Composing Fair Objects

G.W. Hamilton
School of Computer Applications
Dublin City University
Ireland
hamilton@compapp.dcu.ie

J.P. Gibson
Department of Computer Science
NUI Maynooth
Ireland
pgibson@cs.may.ie

D. Méry
Université Henri Poincaré
Nancy
France
mery@loria.fr

Abstract

When specifying large systems, we would like to be able
to specify small components independently, and to be able
to compose them in such a way that their specified proper-
ties are preserved. We have previously proposed the con-
cept of a fair object, which incorporates the specification of
both safety and liveness properties, as a suitable such unit
of specification. Unfortunately, however, liveness properties
of fair objects are often not preserved under composition.
In this paper, we define a simple test to determine whether
the liveness properties of fair objects are preserved under
composition. We then show how liveness properties can be
restored in some cases when they are broken, through the
addition of fairness constraints.

1 Introduction

The temporal logic of actions (TLA) [10] is a formal-
ism for specifying and reasoning about concurrent systems.
TLA can be used to specify both safety properties (nothing
bad will happen) and liveness properties (something good
will happen). Although crude structural mechanisms have
been proposed for TLA [12], it does not provide the high-
level composition mechanisms which are essential for syn-
thesising and analysing complex behaviour. These mech-
anisms are provided by the object-oriented paradigm, but
most object-oriented formalisms are based on the specifi-
cation of safety properties and do not incorporate liveness
properties.

In [7], we proposed the concept of fair objects, which

combine temporal semantics and object-oriented concepts
in a complementary fashion. This concept is not new; sim-
ilar constructs have been proposed earlier [5, 3, 1, 2]. In
this paper, we study the effect of object composition on the
liveness requirements of the objects being composed.

When following an object-oriented approach to specify-
ing the behaviour of concurrent systems, we would like to
be able to specify the liveness requirements of each object
locally. However, an object must be viewed as an open sys-
tem which relies on its environment to ensure that its local
requirements are satisfied. For this reason, open systems are
often specified using an assumption/guarantee (also called
rely/guarantee and assumption/commitment) style of speci-
fication [9, 14, 15, 1, 16] which asserts that an object guar-
antees to meet its requirements under the assumption that
its environment also meets its requirements.

When objects specified using the assumption/guarantee
style are composed, the resulting composition must be
checked to ensure that the assumptions about the environ-
ment specified for each object are still satisfied. This nor-
mally involves discharging some reasonably complex proof
obligations. If the environment assumptions for each com-
posed object are preserved, we say that these objects are
polite [3, 7]. As pointed out in [1], this approach works best
when the environment assumptions are safety properties, as
liveness requirements are often broken under composition.

The approach which we take in this paper is to accept
that liveness requirements are likely to be broken under
composition (we define a simple mechanism to determine
whether this is the case), and to show how these liveness re-
quirements can be restored through the addition of fairness
constraints; this is the main contribution of this paper.

The remainder of this paper is structured as follows. In

Section 2, we give a quick overview of TLA, and in Section
3 we show how to extend TLA with the concept of fair ob-
jects. In Section 4, we define a number of different levels
of liveness for fair objects, and in Section 5 we describe the
fairness constraints which can be placed on them. In Sec-
tion 6, we show how fair objects can be composed, and in
Section 7 we define the different levels of politeness which
objects can exhibit under composition. Section 8 concludes.

2 A Quick Overview of TLA

Temporal logic extends classical logic by handling
modalities such as fairness and eventuality. TLA [10] is a
temporal logic of actions for specifying and reasoning about
concurrent systems. TLA has four levels:

1. Constants: this level is concerned with formulas which
are state-independent (constant). The variables which
are used in this level are called rigid variables and can-
not change values between states.

2. States: this level allows reasoning about individual
states. The formulas in this level can either be state
functions (non-boolean functions) or state predicates
(boolean expressions). The variables used in this level
can be flexible variables, which can change values be-
tween states.

3. Pairs of States: this level concerns reasoning about
pairs of states. The formulas in this level can either be
transition functions or transition predicates (actions).
The variables used in this level can be primed. Un-
primed variables refer to the old state, primed variables
to the new. For a state function or predicate F', F' is
obtained by replacing each flexible variable v in F' by

v,

An action A is a relation between states which assigns
a boolean to s[.A]¢ for states s and ¢, where s is the
old state and ¢ is the new state. This is called an A
step” if it is true. s[enabled A] is true for state s if it
is possible to take an A step starting in that state.

Stuttering steps are steps in which specified variables
do not change. These are used to help show equiv-
alences between behaviours. For an action A and a
state function f, a stuttering step is written as follows:

[Alf £ AV (' =)
A step corresponding to an action A4 in which the vari-

ables in a state function f do change is written as fol-
lows:

<A>E AN #S)

4. Sequences of States: the fourth level allows reason-
ing about behaviours, which are infinite sequences of
states. A behaviour is denoted by < sg, s1, 82, ... >,
where s is the first state, s; is the second, etc.

An action A is true iff the first pair of states in the
behaviour is an A step.

< 80,51,52,... > II.A]] = SOII-A]]Sl

The specification of a system in TLA has the following
form:

3z : Initial AO[N], AF

where Initial is a state predicate describing the initial state,
N is a transition predicate describing the possible steps,
z is a state function indicating the variables which cannot
change in any step other than a N step, and F' is the con-
junction of fairness conditions.

3 Fair Objects

A crude module structuring mechanism has been pro-
posed for TLA [12], but in [7] we proposed the concept of
fair objects which provide higher level composition mech-
anisms. Similar to the way in which a system is specified
in TLA, the specification of a fair object has the following
form:

3z : Initial ANO[Ext V Int], AN F

where z describes the variables encapsulated within the ob-
ject, Initial is a state predicate describing the initial state
of the object, Ext is a transition predicate describing the
possible external actions of the object, Int is a transition
predicate describing the internal actions of the object, and
F gives the fairness constraints on the internal actions of the
object (we cannot place fairness constraints on the external
actions of an object, as we cannot enforce how often these
should be taken).

As an example of a fair object, consider a double-ended
queue as shown in Figure 1.

Putfront Getback
Putback Q Getfront

Figure 1. Double-Ended Queue

The queue object provides operations to put or get elements

to the front or back of the queue (these are all external
actions). This could be defined as follows in TLA:

Addfront(n) £ A Len(contents) < 100
A contents' =< n > o contents

Addback(n) £ A Len(contents) < 100
A contents’ = contents o < n >

Getfront(n) £ A Len(contents) > 0
A contents =< n > o contents’

Getback(n) = A Len(contents) > 0
A contents = contents’' o < n >

Step 2 3n € Nat : V Addfront(n)
V Addback(n)
V Get front(n)
V Getback(n)

Init £ contents =<>

Spec £ Acontents € Seq(Nat) : Init A O[Steplcontents

The state variable contents is a sequence which holds the
elements of the queue (up to a maximum of 100 elements).
We would like to guarantee that the actions Get front
and Getback will always eventually be enabled, but this
relies on at least one of the external actions Putfront
and Putback always eventually taking place. Similarly,
we would like to guarantee that the actions Putfront
and Putback will always eventually be enabled, but this
relies on at least one of the external actions Get front and
Getback always eventually taking place. These liveness
requirements can be defined in an assumption/guarantee
style as follows:

dn € Nat :

OO (Put front(n) V Putback(n)) A

OO (Get front(n) V Getback(n)) =

OO (Enabled Get front(n) A Enabled Getback(n)) A
OO (Enabled Put front(n) A Enabled Putback(n))

4 Liveness

Liveness properties define how often a particular prop-
erty is satisfied. We define a number of different levels of
liveness.

Definition 4.1 (Eventually Always)

Property P is eventually always satisifed (EA(P)) in
system II iff:

[I] (o) = [¢OP](o)
This can also be defined as follows:

[I[(c) = 3IpCo:p1=0AVn€ Nat: 7[n][P]

Definition 4.2 (Always Eventually)

Property P is always eventually satisfied (AE(P)) in
system II iff:

[1T] (o) = [BOP](0)
This can also be defined as follows:

[I](c) = VpC o:p.r=0A3In € Nat : 7[n][P]

Definition 4.3 (Always Possibly Eventually)

Property P is always possibly eventually satisfied (APE(P))
in system II iff:

[II[(c) = Vp C o : 37 : [I](p.7) A [OP](T)
This definition corresponds to the definition of always

possible given in [7], willingness defined in [3] and always
possibly given in [11].

Definition 4.4 (Possibly Always Eventually)

Property P is possibly always eventually satisfied (PAE(P))
in system II iff;

(o) = IpCo: 37 : [M](p.7) A[OOP](1)

This definition corresponds to the definition of may in

[6].

It is quite straightforward to prove the following:

EA(P) = AE(P) = APE(P) = PAE(P)

These different levels of liveness therefore belong to
the liveness domain shown in Figure 2. It is quite straight-
forward to prove that this is a complete lattice with a partial

ordering C, defined as follows:

1 Cply iffli=_LVik=10

APE

Figure 2. Liveness Domain

5 Fairness

Fairness is a means by which the liveness levels within
an object can be increased in order to satisfy liveness re-
quirements. Liveness requirements are usually of the form
O< P for some property P. We therefore define the fairness
constraints required in order to satisfy these always even-
tually liveness requirements for different existing levels of
liveness within an object.

Definition 5.1 (Weak Fairness)

A system IT is weakly fair with respect to action A (WF(A))
iff:

[T () = [OCA](0) V [EA(Enabled A)](o)

This corresponds to the definition of weak fairness
defined in [10].

Definition 5.2 (Strong Fairness)

A system II is strongly fair with respect to action A
(SF(A)) iff:

[(e) = [0CA](0) V [~AE(Enabled A)](o)

This corresponds to the definition of strong fairness
defined in [10].

Definition 5.3 (Hyperfairness)
A system II is hyperfair with respect to action A (HF(A))
iff:

[(¢) = [00A](0) V [~FAPE(Enabled A)](c)

This definition corresponds to the definition of hyper-
fairness given in [13] and active fairness given in [3]. It
differs from the definition of possible fairness given in [7]
in that it requires that an action is actually taken rather than
just being enabled when it is always possible.

It is quite straightforward to prove the following:

HF(A) = SF(A) = WF(A)

These different levels of fairness belong to the fol-
lowing domain:

HF

Figure 3. Fairness Domain

It is quite straightforward to prove that this is a com-
plete lattice with a partial ordering C defined as follows:

HCr hiffi=1LVih=f

It is not possible to satisfy always eventually liveness
requirements using fairness constraints for any other
existing levels of liveness. In particular, if an action A is
possibly always eventually enabled (PAE(Enabled A)),
this possibility may not exist throughout the execution of
the system. It cannot therefore be ensured that the action
A is always eventually taken without forcing or blocking
some other actions earlier in the execution of the system.

We can now see how to ensure that an object satisfies
its always eventually liveness requirements based on its
existing levels of liveness. For example, if we require
that an action A is always eventually taken, and we can
determine that A is always possibly eventually enabled,
then we must put a hyperfairness constraint on the action
A. The fairness constraints required for always eventually
liveness requirements given different existing levels of
liveness are summarised in Table 1.

| Liveness | Fairness Constraints
EA(Enabled A) WF(A)
AE(Enabled A) SF(A)
APE(Enabled A) HF(A)
PAE(Enabled A) | No possible constraints

Table 1. Fairness Constraints to Satisfy Al-
ways Eventually Liveness Requirements

6 Object Composition

In this section we describe the effect of object compo-
sition on the liveness properties of the composed objects.
There are a number of different object composition mecha-
nisms we could use. One such mechanism is purely parallel
composition, in which there is no communication between
the composed objects. This is the approach which is taken
in [1] and [4]. The liveness properties of the composed ob-
ject in this case are represented as the logical conjunction
of the liveness properties of each individual object. Fairly
simple proof obligations must be discharged to show that
the liveness assumptions of the composed objects are pre-
served.

In general, however, we require stronger forms of object
composition in which there is communication between the
composed objects, which means that the liveness properties
of the objects may be affected. Examples of composition
mechanisms which do allow communication between the
composed objects include shared variables [9, 15, 16], joint
actions [8], message passing [14, 2] and sharing actions [5].

We specify object composition by the synchronisation of
actions as follows:

O1|[< AL, A2 >, ... < AL A2 >]|0s

where each external action A} in the object O; synchro-
nises with the corresponding external action A? in the
object O,. Consider the following two fair objects:

01 é 31‘1 : ITLZtl AN D[E.Ttl \Y I’I’ltl]zl AN F1
Oy £ Azs : Inita A D[Ea?t-g \Y Intg]m A Fy

The result of composing these two objects is as fol-
lows:

O1[< AL A? >, ... < AL A2 |0, &

33?1,1‘2 : Inz't12 N D[Emtlz \Y I’I’ltlz]<z1’z2> N F12
where

I’I’l’L'tlg é I’I’l’Ltl N ITLZtQ

Exti 2 AlV...VALV...VAL

Exty 2 A}V...VAZV...VA

Bxtiy 2 AL V... VAL L VAL V.V AZ
Intis = Inty V Inta VAPV ...V AL

A2 £ AN A2

Fr£F AF,

The external actions in the resulting composition are
those external actions in the two objects which are not
involved in synchronisations; synchronised actions become
internal. The initial state of the resulting composition is the
conjunction of the initial states of each object. Similarly,
the fairness constraints on the resulting composition is
the conjunction of the fairness constraints on each object.
The synchronised actions are also the conjunction of the
individual actions involved in the synchronisation. For
example, consider the composition of two double-ended
queues to produce another double-ended queue as shown in
Figure 4.

Putfront Getback Putfront Getback
Putback Q1 Getfront Putback Q2 Getfront

Figure 4. Composed Double-Ended Queues

This composition would be represented as follows:
Q1|[<Getback, Put front>, <Get front, Putback>]|Q-

The TLA specification resulting from this specifica-
tion is as follows:

Addfront(n) £ A Len(Q1.contents) < 100
A Ql.contents’ =< n > o Q1.contents

Addback(n) & A Len(Q2.contents) < 100
A Q2.contents’ = (Q2.contents o < n >

Getfront(n) = A Len(Q1.contents) > 0
A Ql.contents =< n > o Q1l.contents’

Getback(n) £ A Len(Q2.contents) > 0
A Q2.contents = (Q2.contents’ o < n >

Internall = A Len(Q1.contents) > 0
A Ql.contents = Ql.contents’ o < n >

A Len(Q2.contents) < 100
A Q2.contents’ =< n > o Q2.contents

Internal2 £ A Len(Q2.contents) > 0
A Q2.contents =< n > o Q2.contents’
A Len(Q1.contents) < 100
A Ql.contents’ = Ql.contents o < n >

Step 2 In € Nat : V Addfront(n)
V Addback(n)
V Get front(n)
V Getback(n)
V Internall
V Internal2

Init £ Ql.contents =<> A Q2.contents =<>

Spec £ AQ1.contents, Q2.contents € Seq(Nat) :
Init A D[Step]<Q1.contents,Q2.contents>

This composed object will operate normally as a double-
ended queue, provided that the environmental liveness re-
quirements for each of the composed objects are upheld.
However, it is possible that the actions on which the two
objects synchronise will cause their environmental liveness
requirements to be broken. For example, consider the syn-
chronisation between Q1.Getback and Q2.Putfront. If the
environmental liveness requirements for both these objects
were satisfied, then both of these actions would be always
eventually enabled, but it is possible that they will never ac-
tually be enabled at the same time. The internal action In-
ternall may therefore never actually be taken. Similarly, the
internal action Internal2 may never be taken. The environ-
mental liveness requirements for each object have therefore
been broken.

Liveness requirements which are broken due to synchro-
nisation may be resolved by placing additional fairness con-
straints on the synchronised actions. In order to determine
the fairness constraint which must placed on synchronised
actions, we need to determine their level of liveness. A syn-
chronised action is enabled only if the individual actions in-
volved in the synchronisation are enabled at the same time
within each object. We can therefore determine the live-
ness of a synchronised action from the liveness of the in-
dividual actions involved in the synchronisation. We might
expect that the liveness of a synchronised action is given
by the least upper bound of the liveness of the individual
actions involved in the synchronisation within the liveness
domain defined in Figure 2. However, the example of the
double-ended queues shows that this is not necessarily the
case. Even if the actions involved in the synchronisation
are always eventually enabled, they may never actually be
enabled at the same time. The synchronised action in this
case will only be always possibly eventually enabled. The

liveness of a synchronised action is defined as follows:
Definition 6.1 (Liveness of Synchronised Actions)

The liveness of a synchronised action can be determined
from the liveness of the individual actions involved in the
synchronisation according to the following table:

Object 1
Object2 || EA | AE |APE | PAE

EA EA | AE | APE | PAE
AE AE | APE | APE | PAE
APE APE | APE | APE | PAE
PAE PAE | PAE | PAE | PAE

Table 2. Liveness of Synchronised Actions

Each of the entries in this table are proved on an in-
dividual basis. The details of these proofs are not given
here.

Now that the liveness of synchronised actions can be de-
termined, the fairness constraints which must be placed on
them to satisfy liveness requirements can be determined.
For example, in the case of the composed double-ended
queues we can determine that the synchronised actions In-
ternall and Internal2 are always possibly eventually en-
abled. Hyperfairness constraints must therefore be placed
on these actions to ensure that the liveness requirements of
the composed objects are satisfied.

7 Politeness

Politeness is the property which the environment of an
object must have to uphold the environmental liveness re-
quirements of that object. When objects are composed, we
need to show that the environmental liveness requirements
of each object are upheld within the resulting composed ob-
ject. We can classify these objects as being independent,
perfect friends, friends, politicians or enemies depending on
their level of politeness. We now give a definition of these
different levels of politeness.

Definition 7.1 (Independent) Two composed objects are
defined to be independent if they do not synchronise on any
actions.

This will only be the case if the two objects are composed
using purely parallel composition.

Definition 7.2 (Perfect Friends) Two composed objects
are defined to be perfect friends if they do synchronise on
actions, but the environmental liveness requirements of the
composed objects are not affected.

This will only be the case if all the actions within each
object which are involved in synchronisations are eventu-
ally always enabled. These objects will be perfect friends
because the liveness of the synchronised actions will not
be affected. Perfect friends can therefore be defined more
formally as follows. If objects O; and O- are composed as
follows:

O1|[< AL, A2 >, ... < AL A2 >]|0
Then O; and O, are perfect friends iff:

VAe{Al...AL A2... A2} : EA(Enabled A)

Definition 7.3 (Friends) Two composed objects are de-
fined to be friends if they synchronise on actions, but the
environmental liveness requirements of the composed ob-
jects are affected, so additional fairness constraints are re-
quired on the synchronised actions to restore the environ-
mental liveness requirements of the composed objects.

This will be the case if the two objects are not perfect
friends, but all the actions within each object which are
involved in synchronisations are at least always possibly
eventually enabled. These objects will be friends because
the environmental liveness requirements of the composed
objects can be restored by placing hyperfairness constraints
on the synchronised actions. For the double-ended queues
example, we must ensure that all the synchronised actions
are always eventually taken. We can do this by placing a
hyperfairness constraint on them (since they are always
possibly eventually enabled). Friends can therefore be
defined more formally as follows. If objects O, and O, are
composed as follows.

Ol|[< "4%7-’4% PERERIFRN A’}HA% >]|O2
Then Oy and O- are friends iff:

VA€ {Al .. AL A2 .. A2} : APE(Enabled A)
ANIA € {A}L.. AL A2 .. A2} : = EA(Enabled A)

Definition 7.4 (Politicians) Two composed objects are de-
fined to be politicians if they synchronise on actions, but
the environmental liveness requirements of the composed
objects are affected, and these requirements cannot be re-
stored by just adding fairness constraints; some additional
resolution mechanism (such as the blocking/forcing of ac-
tions) is required.

This will be the case if the two objects are not friends,
but all the actions within each object which are involved
in synchronisations are at least possibly always eventually
enabled. These objects will be politicians because the

environmental liveness requirements of the composed
objects can be restored by the blocking/forcing of actions.
Politicians can therefore be defined more formally as
follows. If objects O, and O, are composed as follows:

Ol|[< A%,A% PERERIFRN "4%7"4% >]|02
Then O, and O- are politicians iff:

VA€ {Al.. AL, A2 ... A2} : PAE(Enabled A)
ANIA € {AL.. AL A2 ... A2} : = APE(Enabled A)

Definition 7.5 (Enemies) Two composed objects are de-
fined to be enemies if they synchronise on actions, but the
environmental liveness requirements of the composed ob-
jects are affected, and these requirements cannot be re-
stored by adding fairness constraints or by using any ad-
ditional resolution mechanism.

This will be the case if at least one action within the
two objects which are involved in synchronisations may
never be enabled. Enemies can therefore be defined more
formally as follows. If objects O; and O- are composed as
follows:

O1|[< A}, A} >, ..., < AL A2 5|09
Then O; and O, are enemies iff:

JA € {A}.. . AL, A2 ... A2} : = PAE(Enabled A)
8 Conclusions

In this paper, the effect of object composition on the
liveness properties of the objects being composed has been
studied under the assumption that the preservation of live-
ness properties is hard to achieve. It was not considered
sufficient to produce proof obligations which must be dis-
charged in order to show that liveness properties are pre-
served; it must also be shown how to resolve interactions in
situations where they are not preserved.

A number of different levels of liveness were defined,
and a number of corresponding fairness constraints were
also defined which can be used to ensure that liveness lev-
els within an object can be increased to satisfy their liveness
requirements. It was shown how the liveness properties of
objects interact when they are composed with other objects,
and the degree to which they interact was defined within a
hierarchy of politeness. It was then shown how to resolve
liveness interactions for one of these levels of politeness.

Finally, we have not considered the composition of ob-
jects by inheritance, or the refinement of objects within our
framework. These are the subject of further research.

References

[1]
(2]

(3]

[4]

[5]

(6]
[7]
(8]

(9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]

M. Abadi and L. Lamport. Conjoining Specifications. ACM
Trans. Prog. Lang. Syst., 17(3):507-533, May 1995.

J. Bahsoun, S. Merz, and C. Servieres. Modular description
and verification of concurrent objects. In Object-Based Par-
alld and Distributed Computation, volume 1107 of Lecture
Notes in Computer Science, 1996.

N. Barreiro, J. Fiadeiro, and T. Maibaum. Politeness in Ob-
ject Societies. In R. Wieringa and R. Feenstra, editors, Infor-
mation Systems: Correctness and Reusability, pages 119—
134. World Scientific Publishing Company, 1995.

E. Canver and F. von Henke. Formal development of object-
based systems in a temporal logic setting. In Formal Meth-
ods for Open Object-Based Distributed Systems, pages 419—
436. Kluwer Academic Publishers, February 1999.

J. Fiadeiro and T. Maibaum. Sometimes "Tomorrow” is
"Sometime”: Action Refinement in a Temporal Logic of Ob-
jects. In D. M. Gabbay and H. J. Ohlbach, editors, Temporal
Logic. Springer Verlag, 1994.

J. Gibson and D. M“ery. Always and eventually in object
requirements. In ROOM2, Bradford, 1998.

J. Gibson and D. Mery. Fair objects. In Object Technology
98, Oxford, 1998.

H.-M. Jérvinen and R. Kurki-Suonio. DisCo Specification
Language: Marriage of Actions and Objects. In 11th In-
ternational Conference on Distributed Computing Systems,
pages 142-151. IEEE Computer Society Press, 1991.

C. Jones. Tentative Steps Towards a Development Method
for Interfering Programs. ACM Trans. Prog. Lang. Syst.,
5(4):596-619, Oct. 1983.

L. Lamport. The Temporal Logic of Actions. ACM Trans.
Prog. Lang. Syst., 16(3):872-923, May 1994.

L. Lamport. Proving Possibility Properties. Research Report
SRC-137, Digitial Systems Research Center, 1995.

L. Lamport. The Module Structure of TLA+. SRC Technical
Note 1996-002, Digitial Systems Research Center, 1996.

L. Lamport. Fairness and Hyperfairness. Research Report
SRC-152, Digitial Systems Research Center, 1998.

J. Misra and M. Chandy. Proofs of Networks of Processes.
|EEE SE, 7(4):417-426, 1981.

C. Stirling. A Generalization of Owicki-Gries’s Hoare Logic
For a Concurrent While Language. Science of Computer
Programming, 58:347-359, 1988.

Q. Xu, W.-P. de Roever, and J. He. The Rely-Guarantee
Method for Verifying Shared Variable Concurrent Programs.
Formal Aspects of Computing, 9(2):149-174, 1997.

