Specifying and Verifying IP with Linear Logic

David Sinclair*}, James Power!, Paul Gibson', David Gray*, Geoff Hamilton*
*School of Computer Applications, Dublin City University, Glasnevin, Dublin 9, Ireland

tDepartment of Computer Science, National University of Ireland, Maynooth, Co. Kildare, Ireland

+E-mail for correspondance: David.Sinclair@compapp.dcu.ie

Abstract

This paper presents a specification and verification
of the Internet Protocol (IP) in linear logic. IP has
the essential propoerties of a typical distributed sys-
tem. This paper shows how linear logic can be used to
prove some properties of this layer. Both the specifica-
tion and the correctness proofs have been verified using
the Coq proof assistant, via the authors’ embedding of
linear logic into this constructive framework.

Keywords: linear logic, verification, protocols, Coq,
theorem proving

1 Introduction

Distributed systems are becoming a standard com-
puting paradigm and raise new and difficult issues in
the areas of validation and particularly verification.
To date the main approaches used have been centred
on model checking or proof theoretic approaches. In
this paper we use the proof theoretic approach to the
specification and verification of the IP layer [9] using
linear logic [3]. The IP layer, albeit small and self-
contained, typifies much of the essential behaviour of
a distributed system.

We demonstrate here the linear logic concept of
resource-consumption which is used as the key to de-
scribing the transitions between the “states” of the
system. This contrasts with other proof-theoretic ap-
proaches where such transitions are represented either
by sets of traces, as in [8] or by modal operators, as in

[2].

2 A Crash Course in Linear Logic

One way to look at a logic is to divide its rules into
three categories:

1. Azioms. These are the defined truths of the log-
ical system. In classical logic, the sole axiom
represents the tautology that from hypothesis A
one can deduce hypothesis A.

2. Structural rules. These specify how hypotheses
can be manipulated. In classical logic these are
the Exchange, Contraction and Weakening rules.

3. Logical rules. These define the logical operators,
which in the case of classical logic are negation
(=) conjunction (A), disjunction (V) and impli-
cation (=).

Linear logic belongs to the family of sub-structural
logics, where we remove the Contraction rule, which
allows hypotheses to be duplicated, and the Weaken-
ing rule, which allows hypotheses to be discarded. As
a result of losing these two structural rules, linear logic
now admits a more specific set of logical connectives,
and thus an enhanced set of logical rules.

The effect of this is to make the logic “resource
conscious”, since you cannot now duplicate or discard
hypotheses. If you have one instance of a hypothesis
A then you cannot create additional instances of A
out of mid-air; nor can you simply sweep A under the
carpet and pretend you never had A.

Since we embed linear logic in a higher-order con-
structive system we need only implement a fragment
of intuitionistic linear logic (ILL) rather than full clas-
sical or intuitionistic linear logic. The connectives for
ILL are:

e Linear implication is written A — B and is pro-
nounced “consume A yielding B”. If you have
two hypotheses A and A — B then you can de-
rive B but the hypothesis A has been consumed
and is no longer available.

e Multiplicative conjunction is written as A ® B
and is pronounced “both A and B”. When used
both hypothesis are consumed and are no longer
available.

e Additive conjunction is written A& B and is pro-
nounced “choose from A and B”. When used
you choose which hypothesis is consumed and is
no longer available.



¢ Additive disjunction is written A& B and is pro-
nounced “either A or B”. It represents a non-
deterministic choice as to which hypothesis is
consumed and is no longer available. This non-
deterministic choice can be viewed as a choice
made by some external agency.

The extra specification power of these connectives is
a direct result of their resource-sensitivity. In classical
logic an assumption of the form A A B allows us to
use either or both of A and B. In linear logic, an
assumption of the form A ® B gives us both A and
B (and insists we use both of them), whereas A&B
covers the case where we choose to use just one of A
and B.

2.1 The Coq Proof Assistant

Our system was developed using the Coq proof as-
sistant [1], which is based on higher-order constructive
logic. As well as the normal benefits of a proof assis-
tant such as uniformity of notation and verification
of type-correctness, Coq also provides three enhance-
ments to ordinary constructive logic:

e Coq implements a higher-order constructive logic,
facilitating in particular, the descriptions of ob-
ject logics within the framework

e Coq has two type hierarchies: Set of construc-
tive types, and Prop for classical logic allowing
both programs and proofs in the same frame-
work.

e Coq supports inductive definitions, giving a nat-
ural logical extension of the definition-by-cases
style of programming found in functional lan-
guages

Some systems designed specifically for encoding log-
ics distinguish between the system’s own meta logic,
and the object logic that this can be used to define (as
in, for example, [6] which encodes linear logic using Is-
abelle [7]). In contrast to this, Coq provides a single
homogeneous system with a single built-in concept of
deduction, and so our definition of ILL exists as an
ordinary datatype within this system.

While Coq does allow user-defined syntax rules for
new operators, we have enhanced this considerably
in the Coq code presented here in order to submerge
some of the less familiar aspects of the Coq system.
Unless otherwise indicated, there is a one-to-one map-
ping between the code presented here and the actual
Coq vernacular.

2.2 Mixing the Logics

Linear logic is perhaps most usefully applied to
state-based problems when used along with classical or
intuitionistic logic. In particular, while state-specific
assertions can be phrased in ILL, it is often useful to
be able to express global invariants in classical logic,
since it should be possible to use these as often as
possible.

Classical intuitionistic predicates may be incorpo-
rated into ILL following [4] by marking them with a
modal operator. Thus we can write !4 to denote “ar-
bitrarily many A’s”, and the rules for this operator
assert that we are free to use A zero, one or many
times as we need. It is one of the particular features
of our approach that we have an alternative to the use
of this operator.

By encoding ILL as a simple consequence relation
within the Coq system, we may freely mix linear as-
sertions pertaining to the state with intuitionistic or
classical assertions that are state-invariant. Since the
objects that are used in the linear predicates range
over Coq datatypes, these may also be constrained by
ordinary (intuitionistic or classical) predicates, provid-
ing unrestricted use.

The significant benefit here is that all of the existing
theories developed for Coq do not need to be changed
for use with linear theorems, but can be integrated di-
rectly into the proofs. This is particularly useful when
dealing with datatypes such as the natural numbers or
lists, where re-encoding “linear” versions of the results
would provide a significant overhead.

2.3 Representing Linear Logic in Coq

As indicated above, setting up the proof system
involves two main steps: defining a type of ILL predi-
cates and their associated connectives, and then defin-
ing a consequence operator and the associated sequent
rules. In Coq terms we have:

e atype ILinProp to represent intuitionistic linear-
logic propositions, which are defined inductively
over the three logical units (1, 0 and T) and the
four connectives

e The sequent rules which define deduction in lin-
ear logic; each of the left and right sequent rules
can be represented as an axiom in Coq

For example, the right sequent rule for multiplicative
conjunction, ® g is usually expressed as:

'-A ARB

T,AFAcB R

In Coq, this becomes



Variable x,y:node; ttl:nat; m:message.
Axiom SendDG :
Axiom LoseDG : (Datagram x y ttl m) F 1.

Axiom DuplDG :

Axiom RecvDG :

(Datagram x y ttl m) ® (Listen y) F

(Send x y ttl m) F (Datagram x y ttl m).

(Datagram x y ttl m) - (Datagram x y ttl m) ® (Datagram x y ttl m).

(Listen y) ® ((Recv x y ttl m) & (Recv x y ttl (corrupt m))).

Figure 1: Coq code for the axioms defining the user interface to the IP layer.

Axiom TimesRight :
(A,B : ILinProp)(I',A : (list ILinProp))
(T'FA = (AFB = T"AF A ®B))

Note how both antecedents of the sequent rule are
represented in Coq using a curried version of classical
implication', represented by “=". This is effectively
at the meta-level for the linear-logic encoding, and
can thus represent deduction in the sequent calculus.
A fuller description of this encoding may be found in
[10].

3 A Quick Description of the IP Layer

Two quotes from the IP specification[9] sum up the
IP layer:

“There are no mechanisms to augment
end-to-end data reliability, flow control, se-
quencing, or other services commonly found
in host-to-host protocols.”[§1.2]

“The internet protocol does not pro-
vide a reliable communication facility. There
are no acknowledgements either end-to-end
or hop-by-hop. There is no error control
for data, only the header checksum. There
is no retransmission. There is no flow con-
trol.”[§1.4]

The IP specification specifies the format of the in-
ternet datagram header that is attached to each data-
gram transmitted through the IP layer. The key ele-
ments of the header for our purposes are:

e The source address field, specifying the origina-
tor of the message

Mn fact, we also use currying here, which allows us represent
“XNY=>2Z"a “X=Y=2”

e The destination address field, specifying the in-
tended recipient of the message

e The time-to-live field, which indicates the max-
imum time, in seconds, that a datagram is al-
lowed to remain in the internet system.

e The header checksum which is used to verify the
validity of the header fields only (i.e. not the
actual message contents)

These last two fields give rise to two properties that
we can assert about the IP layer, since the header
checksum validates both the source and destination
addresses, and the time-to-live field imposes a bound
on the time within which a datagram can be received.

4 Specification of IP Layer Interface

We can represent the main operations of the IP
layer using three predicates which encapsulate the sta-
tus of a message being sent, being in transit, and being
received:

1. (Datagram z y ttl m)
This represents the existence of a datagram with
message m, in transit from node z to node y,
with a time-to-live value of #tl.

2. (Send z y ttl m)
Denotes a user sending a message m from node
z to node y with a time-to-live value of ttl.

3. (Recv z y ttl m)
Denotes a user receiving a message m from node
z at node y with a time-to-live value of ttl.

4. (Listen y)
Denotes a user listening for incoming datagrams
at node y.



Variable x,y:node; ttl:nat; m:message.
Axiom ClockTick :
V z:node -

Axiom InterNode :

(y#2) =

(Datagram x y (ttl+l) m) ® Clock - (Datagram x y ttl m).

(Datagram x y (ttl+l) m) ® (Listen z) + (Datagram x y ttl m)) ® (Listen z).

Axiom TimeUp : (Datagram x y O m) F 1.

Figure 2: Coq code for the axioms specifying the internal behaviour of the IP layer.

(DG m), LS + LS ® (RC° m)

(DG m),LS + LS ® (RC™ m)

(DG m), LS - LS ® (RC™' m)

(DG m), LS+ LS ® (RC™ m)

Induction n

Figure 3: General structure of the inductive proof of the RecvDGClosure lemma.

Implicitly, a datagram represented by any of the
these three predicates has a valid header checksum.
The two latter predicates are an abstraction of the
“SEND” and “RECV” function of [9, §3.3].

The axioms that define the user interface to the IP
layer are shown in figure 1, and may be paraphrased
as follows:

SendDG Sending a message adds a single datagram to
the system.

LoseDG, DuplDG A datagram in transit can be lost or
duplicated.

RecvDG If a datagram addressed to node y exists and
node y is listening for it, then node y will re-
ceive the message m or some corrupted version
corrupt m of the message m. It should be noted
that since Listen y occures in both the antecedent
and the consequent of this axiom the listening
state of node y is preserved.

5 Specification of IP Layer Behaviour

The internal behaviour of the IP layer can be speci-
fied by the axioms in figure 2, and described as follows:

ClockTick The Clock proposition is generated by a
source once every second; this axiom asserts that
such a clock-tick decrements the time-to-live field
of a datagram.

InterNode When a datagram arrives at any node z
other than the destination node y the time-to-
live value is decremented.

TimeUp Datagrams with a zero time-to-live value are
destroyed.

6 Verification of the IP Layer

Now that we have specified the IP layer interface,
what can we prove about it’s behaviour? The IP spec-
ification guarantees very little about a message sent
from one node to another, since it may be corrupted,
duplicated or even lost.

However little the IP specification guarantees, it
does say:

e a message will not appear out of mid-air; and

o if you wait sufficiently long enough between send-
ing two messages, and if both messages are re-
ceived, then a correct ordering of the received
messages is guaranteed.

Our specification of IP using linear logic allows us
to prove these properties; the axiomatisation of linear
logic in Coq allows us to verify that our proofs are
correct.

6.1 No message appearing from mid-air

If a node receives a message with a correct header -
as validated by the checksum - then some node must
have sent a message with the same header (the actual
message itself may be corrupted, of course). In fact, if
the initial datagram is not lost, a message sent from
node A to node B may result in one or more multiple
messages, with correct header, being received by node
B.



Axiom recvAfter :
YV m:message - V tt,ttl":nat -
Axiom timeBound :

YV m:message - V tt,ttl":nat -

(1" < ttl) = T (Send z y ttl m) < Ts(Recv z y tH" m).

(1" < ttl) = T (Recv z y t1® m) < T.(Send z y ttl m) + tt.

Figure 4: Temporal Azioms for IP. Here we assert that messages are received sometime after they are sent, and
that a message can be received only within its time-to-live limit

Variable m;, ma
Hypothesis ttlDecl : (i < tth).
Hypothesis ttlDec2 : (#tif < tth).
Hypothesis SendGap :

Theorem boundedReliabilty :
Proof Outline.

: message; ttl, e, ttl, ttlf : nat.

Ts(Send z y tth my) + tth < Ts(Send z y ttly ms).

Ts(Recv z y tf m1) < To(Recv z y tHE ms).

Ty(Recv z y ttf m1) < To(Send z y tth mi) + tth < T.(Send z y tth m2) < T.(Recv z y ttlf mo)

Figure 5: The “Ordering of Received Messages” theorem. Here the assumptions tt1Decl and ttlDec? assert the
natural property that time in transit decreases the time-to-live field, and SendGap asserts that the delay between
sending m; and my is greater than the time-to-live value of m;.

Since, for the duration of this proof, the source,
destination and time-to-live values are all fixed, we
will adopt the following abbreviations:

e (DG m) for (Datagram x y ttl m).
e (S m) for (Send x y ttl m).

e (RC m) for (Recv x y ttl m).

e LS for (Listen y).

There are at least two styles of proofs in linear logic;
one which is applicable when there is an overall goal
(such as planning), and the other when there is no
overall goal but there is an evolution of state.

When there is an evolution of state with no overall
goal the right-hand side of the judgement should be
“empty”, which is modelled by 0, the impossible goal.
Then in order to show that some state Ay can evolve
into state A1, we must prove that:

A0

Ao 0

Thus, the property that a receipt of any number
n copies of a message m evolves from that message
having been sent, can be expressed as the theorem:

Theorem NoMidAirMsg :
V m:message; n:nat -
(LS, RC" m) F 0) = ((SNm), LS F 0).

Here we use (RC™ m) as a shorthand for the receipt
of n possible corrupted version of message m, which
we can define inductively over conjunction as follows:

(RC°m) = 1
(RC™™t m) = ((RC m)® (RC (corrupt m)))
®(RC™ m)

In fact, to isolate the inductive step, we prove the
following lemma which asserts that a message in tran-
sit, represented by (DG m), may generate arbitrary
many receipts of that message:

Lemma RecvDGClosure :
V m:message; n:nat - (DG m), LS - LS ® (RC" m).
The proof of RecvDGClosure proceeds by induction

over n. This inductive property of the natural num-

bers, along with many of the other usual properties,
is part of the Coq library and, since this exists at the
meta-level for our linear-logic encoding, can be used



to structure our proof here. The general format of
the inductive proof is given in figure 3; the base and
inductive cases are given in figure 6.

6.2 Ordering of received messages
The other property that we can prove relating to
IP concerns the timing of Send and Recv operations.
Let Ts(E) be a function that return the time of an
event F as seen by the sender’s clock, where events
can be either Send or Recv operations. Then

e A corollary of theorem NoMidAirMsg is that be-
fore a message is received it must have been sent,
and therefore the time a message is sent (as seen
by the sender’s clock) is less than the time the
message was received (as seen by the sender’s
clock).

e In addition axiom TimeUp leads us to infer that
the time a message is received at, as seen by the
sender’s clock, is less than the time the message
was sent at plus its time-to-live value.

Both of these properties may be expressed as ax-
ioms, as shown in figure 4

If two messages my and my are sent and successfully
delivered, then the precondition necessary to guaran-
tee that m; arrives before msy is that the interval n
between sending m; and ms is greater than m;’s time-
to-live value. This property is expressed in Coq’s ver-
nacular as shown in figure 5. Here ttl; and ttl are
the time-to-live values when message m; and my are
sent, and 1 and 1 are the time-to-live values when
these messages are received.

7 Conclusions

This paper demonstrates that linear logic can be
used in the specification and verification of the essen-
tial properties of distributed systems. In particular
we believe that this represents a viable alternative to
traditional proof-theoretic approaches using classical
or temporal logics.

The results presented above are part of an ongoing
collaboration [5] between the authors in the general
area of formal methods and communication protocols.
Specifically it is hoped that this work can now be used
as a case study and basis for the specification and
verification of more complex distributed systems.

References

[1] C. Cornes et al. The Coq proof assistant reference
manual. Rapport Technique 177, INRIA, July
1995.

ISF LS 1 bam)

1 LoseDG

XR

(DG m),LSF LS ® 1
(DG m), LS F LS ® (RC® m)

Unfold RC™

ROm)F (BCm) 1 (DG m) ISF I8 & (RC™ m)

Ind. Hyp.

@R
Unfold RC™

Cut LS @ (RC m)

(DG m), LS & (RC m) F LS & (RC m) & (RC™ m)
(DG m),LS ® (RC m)+ LS ® (RC"! m)

(DG m) ® (DG m),LS F LS @ (RC™*' m

(DG m), LS F LS ® (RC™1 m)

(DG m). LS LS & (RC m) TeevDC

] DuplDG

(DG m) F (DG m) ® (DG m

) Cut (DG m) ® (DG m)

Figure 6: Proof of the RecvDGClosure lemma. Here we show the base and inductive case of the lemma; some of the context-manipulation details

(dealing with e.g. commutativity and associativity) have been omitted for clarity.




2]

[6]

A. Felty, D.J. Howe, and F.A. Stomp. Protocol
verification in Nuprl. In Al.J. Hu and M.Y. Vardi,
editors, Computer Aided Verification, 10th Inter-
national Conference, pages 428-439, Vancouver,
BC, Canada, June 1998.

J-Y. Girard. Linear logic. Theoretical Computer
Science, 50:1-102, 1987.

J-Y. Girard. On the unity of logic. Annals of
Pure and Applied Logic, 59:201-217, 1993.

D. Gray, G. Hamilton, D. Sinclair, P. Gibson, and
J. Power. Four logics and a protocol. In S. Flynn
and A. Butterfield, editors, 8rd. Irish Workshop
in Formal Methods, NUI, Galway, July 1999.

S. Kalvala and V. de Paiva. Mechanizing linear
logic in Isabelle. In L.C. Paulson, editor, Proceed-
ings of the Isabelle Users Workshop, Cambridge,
England, Sept 1995.

[7]

[8]

[9]

[10]

L.C. Paulson. Isabelle: A Generic Theorem
Prover. Springer-Verlag LNCS 828, 1994.

L.C. Paulson. The inductive approach to verify-
ing cryptographic protocols. J. Computer Secu-
rity, 6:85-128, 1998.

J. Postel, editor. RFC 791, Internet Protocol. De-
fense Advanced Research Projects Agency, Sept
1981.

J. Power and C. Webster. Working with linear
logic in Coq. In Y. Bertot et al., editors, 12th
International Conference on Theorem Proving in
Higher Order Logics, Nice, France, September
1999. (Work-in-Progress Report).



