Current issue | subscribe | back issues on-line | order back issues |

advertise | Search | ERCIM web site

ERCIM News No.23 - October 1995 - INRIA

Refining and Developing Concurrent Systems from Formal Specifications

by Dominique Méry and Denis Roegel

by Paul Gibson, Dominique Méry and Denis Roegel

Mathematical techniques have, in the last twenty years, been rapidly developing
to improve the understanding of programs. Amongst these mathematical
methods, proof techniques are considered very important, though difficult to
apply in a practical manner. Industrial entities are aware that some (safety
critical) software must be proved correct, requiring mathematical techniques and
a formal background that is only partially provided by current training and
education. Consequently, there is a drive towards the transfer of theoretical
research into industrial usage. Proof techniques, in general, are very difficult to
apply in industry. An alternative, yet equally powerful, solution is based on the
notion of refinement relationship. A program P is said to be refined into another
program Q, if any property satisfied by P is a property satisfied by Q. Properties
such as safety, fairness or eventuality can be specified by a sufficiently
expressive language, and a relationship between programs and such a
specification language can be used to prove the correctness of programs with
respect to such temporal requirements. A relationship between a program and a
specification can be defined through an operational semantics for the program.
When such a semantics exists, we can manipulate, in a formal manner,
specification/program pairs. The objective of a refinement is to establish
specification/program pairs and to produce transformations over programs,
and/or specifications, that maintain the correctness of a program with respect to
a specification.

What are the problems that remain to be solved? Clearly, we need to discover
transformations that preserve specification/program pairs and to prove that classical
transformations are sound according to our semantics. However, programming languages
can deal with a wide range of conceptualisations such as tpyes, objects, databases,
processes, functions, services, concurrency, distribution and safety critical requirements;
moreover, a specification language may express many kinds of static properties (typing,
invariance, deadlock freedom, partial correctness), dynamic properties (accessibility of
critical section total correctness) or time-sensitive properties (liveness and fairness).
Since any attempt to consider all those issues risks "missing the wood for the trees", we
choose to limit the scope of the problem by considering particular case studies and
developing solutions for specific classes of problem. In this way we hope to discover
generally applicable models and methods of transformation. For example, one such
domain which we are considering is the specification of services in a telecommunication
system. The main problem is the ability to express composition of services whilst being
aware of the problems due to feature interactions. Although this problem is specific to
telecommunications, we believe that the mathematical means of solving the problem can
be usefully applied in many other situations.

In practise, there are many different approaches being taken by industry in an attempt to
rigorously satisfy constraints of integrity, safety, security, fairness and liveness. When
such rigorous approaches are based on a language with firm mathematical foundations,
then we refer to them as formal methods. The following formal methods are studied by

our research group:

e UNITY, designed by Chandy and Misra, deals with parallel program design.

e B, designed by J.R. Abrial, has been applied to a large range of industrial case
studies.

e TLA+, designed by L. Lamport, gathers together many of the concepts seen in UNITY
and B into a logic of temporal reasoning and set theory.

We aim to aid the transfer of formal methods to industry in two ways:

e Industrial Application: In the short term, direct co-operation between researchers and
developers in an industrial setting must continue to transfer knowledge and understanding
(in both directions). A balance must be achieved between showing the industrial
designers what can be achieved with formal methods and adapting the mathematical
methods to meet practical needs. Collaborations with industrial partners, for example,
France Telecom and GEC Alsthom Transport are already underway.

e Education: In the long term, the future of formal methods in industry depends on both
creating a demand for engineers trained in their use and providing a means of fulfilling
this demand. It is a viscious circle: without the formally trained engineers it is difficult to
create the demand (through suitable industrial applications and trials) yet without the
demand there seems to be no reason to train the engineers. Our solution to the problem
is to incorporate formality in our teaching and training as much as possible. As teachers,
members of the group are involved in many training programmes and use them as an
opportunity to spread the formal methods message. Consequently, many of our students
are prepared for the application and integration of mathematical techniques when they
take up positions in industry.

Our research group aims to improve the interaction between the industrial world and
theoretical researchers, by promoting the use of formal methods in the design of
programs, especially those with high levels of concurrency and distribution in safety-
critical environments. We guide our research with the help of case studies, and construct
tools that implement our theoretical results and aid case study development. Our goal is a
set of tools which are formally based, powerful to apply and accessible to all software
engineers at all levels of abstraction.

Please contact:

Dominique Méry - CRIN-CNRS & INRIA Lorraine
Tel: +33 8359 2014

E-mail: meryceloria.fr

return to the contents page

