a month). The
cost for an unlimited data plan is fixed, e.g. $7/month
(denoted as Priceu).

• Pay As You Go (PAYG): with Pay As You Go, a user
pays 3G data cost according to the amount of data
transferred via 3G, e.g. $0.1/MB (denoted as Pricep).

With the above two 3G price plans, a simple solution
to refunding participants’ 3G data cost is to choose the
right refund scheme for each mobile user according to
the amount of her uploaded data. Specifically, this direct-
assignment method works as follows:

1) For each participant ui, estimate her amount of
sensed data to be uploaded each month (d MB).

2) Two possible refund schemes exist:
• UnDP: refund is Priceu.
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• PAYG: refund is d ∗ Pricep.
Choose the cheaper one as the refund for ui.

3) If assigned to UnDP, ui needs to set her 3G price
plan to UnDP before the next month starts (this is
why we need to estimate d). At the end of the next
month, the organizer pays Priceu to ui.

4) If assigned to PAYG, ui can keep her original per-
sonal 3G price plan for next month (independent of
whether ui’s original price plan is PAYG or UnDP,
the organizer does not need to know1). In next month,
the organizer counts the actual amount of sensed data
that ui uploads (d′ MB). At the end of the next month,
the organizer pays d′ ∗ Pricep to ui.

When the sensing task is determined, one participant’s
sensed data size in a month can usually be estimated within
reasonable error bounds (i.e. d ≈ d′), which makes direct-
assignment applicable.

Although direct-assignment can support real-time data
uploading reasonably well, for many MCS tasks which
do not require real-time uploading (i.e. allowing a max
tolerable delay between sensing and uploading), the refund
budget of direct-assignment may be very high. The follow-
ing events can be leveraged to reduce participants’ 3G data
cost during the delay period, so that the organizer’s refund
budget can be reduced:

1) A PAYG participant can use a cost-free network, such
as Bluetooth or WiFi (e.g. at home or in the office), to
upload sensed data to the server within the delay period,
which reduces her 3G data cost.

2) UnDP participants can help relay PAYG participants’
sensed data to the server. This kind of relay reduces 3G
data cost for PAYG participants, without increasing 3G data
cost for UnDP participants, thus decreasing the organizer’s
refund budget.

Based on these events, in this paper, we design a
novel data uploading framework for MCS, called ecoSense,
whose goal is to optimally partition the participants into
UnDP or PAYG sub-groups, in order to minimize the
organizer’s 3G data refund budget, via maximumly taking
advantage of cost-free networks and mobile participants as
data relays.

Two important issues are involved in designing ecoSense:
1) How to transfer data when two PAYG participants

meet?
Unlike the clear relay strategy between a PAYG partic-

ipant and an UnDP participant (i.e. PAYG data−→ UnDP),
relay strategy between two PAYG participants is more
complicated and will affect the organizer’s refund budget.
Among all the possible strategies, flooding (i.e. always
exchanging data between two PAYG participants) is ex-
pected to produce the smallest refund budget. Because
after flooding, if any one of two PAYG participants could
meet an UnDP participant or a cost-free network, both of
their data could be uploaded without 3G cost. However,

1A participant’s refund scheme may be different from her 3G price plan.
Refer to Section VIII-C and VIII-D for more details. In the rest of paper,
unless specified otherwise, UnDP and PAYG represent refund schemes.

flooding might incur too many redundant relays that rapidly
drain the batteries of participants’ mobile phones. Though
our work focuses on minimizing the organizer’s 3G data
refund budget, the participants’ energy concerns should
also be taken into account to some extent. Otherwise, even
if ecoSense “successfully” minimizes the refund budget,
participant phones’ energy consumption might be too high,
making ecoSense impractical. Thus, to study the trade-
off between the organizer’s 3G data refund budget and
participant phones’ energy consumption, we try different
data uploading/relay strategies following the state-of-the-
art from our previous work [5], [6].

2) How to decide each participant’s refund scheme —
PAYG or UnDP?

To minimize the organizer’s 3G data refund budget,
another key issue is to determine which participants should
be assigned to each of the schemes (and not just the
percentage of participants allocated to each scheme). Thus,
the participant partition algorithm needs to consider each
participant’s mobility pattern and sensed data size:

• Mobility Pattern. To maximize data relay opportunities
between PAYG and UnDP participants, accurately
profiling each participant’s mobility pattern is nec-
essary for deciding whether she should be assigned
to the UnDP or PAYG scheme. Intuitively, “active”
participants who can help more other participants relay
data should be assigned to UnDP.

• Sensed Data Size. A participant’s sensed data size
would also impact whether she is assigned to PAYG
or UnDP. Generally a participant who uploads a larger
amount of sensed data should be assigned to UnDP.

Thus, our proposed partition algorithm first predicts each
participant’s mobility pattern and estimates her sensed data
size, and finally uses a genetic algorithm to obtain a
participant partition for PAYG and UnDP groups. This
algorithm is run before a new month starts (only once a
month) on the MCS organizer’s server.2

In summary, our paper makes the following contribu-
tions:

1) To the best of our knowledge, this is the first work
that aims to minimize the organizer’s 3G data refund budget
by leveraging heterogeneous networks (e.g. 3G, Bluetooth,
WiFi) and delay-tolerant data uploading mechanisms in
MCS.

2) We propose an MCS data uploading framework, called
ecoSense, attempting to minimize the organizer’s 3G data
refund budget. ecoSense considers two 3G price plans to
refund the participants — Pay As You Go and Unlimited
Data Plan — and proposes data uploading strategies for
both UnDP and PAYG participants in the delayed uploading
period. Furthermore, a participant partition algorithm is
designed to split all the participants between PAYG/UnDP
participant groups, in order to minimize the organizer’s
3G data refund budget, via maximumly taking advantage

2Most telecom operators need a participant to decide her 3G data price
plan for the upcoming month before the end of the current month.
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of opportunistically encountered cost-free networks and
mobile participants as data relays.

3) We use a real-life dataset, i.e. the MIT Reality
Mining [7], and a larger SWIM [8] simulation dataset
to evaluate our approach. The evaluation results show
that ecoSense can reduce the organizer’s 3G data refund
budget by up to ∼50% compared to the direct-assignment
solution.

II. RELATED WORK

Recent years have witnessed an increasing interest in mo-
bile crowdsensing (MCS) research [1], [2], leading to many
applications, such as urban noise monitoring [9], everyday
point-of-interest tracking [10] and social interaction sens-
ing [11]. Generic MCS platforms, such as ParticipAct [12],
have also been proposed to support various crowdsensing
campaigns. As successful MCS tasks usually require a large
number of participants, the question of how to incentivize
users to participate is a key issue for MCS organizers.
Potential participants need to have their concerns addressed,
and current participants must not be discouraged by any
inconvenience arising from the sensing process.

Previous research work about MCS incentives has lever-
aged game theory and auction mechanisms to analyze the
optimal payment to be offered by the MCS organizer to
participants, and to find the best compromise between
participants’ and organizer’s profit (i.e. the utility function
in game theory) [13]. Some other work attempts to reduce
the incentives by minimizing the number of recruited
participants [14], [15] or amount of collected data [16]–
[18], while ensuring a certain level of the task quality. As
an alternative to monetary reward, some approaches offer
other incentives such as service time [3] and coupons [19].
In general, these approaches assume the users’ cost to
finish a task to be known in advance, and this cost follows
some specific probability distribution in their simulation
experiments. In contrast, our approach analyzes users’ cost
from a more pragmatic viewpoint — we focus on the 3G
data cost, which has previously been shown to be a main
concern for a majority of users [3], [4].

With respect to the objective of reducing 3G data cost,
previous research work proposes to reduce the sensed
data size based on mechanisms such as (1) compression
/ aggregation of data on the phone [11], [20], and (2)
uploading only a subset of the data while deducing the
rest [21]. As ecoSense is a data uploading framework, all
the aforementioned mechanisms, which can reduce sensed
data size before uploading, could be incorporated into
ecoSense to reduce users’ 3G data cost further. Cost-free
data uploading methods for MCS applications, such as user
node relays [22] and delayed WiFi/Bluetooth transfers [5],
[6], [23], have already been proposed in existing research
work; ecoSense uses similar mechanisms. However, by
considering two common 3G data price plans — Unlimited
Data Plan and Pay As You Go — we identify a novel
problem to minimize the MCS organizer’s 3G data re-
fund budget, through optimally partitioning the users to

Sensing Cycle

Delayed-Uploading Cycle

Ts

Td

sensing 1 sensing 2 sensing 3

uploading 1 uploading 2

Crowdsensing Task Period

uploading 3

Sensed Data Data 1 Data 2 Data 3

t0 t1 t2 t3

Fig. 1. Sensing cycles and delayed-uploading cycles

PAYG/UnDP groups and designing uploading strategies for
users, so that UnDP users can help relay PAYG users’ data
efficiently.

Existing work concerning human mobility pattern predic-
tion is also relevant, since ecoSense predicts users’ mobility
patterns in order to determine the participant partition.
Human mobility pattern prediction is an increasingly im-
portant research area, with many open questions yet to be
resolved. For example, most existing research studies only
the short-time “Next Place” prediction [24], [25], which
would not necessarily be appropriate for the longer-term
mobility prediction that is required by ecoSense (i.e. users’
mobility for the whole upcoming month). As our paper
does not focus on designing such a long-term mobility
prediction algorithm, we currently use a state-of-the-art
mobility prediction method based on Poisson distribution
(Section VI-A), which is widely applied in previous work,
e.g. [6], [15], [16], [26]–[28].

Although ecoSense and our previous work effSense [5],
[6] both leverage heterogeneous networks to save 3G cost in
delay-tolerant MCS, the research assumptions and problems
are distinct from each other. In effSense we pre-define
whether a participant has unlimited data plan and focus
on designing data uploading strategies; while in ecoSense,
in addition to uploading strategies, the key technical issue
that needs to be addressed is deciding whether to assign a
participant to the UnDP or PAYG group.

III. PROBLEM STATEMENT

In this section, we first introduce the MCS task process
that ecoSense can be applied to, i.e., Delay-Tolerant MCS.
Afterward, we formulate the research problem of ecoSense
formally.

A. Delay-Tolerant MCS

Many crowdsensing tasks (e.g. MIT Reality Mining [7],
environment monitoring [15], [16], [27], [28]) do not re-
quire immediate uploading of the data after it is sensed
(called delay-tolerant mobile crowdsensing task). Such
tasks allow some delay (max tolerable delay Td) between
collecting the data from sensors and uploading it to the
server, i.e. the sensed data generated at t on a participant’s
phone can be uploaded during [t, t+ Td].

Formally, in this paper, we consider a crowdsensing task
process that is composed of two kinds of cycles: sensing
cycles and delayed-uploading cycles (see Figure 1).
• Sensing Cycle: A crowdsensing task process can be

split into continuous sensing cycles. As shown in
Figure 1, each sensing cycle lasts for Ts, i.e. the ith
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sensing cycle starts at ti−1 = t0 + (i− 1)Ts and ends
at ti = t0 + iTs. We assume that each participant’s
sensed data is prepared for uploading right up until
the end of each sensing cycle (e.g. some aggregation
algorithms need to be run on the raw sensed data
before uploading).

• Delayed-Uploading Cycle: The ith delayed-uploading
cycle starts at the end of the ith sensing cycle (i.e. ti)
and lasts for Td (i.e. ends at ti+Td). In the ith delayed-
uploading cycle, each participant attempts to upload
her ith sensing cycle’s data to the server. Various data
uploading/relay strategies could be applied here (e.g.
flooding, spray-and-wait [29] and the strategies in our
previous work [6]). At the end of a delayed-uploading
cycle, if some participants’ data is still not uploaded to
the server, these participants are forced to upload their
data to the server via 3G, in order to ensure that all the
sensed data could arrive at the server within the delay
Td. In this paper, we consider only ti + Td ≤ ti+1

(i.e. Td ≤ Ts), which means that participants need
to upload their ith sensing cycle’s data to the server
before their i+1th sensing cycle’s data gets ready (so
different delayed-uploading cycles will not overlap).

In summary, ecoSense can be applied to any mobile
crowdsensing task process that meets two requirements:
(1) all the participants’ sensed data is ready for uploading
at the end of each sensing cycle; and (2) the ith sensing
cycle’s data needs to be uploaded to the server before the
i+ 1th sensing cycle’s data gets ready. Therefore, in each
delayed-uploading cycle, a participant only needs to upload
one piece of sensed data.

B. Problem Formulation

Considering the above mobile crowdsensing task pro-
cess, ecoSense aims to reduce the crowdsensing organizer’s
refund budget for participants’ 3G data cost in delayed-
uploading cycles. Before formulating the problem formally,
we introduce some key concepts.

Definition 1 (Cost-free Events): A cost-free event refers
to an encounter between a PAYG participant and another
participant or device that can probably help PAYG partici-
pants upload data to the server without 3G data cost3.

Definition 2 (Uploading Decision Making): In a
delayed-uploading cycle with maximum tolerable delay
Td, when a PAYG participant ui with sensed data ri
(generated at t) encounters a cost-free event e at time
t∗ (t∗ ∈ [t, t + Td]), ecoSense makes a decision about
whether data ri needs to be uploaded/relayed (i.e. true)
or not (i.e. false). We express this decision function as:
D(ui, ri, t∗, e, t, Td)→ {true, false}.

In this paper, if the decision D is true, we assume that
a PAYG participant can always relay/upload data success-
fully.

Definition 3 (Participant Partition): Given all the
crowdsensing participants U , a participant partition assigns

3Cost-free events are considered only for PAYG participants, as UnDP
participants can upload an unlimited amount of data via 3G.

each participant to UnDP group (Uu) or PAYG group (Up).
We express this partition function as: P(U) → [Uu, Up],
where Uu ∪ Up = U and Uu ∩ Up = φ.

Based on these definitions, we formulate our problem as
follows.

Problem Formulation: In a crowdsensing task allowing
certain data uploading delay (Td), given all the participants
(U ), unit prices for both 3G price plans UnDP (Priceu, e.g.
$7/user for a month) and PAYG (Pricep, e.g. $0.1/MB), we
require an uploading decision making strategy for PAYG
participants (D) and a PAYG/UnDP participant partition
function (P), in order to minimize the crowdsensing or-
ganizer’s refund budget for all the participants’ additional
3G data cost in one month4:

argmin
D,P

Refund

= argmin
D,P

(Refundu +Refundp)

= argmin
D,P

(|Uu| ∗ Priceu +
∑
i∈Up

di ∗ Pricep)

where
• Refundu: refund budget for UnDP participants.
• Refundp: refund budget for PAYG participants.
• di: amount of data uploaded via 3G by participant i

in a month.
The solution to this problem is non-trivial, because:
1) We can neither foresee the participants’ mobility traces

in the next month, nor how much sensed data that needs
to be uploaded. Thus, obtaining di is not straight-forward:
both participant mobility and sensed data size prediction
methods should be combined in order to estimate di.

2) Different D and P would affect Refundu and
Refundp jointly. For example, if P assigns more partic-
ipants to UnDP, then Refundu increases and Refundp
decreases, so that whether overall Refund increases or
decreases remains uncertain. Even if P is determined, D
can still impact Refundp, because PAYG participants hold
different uploading strategies under different D.

IV. OVERVIEW OF ECOSENSE

To solve the problem formulated in the previous section,
we design a novel mobile crowdsensing data uploading
framework named ecoSense. In this section, we first use
a running example to illustrate the basic idea of ecoSense
and compare it with direct-assignment. Then, we give the
overview of our proposed ecoSense framework.

A. A Running Example: ecoSense vs. direct-assignment

To better illustrate the basic idea of ecoSense, we use an
example to compare ecoSense and direct-assignment (see
Figure 2). Suppose that Priceu is $7/month, Pricep is

4The problem is parameterized by the frequency with which we can
update the participants’ type of price plan. Currently, this is usually
done on a monthly basis, but our approach is generalizable to different
update frequencies which may be more likely in the future provision of
crowdsensing services.
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Fig. 2. Comparison between ecoSense and direct-assignment

$0.1/MB, and each participant’s sensed data will be larger
than 70MB/month, so direct-assignment refunds each of
the four participants as UnDP. The refund budget of direct-
assignment is $7 ∗ 4 = $28 for a month.

By allowing some delay between data sensing and up-
loading, ecoSense enables the following new data uploading
paths:
• u1 and u2 have high probability to encounter u4 via

Bluetooth within the delay period, thus u4 can relay
u1 and u2’s data.

• u3 is likely to meet a free WiFi access point (AP)
within the delay period, so u3 could upload data via
that AP without 3G data cost.

As a result, by using delay-tolerant data uploading
mechanisms, u1, u2 and u3 could significantly reduce the
amount of uploaded data via 3G. By adopting the above
mechanisms, assume that u1, u2 and u3’s 3G-uploaded
sensed data size can decrease to 50MB, 60MB, and 40MB
respectively, then ecoSense would choose the PAYG scheme
for the three participants instead of UnDP, reducing the or-
ganizer’s refund budget to $0.1∗(50+60+40)+$7∗1 = $22
for a month, compared to the $28 of direct-assignment.

B. Overview of the ecoSense framework

The overview of our ecoSense framework is shown in
Figure 3, which contains two key components:

1) Uploading Decision Making (client component). This
component runs on every crowdsensing participant’s smart-
phone. It is triggered to decide whether to upload/relay
or keep data when a participant encounters a cost-free
event, such as meeting another participant or discovering a
Bluetooth/WiFi gateway. The Uploading Decision Making
component will be further elaborated in Section V.

2) Participant Partition (server component). This com-
ponent runs on the crowdsensing organizer’s server to
assign the participants to either the UnDP or PAYG group.
It relies on two modules - mobility prediction and sensed
data size estimation.
• Mobility Prediction module predicts participants’ mo-

bility patterns in the next month. With mobility pre-
diction results, we can forecast how often a participant
might meet another participant, a Bluetooth gateway,
or a WiFi access point, etc.

Participant Partition

(organizer’s server)

Uploading Decision 
Making

UnDP PAYG

(participant’s smartphone)

UnDP
participants

PAYG
participants

Server

Gateway

Mobility Prediction

Sensed Data Size 
Estimation

participants

Server

Gateway

Fig. 3. Overview of the ecoSense Framework

• Sensed Data Size Estimation module estimates the
amount of sensed data that a specific participant would
contribute in the following month. For different partic-
ipants, sensed data size might vary according to their
activeness, privacy concerns, visited locations, etc.

Currently, most telecom operators’ 3G data plans can
change once a month, so this component needs to run once
at the end of a month, to obtain the group partition for the
following month. The Participant Partition component will
be further elaborated in Section VI.

Now we briefly explain ecoSense’s workflow during a
crowdsensing task period:

1) As shown in the left part of Figure 3, before a
new month begins, the Participant Partition component
partitions all the participants into two groups with two
different 3G refund schemes: UnDP and PAYG.

2) After the new month starts, in each delayed-uploading
cycle, when a participant encounters a cost-free event
(e.g. encountering a Bluetooth gateway or another partici-
pant), the Uploading Decision Making component decides
whether to upload/relay or keep data. For example, in
the right part of Figure 3, after making the decision, a
PAYG participant relays data to an UnDP participant via
Bluetooth, while another PAYG participant relays data to a
Bluetooth gateway.

3) At the end of each delayed-uploading cycle, ecoSense
checks all the participants to see whether they have non-
uploaded data, which can include the sensed data collected
by a participant himself and relayed data received from
other participants. Then, ecoSense forces those participants
with outstanding non-uploaded data to create 3G connec-
tions in order to upload it at the end of the cycle. In fact,
only under this condition will PAYG participants upload
sensed data with 3G data cost in a particular cycle.

V. UPLOADING DECISION MAKING

In this section, we focus on introducing the strategies
used in the uploading decision making component (called
uploading strategy), especially for PAYG participants, be-
cause their uploading strategy will affect the organizer’s 3G
data refund budget. To make the paper complete, we also
introduce the uploading strategy for UnDP participants.

A. PAYG Uploading Strategy

We provide PAYG participants with three candidate
uploading strategies: OneRelay, OneHopFlooding and Epi-
demic.
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1) OneRelay: a PAYG participant up would relay her
data when she encounters an UnDP participant uu (or a
Bluetooth/WiFi gateway) at the first time in the delayed-
uploading cycle. After this relay, up’s data uploading pro-
cess ends successfully as uu (or the gateway) would help
upload up’s data to the server. The name “OneRelay” just
means that a PAYG participant will relay her data at most
once. Note that using OneRelay, a PAYG participant will
not relay her data to another PAYG participant.

2) OneHopFlooding: a PAYG participant up would relay
her data unconditionally to another PAYG participant en-
countered until up meets either one of the two following
stopping criteria: (1) up directly encounters an UnDP
participant (or a gateway) uu and relays data to uu, or
(2) the server notifies up that she could stop flooding
(which we will further discuss in the next subsection –
UnDP uploading strategy). The name “OneHopFlooding”
just means that the flooding is only one-hop, i.e. a PAYG
participant up1 will only flood her own data (i.e. up1’s data)
to the PAYG participants encountered. That is, even if up1
previously received a PAYG participant up2’s data, up1 will
not further flood up2’s data to other PAYG participants.
However, if up1 encounters an UnDP participant (or a
gateway) uu, up1 will relay both up1 and up2’s data to
uu.

3) Epidemic [30]: Removing the one-hop restriction of
OneHopFlooding can lead to a complete flooding strategy,
i.e., Epidemic routing. Using the Epidemic strategy, when
two PAYG users meet, they will exchange all the data that
they do not have in common, independent of whether the
data is generated by themselves or received from someone
else. To avoid redundant connections, a reconnection time
threshold is set to ensure that two specific users exchange
data at most once within a predefined time period [30].
For example, supposing the threshold is 30 minutes, then
if two users u1 and u2 exchange data at 12:00, they will
not reconnect with each other and exchange data until
12:30, even though they re-encounter between 12:00 and
12:30. Although a smaller threshold could incur a lower
refund budget, in practice, we cannot greatly reduce the
reconnection time threshold due to the energy consumption
issue.

In general, among the three strategies, Epidemic incurs
the most data relays, while it can help the organizer to
pay the smallest refund budget. OneRelay makes every
relay valuable, but the refund budget is likely to be higher
than for the other two strategies. All the strategies take
the energy consumption (i.e. relay count) into account, as
we cannot make the delayed uploading process too energy-
draining in real-life scenarios. A detailed comparison of the
three uploading strategies with respect to refund budget and
energy consumption will be examined in our experiments.

Currently, we restrict our comparison to OneRelay,
OneHopFlooding and Epidemic, because they are easily
implemented in participants’ mobile phones. In our future
work, we will evaluate other PAYG uploading strategies,
such as Binary Spray and Wait [29] and strategies proposed
in our previous work [5], [6].

B. UnDP Uploading Strategy

How UnDP participants upload data during delayed-
uploading cycles does not affect the crowdsensing orga-
nizer’s 3G data refund budget. Thus, in this work, we
simply assume that the UnDP participants use the UpEnd
strategy, defined as follows:

UpEnd: UnDP participants keep all the sensed data
collected by themselves, and received from other PAYG
participants, until the end of the delayed-uploading cycle;
at which point they upload all the data together.

Specifically, if PAYG participants adopt OneHop-
Flooding or Epidemic, UnDP participants will perform an
additional action when they receive PAYG participants’
data: If an UnDP participant uu receives a PAYG participant
up’s data, uu will notify the server that up’s data will
definitely be uploaded to the server by uu before the end
of the delayed-uploading cycle. Then, the server will notify
up to stop flooding her data,5 which corresponds to the
second stopping criterion that we described previously in
OneHopFlooding (the same stopping criteria also apply to
Epidemic). While this additional action would not affect the
organizer’s 3G data refund budget, it could decrease the
relay count of PAYG participants significantly and make
OneHopFlooding and Epidemic more energy-efficient in
real-life scenarios.

VI. PARTICIPANT PARTITION

After choosing the uploading strategy for the partici-
pants, the crowdsensing organizer also needs to partition
the participants into two groups — PAYG and UnDP —
in order to minimize the 3G data cost that needs to be
refunded. Figure 4 shows the overview of the participant
partition framework. To achieve a reasonable participant
partition, two factors need to be considered:
• Mobility Pattern. A participant’s mobility pattern af-

fects how often she could meet another participant or
a Bluetooth/WiFi gateway.

• Sensed Data Size. Different participants will most
likely contribute different sizes of sensed data due to
variant behaviors such as their degree of activity and
their privacy concerns.

In this section, we first describe our methods to predict
participants’ mobility pattern and to estimate participants’
sensed data size. Then we propose a genetic algorithm to
partition the participants into UnDP and PAYG groups.

A. Mobility Pattern Prediction

Though mobility prediction has been studied compre-
hensively, most of the existing work focuses on short-term
“Next Place” prediction [24], [25] and could not be applied
directly to ecoSense. In ecoSense, we want to solve a long-
term mobility pattern prediction problem:

5This notification will consume some data cost for PAYG participants.
However, the amount of data cost incurred by the notification is usually
small compared to the sensed data to upload. So we currently ignore it.
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In the next upcoming month, for each delayed-uploading
cycle, what is the probability that a participant encounters
another participant or a Bluetooth/WiFi gateway?

Specifically, through previous mobility trace analysis,
we predict whether a PAYG participant can upload data
without 3G data cost in a delayed-uploading cycle, i.e.
the probability that she could meet at least one UnDP
participant or one Bluetooth/WiFi gateway. We note this
probability as pi,j for participant i and delayed-uploading
cycle j.

To predict pi,j , we use a Poisson-distribution-based
method like [6], [15], [16], [27], [28]:

1) Represent a delayed-uploading cycle j as a triple:
(tstart, tend, day type), e.g. (8:00,12:00,weekday),
where tstart and tend are the start and end time of the
cycle, respectively, and day type refers to weekday
or weekend.

2) Find all the historic time spans with the same triple
as the delayed-uploading cycle j (denoting the set
of these historic time spans as HSj), then count the
total number of the cost-free events that could help
ui to upload data without additional 3G cost occurred
in HSj , denoted as #eventfree(ui, HSj). Then pi,j
can be predicted as follows, assuming the Poisson
distribution stands:

pi,j = 1− e#eventfree(ui,HSj)/|HSj |

A more complicated prediction algorithm might be in-
corporated into ecoSense, while designing such a pre-
diction method is not the focus of this paper. We note,
however, that our experiments demonstrate that using
this Poisson-distribution-based prediction method, ecoSense
could achieve significant refund savings compared to the
direct-assignment method (described in the Introduction).
Furthermore, our experiments show that with this prediction
method, ecoSense can achieve a refund budget close to the
optimum (foreknowing the participants’ mobility traces),
which means that such a prediction method is probably
good enough for most real-life crowdsensing scenarios.

B. Sensed Data Size Estimation

Estimating how much sensed data each participant needs
to upload is also important to obtain an optimal participant
partition to minimize total 3G cost. In this subsection, we

attempt to model a participant i’s sensed data size during
the sensing cycle j, denoted as di,j .

1) Fixed-Size Sensed Data. Some sensing tasks will
generate similar sensed data size in a sensing cycle. For
example, the size of each user’s accelerometer record is
approximately proportional to the sensing duration time.
So if all the users participate in a common sensing task for
the same duration (e.g. activity recognition during daytime)
in a sensing cycle, their contributed sensed data size will
be similar.

For fixed-size sensing tasks, we model di,j as:

di,j = c

where c is a constant, which means that for different
participants and different sensing cycles, this sensing task
would generate the same sensed data size.

2) Varied-Size Sensed Data. Some sensing tasks will
generate different sensed data sizes for different participants
in a sensing cycle for various reasons, e.g.:
• Location-centric sensing. This kind of sensing task

usually triggers sensing when a participant enters a
new location within a target sensing area, e.g. air
quality and noise monitoring. Thus, the more places
a participant visits, the more sensed data she would
gather.

• Activeness in participatory sensing. Participatory sens-
ing needs participants to be actively involved in the
sensing tasks, e.g. taking photos at specific locations.
Different participants can have different levels of activ-
ity, leading to different contributed sensed data sizes.

• Private concern. To protect privacy, some participants
might choose not to upload part of the sensed data.

For varied-size sensing tasks, in this paper we consider
only the influence of locations visited on the size of the
sensed data while ignoring other factors such as activeness
and privacy, and model di,j as:

di,j = c+ k ∗ li,j

where
• c is the size of the constant part of the sensed data.

Though the data sizes of varied-size sensing tasks
usually vary for different participants, still some part
of the sensed data size is constant (e.g. some aggrega-
tion/summary information of the sensing task). In fact,
we can also see fixed-size sensing tasks as a special
form of varied-size sensing tasks.

• k ∗ li,j is the sensed data size for location-centric
sensing, where k is the unit sensed data size for one
location, while li,j is the number of the locations that
participant i would visit during the sensing cycle j. In
this paper, we predict li,j via the mobility prediction
method previously discussed.

In real life, the sensed data size distribution is likely
to be more complicated than suggested by our estimation
formula, due to our abstracting away from subtle variations
between different instances of sensing tasks. In our future
work, we will model the sensed data size in a more precise
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Algorithm 1 GA-based Partition Algorithm
Input: Refund: optimization function; U : all participants
Output: Up and Uu: participant partition
1: B ← bivector(U) {Change U into a bi-vector, where each element

marks a participant as PAYG (0) or UnDP (1).}
2: N (population) ← initialize with randomly assigning 0 or 1 in B

for each candidate participant partition in the population.
3: i← 0
4: while i < itermax do
5: K ← keepbest(N ) {The best partitions are the ones that can get

the smallest values on Refund function.}
6: C ← crossover(N )
7: M← mutation(N )
8: N ← {K, C,M}
9: i← i+ 1

10: end while
11: Up, Uu ← the best participant partition that can achieve the smallest

Refund during all the iterations.

way, taking into account the different types of sensing tasks
for different participants.

C. GA-based Partition Algorithm

Based on the mobility prediction and sensed data
size estimation results, we can approximate the orga-
nizer’s 3G data refund budget for the upcoming month.
This 3G data refund budget approximation function takes
a specific UnDP/PAYG participant partition as input:
Refund(Uu, Up).

In other words, given a participant partition result (i.e.
knowing Uu and Up), we can approximate Refund for the
next upcoming month (supposing all the sensing cycles for
the following month is C):

Refund = |Uu|∗Priceu+
∑
j∈C

∑
i∈Up

di,j∗(1−pi,j)∗Pricep

Considering Refund as the optimization function, par-
ticipant partition can be directly expressed as a set split
problem for minimizing Refund, which is NP-hard. Thus
we use a genetic algorithm [31] to obtain a near-optimal
solution. Algorithm 1 shows the pseudocode of the genetic
algorithm. We use a bi-vector to mark each participant as
an PAYG (0) or UnDP (1) participant (Line 1). In each
generation, we keep the best participant partitions from
the previous generation by evaluating Refund function
on every partition (Line 5). In addition to the best parti-
tions, applying crossover (Line 6) and mutation (Line 7)
functions [31] on the previous generation’s population, we
obtain the other two sets of candidate partitions, in order
to compose the whole population that will be examined in
the new generation (Line 8). Finally, the genetic algorithm
could generate a near-optimal participant partition result.
Note that we adopt a fixed number of iterations as the
stopping criterion for the genetic algorithm (Line 4).

VII. EVALUATION

In this section, we first evaluate ecoSense using the MIT
Reality Mining dataset [7] including 48 active users. Then,
to further evaluate both ecoSense’s budget saving efficacy

and algorithm computation efficiency with a larger number
of users, we simulate a 500-user mobility trace leveraging
SWIM [8] and briefly show the corresponding evaluation
results.

A. Experimental Setup on MIT Reality Mining

For the MIT Reality Mining dataset, we choose two
months’ data (2004.10 and 2004.11) from 48 active users
who have more than 20-day records per month. The
mobility traces in the MIT Reality dataset include each
user’s Bluetooth encounters with other users and gateways
deployed by the organizer. Note that to ensure that the
sensed data can be successfully offloaded between two
users via Bluetooth, we only use the Bluetooth encounters
lasting for more than 5 minutes in the experiment. We
use the first month’s user data (2004.10) as the historic
record to obtain a participant partition of PAYG and UnDP
groups, and evaluate the performance on the second month
(2004.11). The sensing cycle lasts for one day and the
delayed-uploading cycle lasts for 3 hours6 (recall Figure 1
for the illustration of sensing and delayed-uploading cy-
cles). In this experiment, we set two Bluetooth gateways
named localhost.media.mit.edu and studies.media.mit.edu.
The costs of PAYG and UnDP price plans are set to
$0.1/MB and $7/month respectively.

Adding up-to-date WiFi usage logs. To mitigate the
shortage of WiFi usage logs in the MIT dataset7, we use an
up-to-date mobile phone usage dataset, Cambridge Device
Analyzer [32], to complement the MIT dataset. Specifically,
for each MIT user umit, we randomly select a Cambridge
user ucam and uses ucam’s latest two-month WiFi usage
logs to represent umit’s WiFi usage.

Setting the battery threshold for relaying data. In our
experiment, a user will relay others’ data only when the
battery level of her phone is above a predefined threshold
(50%), because a user is typically not willing to relay data
if her phone battery is low. Due to the lack of the battery
information in the MIT dataset, we simulate each user’s
phone battery level at any time based on the phone usage
records, including calls, messages, mobile data usages,
etc. [33]. Interested readers can refer to our previous work
(Section VI-C in [6]) for more details about this simulation.

B. Baseline Methods

To compare with ecoSense, we introduce the following
two methods:

1) direct-assignment is the baseline method that assigns
each participant to the UnDP or PAYG group directly
according to her estimated sensed data size in the
upcoming month.

2) ecoSense-ideal does not do mobility prediction and
directly leverages the second month’s mobility trace
(2004.11) in the genetic algorithm in order to get an
optimal participant partition. In real life, this future

6The delayed-uploading cycle starts at noon every day.
7Back to 2004 when the MIT Reality Mining campaign was conducted,

WiFi was not a popular data transmission method for mobile phones.
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Fig. 7. Refund budget for varied-size data
uploading (c = 500KB)

data is not available; however, this result serves as
a bound of the organizer’s refund budget and shows
the potential improvement that we could make by
designing a better mobility prediction method in the
future.

C. Evaluation Results on MIT Reality Mining

The most important issue is how much ecoSense could
save for the organizer’s 3G data refund budget when com-
pared to direct-assignment. We will first show the results
when all the participants upload the same size of sensed
data in each sensing cycle (i.e. fixed-size data setting).
Then, we will change the fixed-size data setting to the
varied-size data setting, where the size of the sensed data
that a participant would contribute is proportional to the
number of visited locations. For the sake of simplicity, the
above experiments are conducted using the OneRelay up-
loading strategy (the “uploading strategy” in the evaluation
section refers to “PAYG uploading strategy”). Afterwards,
we will illustrate the difference between the OneRelay,
OneHopFlooding and Epidemic uploading strategies, from
two perspectives: refund budget and energy efficiency.
Finally, we evaluate how two parameters — max tolerable
delay and 3G price plan cost — affect ecoSense’s perfor-
mance.

1) Fixed-Size Sensed Data Uploading: Here, we show
how much refund cost ecoSense could save compared to
direct-assignment for sensing tasks generating fixed-size
sensed data. We adopt OneRelay as the uploading strat-
egy. To see whether ecoSense’s Poisson-distribution-based
mobility prediction method has already achieved good
enough performance or not, we also compare ecoSense with
ecoSense-ideal.

Figure 5 shows the mobile data cost refund under
different fixed data size settings: 1000-6000 KB/cycle.
ecoSense could save 25-48% monetary refund compared
to direct-assignment. We find that the data size setting
where ecoSense can get the most significant effect (∼ 48%
saving) is around 2500 KB/cycle, where direct-assignment
changes from assigning the participants with PAYG to
UnDP (denoted as turning point, the vertical dashed line
in Figure 5).

Compared to ecoSense-ideal, ecoSense’s refund bud-
get is larger by only 1-4%. This demonstrates that with
the Poisson-distribution-based mobility prediction method,
ecoSense has already achieved good performance. It may
be possible to design a better mobility prediction method,

but even with higher accuracy, the improvement on refund
budget saving is not likely to be significant.

2) Varied-Size Sensed Data Uploading: We now con-
sider the 3G data refund budget for varied-size sensing
tasks. As mentioned in Section VI-B, the estimated varied
data size for participant i in sensing cycle j can be modeled
as di,j = c+ k ∗ li,j .

We write li,j for the number of cell towers the participant
i stayed in during sensing cycle j.8 Figure 8 illustrates the
average number (avg ± std) of the visited cell towers per
sensing cycle for each participant in 2004.11. The average
number of visited cell towers for different participants
ranges from 3.6 to 9.7 per sensing cycle. For constant c in
the di,j model, when c = 0, we assume that the participants
sense only in each visited place. When c 6= 0, we assume
that besides the sensed data for each visited place, partici-
pants also upload some other sensed data, e.g. aggregated
coarse activity log, which accounts for approximately the
same size of data for different participants (e.g. 500 KB).

Figures 6 and 7 show the organizer’s 3G data refund
budget when the sensed data size for each cell tower is
set as k ranges from 100 to 600 KB/cell tower, where
c is set to 0 and 500 KB respectively. Similar to the
evaluation results for the fixed-size data setting, compared
to direct-assignment, ecoSense could save 33-51% of the
refund budget. Besides, the most significant budget saving
also appears around the turning point (the vertical lines in
Figure 6 and 7), where direct-assignment begins to assign
all the participants to UnDP.

Compared to ecoSense-ideal, ecoSense’s refund budget
is larger by 1-5%, which gives the range for improvement
through the introduction of a more precise mobility predic-
tion method.

3) Different Uploading Strategies: Previous experiments
all run under the OneRelay uploading strategy. Here
we study how different uploading strategies (OneRelay,
OneHopFlooding, or Epidemic9) would affect ecoSense’s
performance. In addition to the 3G data refund budget,
we also consider the energy consumption in participants’
smartphones by counting participants’ relays and battery
drain per delayed-uploading cycle. For simplicity, we con-
sider only the fixed-size data setting.

8To avoid those cell towers that a participant just passed by, we record
a cell tower only if a participant stayed in the vicinity of the cell tower
for more than 5 minutes.

9We set the reconnection time threshold of Epidemic to one hour.
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Figure 9 shows the 3G data refund budget when PAYG
participants adopt different uploading strategies for fixed-
size data. As expected, Epidemic achieves the smallest
refund budget, while OneRelay incurs the largest. Specif-
ically, Epidemic could save 2-15% more budget than
OneRelay. For smaller sensed data sizes, the improvement
is more pronounced (e.g. 15% for 1000-1500 KB/cycle,
while 2% for 6000 KB/cycle). This occurs because, for
smaller data packets, fewer participants will be assigned
to UnDP, leading to more PAYG participants. The large
number of the PAYG participants consequently improve the
performance of Epidemic. For OneHopFlooding, it achieves
almost the same refund budget as Epidemic with the
increase in data size. This indicates that with more UnDP
participants for larger data packets, flooding a PAYG user’s
data within only one hop has already achieved high proba-
bility of making the data received by an UnDP participant
or gateway (thus reducing the budget); using Epidemic, i.e.,
removing the restriction of one-hop of OneHopFlooding,
does not increase this probability significantly.

Figure 10 shows the average relay count per delayed-
uploading cycle for a participant, as well as the maximum
relay count among all the participants (including both
PAYG and UnDP groups). Epidemic and OneHopFlooding
incur the similar average relay count, which is 1.2–4.6
times larger than OneRelay. Considering the maximum
relay count for a participant in a delayed-uploading cycle
(i.e. the worst energy consumption case), Epidemic is
significantly larger than OneHopFlooding and OneRelay,
especially when the data size is less than 3000 KB/cycle.
For example, when data size is 1000 KB/cycle, the max-
imum relay count for Epidemic is 30, while only 18 and
15 for OneHopFlooding and OneRelay, respectively. The
maximum relay count for OneHopFlooding is also larger
than OneRelay, however the difference is usually smaller
than the average relay count (less than 1.5 times). Specif-
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ically, using OneHopFlooding would trigger at most 5
more relays than OneRelay for the “worst participant” who
consumes the most energy for relays. Based on previous
research on mobile phone energy consumption [33], we
calculate the mobile phones’ battery drain for the “worst
participant” with different uploading strategies. Figure 11
shows that — for a 2000mAh battery — the battery drain
with OneHopFlooding and OneRelay is always less than
7%, while the battery drain difference between the two
strategies is at most 2%; in comparison, the battery drain
with Epidemic is a bit higher, leading to 8.5% in the
worst case. For real-life scenarios, the strategy selection
among Epidemic, OneHopFlooding and OneRelay needs to
be further studied in order to better balance the 3G refund
saving and the participant mobile phones’ battery drain.

4) Other Experimental Parameter Analysis: To better
understand how max tolerable delay and 3G price plan
cost affect ecoSense’s performance, in this section, we use
some different parameter settings from the ones used in the
previous experiments.

Varying Maximum Tolerable Delays
Here, we conduct the experiments to test ecoSense’s

performance for various delays other than 3-hour. Suppose
the uploading strategy is OneRelay, Figure 12 shows the
3G data refund budget proportion (ecoSense vs. direct-
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TABLE I
REFUND BUDGET FOR 500-USER SWIM SIMULATION

data size ecoSense direct-assignment saving ratio

500 KB $368 $750 51%
1500 KB $573 $2250 75%
2500 KB $728 $3500 79%
3500 KB $849 $3500 76%
4500 KB $956 $3500 73%

assignment) for 3/6/12-hour maximum delays. As the delay
increases, the 3G refund budget becomes lower. This is
because adopting a longer delay, participants have more
opportunities to relay data via another participant or a
Bluetooth/WiFi gateway to reduce 3G data cost.

Varying 3G Price Plan Costs
The costs of different telecom operators’ 3G price plans

can vary. Thus, we also examine the evaluation results for
various price plan settings.

Suppose the uploading strategy is OneRelay, Figure 13
shows the refund budget proportion (ecoSense vs. direct-
assignment) for three different price plan settings — where
PAYG prices are all set to $0.1/MB and UnDP prices are
set to $5, $7, $9/month respectively. The most significant
difference among different settings is that the turning point
(i.e. the data size where the refund budget proportion is the
lowest) changes, because the turning point is the sensed
data size where direct-assignment begins to assign all the
participants to UnDP, which is sensitive to the price plan
setting. Except for the turning point, most observations are
similar for different settings. For example, whatever the
price plan settings, ecoSense could save at most about 50%
of the refund budget compared to direct-assignment.

D. Experiment on SWIM Simulation

To evaluate ecoSense’s budget saving efficacy and algo-
rithm computation efficiency (especially the participant par-
tition algorithm) on a larger number of users, we simulate
a user-encounter dataset containing 500 users’ two-month
traces by SWIM [8]. The simulation parameters are selected
according to the “Dartmouth” setting in [8], in order to
simulate user encounters in a campus. The experimental
settings are similar to those used with the MIT Reality
Mining dataset: the sensing cycle lasts for one day and
delayed-uploading cycle lasts for 3 hours. For simplicity,
we show only the evaluation results when the uploading
strategy is OneRelay and the sensing task is fixed-size.

1) Budget Saving Efficacy: Table I shows the refund
budget with the 500-user simulation dataset. As the user

number increases to 500 and the users’ activity area remains
within the campus-like scale of the MIT dataset, the user
spatial density in the SWIM simulation is much larger than
that for the MIT dataset, which leads to more refund budget
saving. For example, when the fixed data size is 2500
KB, ecoSense can save 79% in the 500-user simulation
dataset, with respect to 48% on the 48-user MIT dataset
(see Figure 5). In other words, if more users are active in
a smaller area, they will have more chances to meet each
other so that ecoSense could save more 3G data cost.

2) Algorithm Computation Efficiency: With respect to
computation efficiency, we focus on the run-time perfor-
mance of the server-side participant partition component,
as the smartphone-side uploading decision making compo-
nent’s strategy (OneRelay, OneHopFlooding or Epidemic)
is simple. For the participant partition component, the
genetic algorithm dominates the running time, because
our proposed mobility prediction and sensed data size
estimation methods are simple and run much faster than
the genetic algorithm.

For the genetic algorithm, the main difference between
48 users (MIT) and 500 users (SWIM simulation) is that
for more users we need more iterations to obtain a near-
optimal result. In our experiment environment10, we can
get a good solution in 50 rounds for the 48-user MIT
dataset (approximately 5 minutes of execution time), while
we need 500 rounds for the 500-user simulation dataset
(approximately 90 minutes of execution time). As the
participant partition is an offline algorithm, which only
needs to run once a month, we believe that this execution
efficiency is already adequate for most real-life conditions.
Furthermore, the performance of the genetic algorithm can
be easily (and dramatically) improved by leveraging its
inherent parallelism.

VIII. DISCUSSION

As this work is the first research investigating how to re-
fund crowdsensing participants’ 3G data usage incurred by
sensing tasks and it is still at an early age, we will discuss
some issues which are not addressed due to space limit,
and point out some future potential research directions.

A. Energy Consumption Issues

In addition to the 3G data cost discussed in this paper,
energy consumption is another critical concern for mobile
crowdsensing participants. It is worth noting that with the
popularity of Bluetooth 4.0 low energy technology (BLE),
the energy consumption of the Bluetooth scanning becomes
much lower [34], which makes ecoSense more applicable
nowadays. Actually, some novel applications requiring the
Bluetooth scanning always on, have already been off-the-
shelf, e.g. real-time fitness sensing with FitBit wristbands11.

Besides, some energy-efficient mechanisms can still be
incorporated into ecoSense, such as piggybacking [35]

10Software: DEAP (https://github.com/DEAP/deap) with python 2.7,
Windows 7; Hardware: Intel core i7-3612QM@2.1GHz, 8G RAM.

11https://www.fitbit.com/
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and uploading data when the phone is charging. In our
future work, we will study the possibility and feasibility
of introducing these energy-efficient mechanisms into the
ecoSense framework, in order to improve both PAYG and
UnDP participants’ experience.

B. Other Kinds of Monetary Incentives

In this paper, we consider only the refund to cover
crowdsensing participants’ additional 3G data cost. In real
life, other kinds of monetary incentives can also be pro-
vided to the participants, such as a fixed payment for the
participation and higher reward (prize) for a small number
of most active participants.

Though the refund of 3G data cost is only a part of
the total monetary incentives, it could be a reasonable
baseline because refunding each participant with her 3G
data cost can mitigate the participant’s worry about whether
the 3G data usage would exceed her data plan and incur
extra fees [3], [4]. In other words, refunding 3G data cost
could at least prevent the participants from paying extra
fees because of participation in a crowdsensing task. Other
kinds of monetary incentives could be added to the 3G data
cost refund to further encourage users to participate in the
sensing task.

C. Participants’ Personal 3G Data Usage

In addition to the 3G data usage for the crowdsensing
task, participants also consume 3G data for their personal
application usage. Here, we prove that ecoSense can always
work effectively (i.e. refund can cover additional 3G cost
incurred by the crowdsensing task) even if we do not know
participants’ actual personal data usage.

For an UnDP participant, personal data usage does not
matter because the unlimited 3G data plan covers it auto-
matically. However, for a PAYG participant, each of the two
price plan cases requires further clarification and analysis:

1) If a PAYG participant up’s original price plan is
also PAYG (i.e. small personal data usage), then
ecoSense’s refund for up just equals the additional
3G data cost incurred by the sensing task.

2) If a PAYG participant up’s original price plan is
UnDP (i.e. large personal data usage), obviously up’s
reasonable choice is still using UnDP as price plan
after participating in the sensing task, which means
that up’s additional 3G data cost incurred by the
sensing task is 0. Currently, ecoSense would still
refund this kind of participant through the PAYG
scheme (i.e. refunding them the money proportional
to their 3G-uploaded data size), because we cannot
easily distinguish them from the previous small-
personal-data-usage kind of participant.12

In summary, without knowing the actual personal data
usage for each participant, ecoSense’s refund mechanism
can always cover each participant’s additional 3G data cost
incurred by the crowdsensing task.

12We can distinguish these two kinds of participants provided we
assume that all the participants trustfully report their original price plans.
However, due to the privacy concern and user selfishness, we do not make
this assumption in our current work.

D. Other 3G Price Plans
Usually telecom operators offer users 3G price plans

other than PAYG and UnDP. For example, D100MB price
plan: $1 for the first 100MB data and then $0.1/MB (like
PAYG). Here, we discuss the problem: whether ecoSense’s
refund mechanism can still cover participants’ additional
3G cost when other 3G price plans exist?

On the one hand, by still using only two refund schemes
of PAYG and UnDP, even if other 3G price plans exist,
ecoSense can effectively refund participants to cover their
additional 3G cost. For example, assume that a participant’s
original price plan is D100MB. If refunded as UnDP,
she can change next month’s price plan to UnDP; and if
refunded as PAYG, she can keep the D100MB price plan.
As long as a participant follows the above rule, ecoSense’s
refund can always cover her additional 3G cost.

On the other hand, it is promising to introduce new
3G price plans, such as D100MB, into refund schemes
of ecoSense. For example, after importing D100MB as
a new refund scheme (i.e. refund schemes increase to
three types: UnDP, D100MB, and PAYG), we could model
the participants with D100MB refund scheme as “UnDP”
participants when data usage is less than 100MB, and as
“PAYG” participants when data usage exceeds 100MB.
This type of polymorphic participant partition mechanism
requires further research.

IX. CONCLUSION

Refunding mobile crowdsensing participants for addi-
tional 3G data cost incurred during the crowdsensing
process is an effective marketing strategy for the mobile
crowdsensing organizer. In this paper, we investigate the
problem of how to minimize the total 3G data refund
budget for the crowdsensing organizer who follows such
a marketing strategy. Based on two widely-used 3G price
plans, i.e. Pay As You Go and Unlimited Data Plan, we
propose a delay-tolerant data uploading framework called
ecoSense, whose goal is to minimize the organizer’s 3G
refund budget for all the participants.

By introducing delay-tolerant data uploading mecha-
nisms, UnDP participants could relay PAYG participants’
sensed data to the server without additional 3G cost; PAYG
participants could also upload their sensed data via free-
charge Bluetooth/WiFi gateways to reduce 3G cost. Based
on these observations, we propose the data uploading
strategies for both PAYG and UnDP participants and design
a participant partition algorithm to determine whether a
participant should be assigned to PAYG or UnDP. Our
ecoSense framework was evaluated using the MIT Reality
Mining dataset and a larger SWIM simulation dataset. The
evaluation results showed that ecoSense could save up to
∼50% of the refund budget compared to direct-assignment
that assigns each participant to UnDP or PAYG directly
according to the size of her sensed data.
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