Synthesis and Analysis of Automatic Assessment Methods
in CS1

Generating intelligent MCQs

Des Traynor
Dept. Computer Science
National University of Ireland, Maynooth
Co.Kildare, Ireland

dtraynor@cs.may.ie

ABSTRACT

This paper describes the use of random code generation and
mutation as a method for synthesising multiple choice ques-
tions which can be used in automated assessment. Whilst
using multiple choice questions has proved to be a feasible
method of testing if students have suitable knowledge or
comprehension of a programming concept, creating suitable
multiple choice questions that accurately test the students’
knowledge is time intensive.

This paper proposes two methods of generating code which
can then be used to closely examine the comprehension abil-
ity of students. The first method takes as input a suite of
template programs, and performs slight mutations on each
program and ask students to comprehend the new program.
The second method performs traversals on a syntax tree of
possible programs, yielding slightly erratic but compilable
code, again with behaviour that students can be questioned
about. As well as generating code these methods also yield
alternative distracting answers to challenge the students. Fi-
nally, this paper discusses the gradual introduction of these
automatically generated questions as an assessment method
and discusses the relative merits of each technique.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer Science Education, Self-assessment

General Terms

Design, Human Factors

Keywords

Assessment, Program Comprehension, First Year Program-
ming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE °05 Missouri, Texas USA

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

J. Paul Gibson
Dept. Computer Science
National University of Ireland, Maynooth
Co.Kildare, Ireland

pgibson@cs.may.ie

1. INTRODUCTION

It is difficult to assess the programming ability of students
in introductory computer science. This was highlighted in
2001[10] when an international study showed that the ma-
jority of students lack the basic programming skills after
they have completed a year of computer science studies. If
suitable programming assessment was in place, this lacuna
in student knowledge would have been far more obvious.
Whilst it is convenient to place the blame on students, and
it may seem reasonable to place blame on lecturers, it is
true to say that if effective programming assessment was
enforced then the impact of such a large study would have
been greatly reduced. For too long, improper assessment
had incorrectly awarded students artificially high grades,
thus leaving the discipline in a state of shock when the re-
sults from the study arrived. Assessment is the key to learn-
ing[16]. Poor assessment presents two problems, it does not
highlight the weak students accurately, nor does it challenge
the promising students appropriately’.

Automated assessment methods involving machine analy-
sis of output from programs[3] have proved to be a successful
method of analysing students’ ability to write code; however
this is not the only learning outcome we expect from intro-
ductory computer science. It is also important that students
can understand and comprehend code. It has also been ar-
gued that comprehension should be examined, before asking
students to apply their knowledge, in Blooms taxonomy of
educational objectives[2] comprehension is one stage before
application.

One clear and objective means to estimate students’ abil-
ity to comprehend programs is to use multiple choice ques-
tions (MCQs). It is a common misconception that MCQ
tests are easy and the lazy way out for lecturers, it has been
noted by Lister and others that Quality MCQs are not the
work of the lazy![9]. The MCQs used by Lister typically
involves a piece of code, and questions regarding the be-
haviour of the code when executed. It is the goal of this
research to automate the process of creating high quality
MCQs through using automatically generated fragments of
code and providing a restricted number of ‘intelligently cho-
sen’ possible answers.

! An alternative outcome from poor assessment occurs when
the assessment is too challenging. In this case students are
demotivated by poor scores and the lecturer again gains little
insight from analysis of the results.

‘Which of the following is the correct declaration
for the main function in Java?

a) Begin Program ()
b) public start main()

d

)
)
¢) public static void main(String args|])
) int program;

)

e) System.out.println(”Hello World”);

Figure 1: Weak MCQs encourage surface learning

1.1 Overview of the paper

The next section introduces some of the difficulties in au-
tomated assessment, and discusses the requirements for rea-
sonable multiple choice questions. The third and fourth sec-
tion of this paper details the two approaches we have taken
to solving the problem, and presents sample output from
each attempt. The fifth section compares the output from
both methods and discusses their strengths and weaknesses.
The final section presents preliminary results from using this
technology in Maynooth University and also discusses future
work for the project.

2. AUTOMATED ASSESSMENT

The clear advantages of automated assessment are objec-
tivity and convenience. Assessment involves creating ques-
tions, carrying out the examination and marking the scripts.
It is both difficult and time consuming to mark 100 stu-
dent scripts in an accurate, unbiased manner. If this proce-
dure can be automated in some way, whilst maintaining the
quality of assessment, this will allow the teacher/lecturer
more time to concentrate on the preparation and delivery of
course material. It is important to state that many projects
such as ExamGen[13] offer what they refer to as automatic
test generation. Whilst this may seem a similar goal, what
distinguishes the work in this paper is that the questions
themselves are automatically generated. The majority of
the other projects simply provide students with a random
subset of a large question bank.

Educationalists have argued that MCQs encourage sur-
face learning where the student can pay lip service to a
topic by skimming through their notes and achieve a suffi-
cient score in the exam[1]. It has also been said that the
only real advantage is that of speed and convenience. As
a result of these misconceptions, departments are justifi-
ably cynical about the adoption of MCQs as an assessment
method. Often they will cite extremely weak MCQs they
have seen as examples of why it is an unsuitable assessment
method. For example, the multiple choice question in Fig-
ure 1 could be correctly answered by any student with little
or no knowledge of programming in Java, simply through
skimming throw the first section of notes on most program-
ming courses. This method of learning deserves little reward
in any assessment method.

Lister[8] shows a more extreme example of this where all
incorrect answers have artificially low feasibility thus ren-
dering the question of no value. Another common criticism
from educationalists is that any form of selected response

testing is only capable of testing the lower levels of Bloom’s
taxonomy (2], however in the field of computer science exam-
ining students’ ability to comprehend a program is of great
value. The next section discusses the specifications of the
requirements as a set of criteria for evaluating the quality of
the MCQs.

2.1 Requirements for effective MCQs

To ensure that the MCQs that will be generated by this
system will be of a high quality, there are certain require-
ments that each question must meet?. The current require-
ments are detailed in the following list.

1 Good quality code. Any code presented to the stu-
dents must be of a high quality, and follow all proper
guidelines given to students. Obfuscated code and spu-
rious examples within code should not be allowed.

2 No Tricks. The question should focus on teaching the
normal behaviour of programs, not the badly coded
exceptions. There should be no tricks in the majority
of the questions. (For example in C++ the statement
if (i=size)will compile and always returns true, but
is bad programming, similarly the expression x+=x++;
is valid code but not good practice).

3 Quality Distractors. The alternative incorrect an-
swers (distractors) must have a suitably high feasibility
so as to ensure students are challenged by each ques-
tion.

These requirements are useful as they serve to both clearly
define what can be generated, and also ensure the quality
of the output. The approaches to generating both code and
questions were influenced by these requirements.

We studied a variety of different approaches for generating
code and questions, ranging from grammatical evolution[14]
to various different techniques extracted from genetic pro-
gramming[11]. Two approaches that we deemed achievable
were that of template based mutations, and random walks
through a predefined syntax tree. These approaches were
selected as they lend themselves to formal definition and
could be implemented within the allowed time. We decided
to pursue both of these approaches with the intent of eval-
uating their success as a means of assessment.

3. TEMPLATE BASED MUTATION

Template based mutation uses the mutation phase from
genetic programming and applies it to a pre-approved pop-
ulation of problems.

In practice this means the lecturer will supply what they
consider to be a suitable suite of problems, each one con-
sisting of of a piece of code, and a question regarding its
behaviour. This style of question was first proposed by Lis-
ter[7] in 2000 and has proved an effective method of probing
student knowledge.

The mutations of the code take the form of minor changes
that guarantee different behaviour from the program. The
result of this is that one input template can result in a mul-
titude of different questions generated. The mutations are

2It is current research beyond the scope of this paper to re-
fine these requirements and construct models against which
we can verify questions

int amount =0;
for (int i=0;i<1

{

1if (i%2 == 0)
{ amount++

}

System.out.prin

0;i++)

A

tln (amount) ;

current answer:

for (int 1=0;1i<10;i+=3)

v

for (int 1=0;1<=10;i++)

if (i%2 == amount) ‘{amount amount+i;}

new answer: 2 new answer: 6

new answer: 2 | new answer: 20

Figure 2: One short code snippet can examine many concepts when altered slightly.

performed by randomly selecting a set of substitutions that
should have an effect on the outcome of the code. These sub-
stitutions are usually related to the topic under examination.
For example if a lecturer wished to examine students’ knowl-
edge of boolean operators, the substitutions could replace <
with <, = with # etc. The new program is then compiled
and the correct answer is then retrieved through execution.
Figure 2 gives a short example of how a piece of code can be
automatically mutated to produce several different pieces of
code, each with alternative outputs.

4. RANDOM TREE WALKS

The second approach investigated involves using random-
ization techniques for creating short pieces of code. Each
piece of code is generated using a random walk through a
very rich tree of potential programs. In Java there are cer-
tain lines of code that each program must display to com-
pile and execute independently. The first part of the tree
involves placing these declarations into the code and then
making decisions based on the input parameters about how
the program will be developed.

4.1 Input Parameters

The input parameters are used to define the constraints
which govern the program being generated. The parameters

e The level of difficulty required. This parame-

ter (currently an integer 1..10), defines how difficult
it should be to comprehend the program. It affects
variables such as the length of statements, the lev-
els of nesting (of both if statements and loops), the
simplicity of loops(e.g. a simple loop would run from
zero to some arbitrary number in increments of one,
whereas a complex loop might have a variety of ter-
mination conditions, and non-trivial increments). In
practice, code generated at a high level of difficulty
can resemble obfuscated code which is not suitable as
it does not satisfy the requirements.

The length of the program. Depending on the
length of the exam, certain lecturers may wish to have
a small number of long programs, or a large number
of short programs to test their students’ knowledge.
Whilst the authors find the latter yields more signifi-
cant data, it was deemed necessary to include such a

parameter to make the system adaptable. The length
of a program is represented using an integer ranging
from 1..10, where 1 would yield a program of approxi-
mately 5 lines, and 10 returns a program with between
40 and 60 lines of code.

The assumed knowledge of the students. This
parameter corresponds to a set of concepts that the
students already have covered. For example, when
writing a question based on arrays, it would aid in
question construction to know that students have al-
ready covered for loops, if statements etc. This is
implemented as an integer which corresponds to which
level of learning the students are at. The lecturer sup-
plies the level of learning and which concepts they rep-
resent.

The concept(s) being examined This parameter
represents the cynosure of the question. When cre-
ating the code the overall behaviour of the system
should depend on this concept, thus making it crucial
to understand when attempting to answer the ques-
tion. In early tests of the system this necessity was
overlooked and this resulted in poor questions. For ex-
ample a question which alleged to examine for loops,
would output code with for loops that would never be
reached due to preceding if statements.

All of the above input parameters serve to influence the deci-
sions made during the random code generation, for example
if the difficulty of the question was set to 10 it is very likely
that loops will nest inside each other, and that there will be
more complicated boolean expressions inside if statements
etc.

However generating code is not all that is required to gen-
erate questions. The third requirement was to generate a set
of feasible answers that will distract the students sufficiently.
This method for this is discussed in the next subsection.

4.2 Generating Feasible Answers

Automatically generating feasible answers requires a for-
mal and reasonably rigorous definition of the concept of fea-
sibility. This is a very difficult notion to define and represent
in a program. Initial research showed that the most effective
distractors were those that were based on student miscon-
ceptions. When writing feasible answers we believe the au-
thors were intentionally mimicking the incorrect thoughts of

Misconception Substitution
Division and Modulo | % with /
Confusing and with or | || with &&

bounds checking > with >=

if-else chains

else if with if

Table 1: Misconceptions and their Substitutions

their students, e.g students may confuse the AND operator
(&&) with the OR operator (||) or confuse an array item’s
index with its value, so in a question examining knowledge
of the operators one or more of the answers should check for
this misconception. This is an effective method of generat-
ing feasible answers, and one which is also easily automated.

Novice misconceptions have been monitored in computer
programming for a long time. Whilst the most significant
work in this area covers older languages such as Basic[12]
or Pascal [15] the work tends to be abstracted sufficiently
to represent potential mistakes and misconceptions in most
languages. In particular DuBoulay[4] identified the origins
of these misconceptions and provided a list of mistakes com-
mon to all languages.

Modern, language specific studies have highlighted the
most common programming mistakes in Java[6]. Compli-
mentary to this a study of students’ understanding of Java
focused on many misconceptions that students use as rules
when programming in the language[5]. Combining this re-
cent research with the guidelines offered in the earlier works,
it was decided to use misconceptions as a framework for
creating alternative incorrect answers. This process is de-
scribed as follows.

Each generated code segment is compiled initially and the
correct answer is extracted by running the program. Then
a set of substitutions based on the student misconceptions
are performed and the code is recompiled and the alterna-
tive answer extracted. This is done once for each answer,
until enough answers have been retrieved. If a substitution
produces output that is already in the list of answers it is
discarded. Table 1 shows an abbreviated list of the sub-
stitutions used for generating questions based on for loops
and arrays; these substitutions can be performed in either
direction and will usually alter the output of the program.
During development it was found useful to also produce a
highly infeasible answer, as this can identify students who
are extremely weak in the subject and have resorted to clue-
less guessing. The final answer list is then shuffled to ensure
a random ordering of the answers.

4.3 Example of output

Figure 3 shows a sample output from the random code
generation where the topic examined was conditional state-
ments (if-else) and while loops. The assumed knowledge
in this case was operators, and this sample question had
inputs of length=3 and difficulty=5. Applying the substitu-
tion technique yielded the following list of answers. The mis-
conception associated with each answer is in square brackets.

a) test x=8,y=1 [correct answer]
b) x=11, y=25 [confusing % with /]

¢) test x=11,y=31 [doesn’t understand if-else]

int x = 89/9;
int y = x %5;
if x>y |l y==1)
{
System.out.println("test");
}
else if (y<=x)
{
while(x <= 10)
{
X++;
y+=x;
}
}
System.out.println("x=" + x + ", y="+y);

Figure 3: The output from a typical run of random
tree walking.

d) test x=9,y=4 [confusing && with ||]

e) test x=10,y=10 [Highly infeasible, student could only
guess.|

5. RESULTS AND EVALUATION

This assessment method was in testing for the academic
year 2003-2004, and was presented to students as an op-
tional self-assessment method and proved extremely popu-
lar. Students were requested to provide feedback and com-
ments about the system to aid in its development. Whilst
the overall feedback was positive, when asked which style of
questions (template based, or random) they preferred stu-
dents provided some enlightening comments on which we
can base future work.

The typical responses were that template based questions
were good questions that examined given concepts very well.
Students felt that if they scored highly in the template based
tests, they were happy with their level of knowledge. The
question were generated based on ten templates provided by
the course lecturer.

The results were less encouraging for the fully random
questions. Whilst the input from the lecturer was mini-
mal (no work was required), the feedback was more critical.
Students remarked that the questions did achieve a uniform
difficulty and that sometimes the topic being examined was
not central to the question. These issues were resolved later
in the year, when the input parameters were modified to
account for this.

In summary, whilst the template questions achieve a suf-
ficiently high quality they require additional work from the
lecturer; the randomly generated programs require little or
no effort but produce less satisfactory results.

There will be a structured experiment in the following
academic year comparing the re-developed system against
traditional assessment methods. This will enable a full rig-
orous evaluation of automated assessment and The system
will be deployed as a significant aspect of the students con-
tinuous assessment and feedback will again be requested to
assist in further development.

6. CONCLUSIONS

The two alternative approaches have both shown that it is
possible to achieve reasonable automated assessment. The
system has been modified with the students’ feedback taken
into account and will be used in the following academic year
for a series of assessment tests. In particular the output from
template based mutations is highly satisfactory, whereas the
full random code generation is still in its infancy as a method
for question generation.

We acknowledge that automated assessment is by no means
yet a suitable replacement for other, more traditional assess-
ment methods. However we feel that this project provides a
resource light additional assessment type which can work in
unison with the more traditional methods. This complemen-
tary integration of traditional and innovative assessment is a
more natural and pragmatic progression toward automating
assessment techniques.

6.1 Future Work

We have decided to apply the techniques used in template
based mutation to a variety of question styles. At present
they are only suited to question asking students about how a
program will behave (e.g. “What is the output? ”), however
there are a plethora of MCQ styles to which the techniques
can be applied. At present all questions present code that
will compile, however this technique could also be used to
test if students can understand and apply basic rules of syn-
tax and static semantics for compiling programs (e.g “Does
this program compile, if not what is the error? 7).

(10]

(11]

(12]

(13]

[14]
7. ACKNOWLEDGMENTS
The work presented in this paper is part of ongoing re-
search in the National University of Ireland, Maynooth funded

by the Irish Research Council for Science Engineering and
Technology (IRCSET).

8. REFERENCES

[1] R. F. Biehler and J. Snowman. Psychology Applied to
Teaching. Houghton Mifflin Company, 8th edition,
1997.

B. S. Bloom and D. R. Krathowl. Tazonomy of
educational objectives. McKay & Co, 1956.

C. Daly and J. Waldron. Assessing the assessment of
programming ability. In Proceedings of the 35th
SIGCSE technical symposium on Computer science
education, pages 210-213. ACM Press, 2004.

B. duBoulay. Some difficulties of learning to program.
In E. Soloway and J. C. Spohrer, editors, Studying the
Nowvice Programmer, chapter 15, pages 283-301.
Lawrence Erlbaum Associates, 1989.

A. E. Fleury. Programming in Java:
student-constructed rules. In Proceedings of the
thirty-first SIGCSE technical symposium on Computer
science education, pages 197-201. ACM Press, 2000.
M. Hristova, A. Misra, M. Rutter, and R. Mercuri.
Identifying and correcting Java programming errors
for introductory computer science students. In
Proceedings of the 34th SIGCSE technical symposium
on Computer science education, pages 153-156. ACM
Press, 2003.

R. Lister. On blooming first year programming, and
its blooming assessment. In Proceedings of the

2]

3]

[4]

[5]

(6]

(7]

Australasian conference on Computing education,
pages 158-162. ACM Press, 2000.

R. Lister. Objectives and objective assessment in CS1.
In Proceedings of the thirty-second SIGCSE technical
symposium on Computer Science Education, pages
292-296. ACM Press, 2001.

R. Lister and J. Leaney. Introductory programming,
criterion-referencing, and Bloom. In Proceedings of the
84th SIGCSE technical symposium on Computer
science education, pages 143-147. ACM Press, 2003.
M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,

I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of
programming skills of first-year CS students. SIGCSE
Bull., 33(4):125-180, 2001.

N. Pillay. Using genetic programming for the induction
of novice procedural programming solution algorithms.
In Proceedings of the 2002 ACM symposium on
Applied computing, pages 578-583. ACM Press, 2002.
R. Putnam, D. Sleeman, J. Baxter and, and L. Kuspa.
A summary of misconceptions of high school BASIC
programmers. Journal of Educational Computing
Research, 2:459-472, 1986.

A. Rhodes, K. Bower, and P. Bancroft. Managing
large class assessment. In Proceedings of the sizth
conference on Australian computing education, pages
285-289. Australian Computer Society, Inc., 2004.

C. Ryan, J. J. Collins, and M. O’Neill. Grammatical
evolution: Evolving programs for an arbitrary
language. In Proceedings of the First European
Workshop on Genetic Programming, pages 83-96.
Springer-Verlag, 1998.

J. C. Spohrer and E. Soloway. Novice mistakes: are
the folk wisdoms correct? Commun. ACM,
29(7):624-632, 1986.

R. C. Sprinthall, N. A. Sprinthall, and S. N. Oja.
Educational Psycholgy. McGraw-Hill Education, 7th
edition, 1998.

