A GRADUATE’'S ROLE IN TECHNOLOGY TRANSFER: FROM
REQUIREMENTS TO DESIGN WITH UML

Stephen Hallinan
Hewlett Packard,
Ireland
email: stephen.hallinan@hp.com

ABSTRACT

It is a universal challenge to bridge the gap between
academia and industry, and between theory and practice.
This challenge is particularly critical in the discipline of
software engineering and is often categorised under the
umbrella oftechnology transferExperience suggests that
one of the least well understood aspects of software devel-
opment is in the move from requirements to design. We
support the view that software designers fail to treat de-
sign as a process rather than a product and as a conse-
guence become experts in representing the products using
models/languages but fail to master the design process. In
contrast, recent developments in academia have shown that
design can be more effectively taught using problem based
learning techniques. This appears to produce students who
better understand design as a process; but how can we en-
sure that this academic advancement will have a positive
impact when these students move out into the real world?
In this paper we analyse the role of a recently qualified stu-
dent in facilitating technology transfer in the form of intro-
ducing engineers to best practices in using UML to move
from requirements to design.

KEY WORDS
Software Design and Development, Education, Technology
Transfer

1 Introduction

1.1 Software Development’'s Key Weakness:
Requirements and Design

Design is a creative process concerned with decision mak-
ing. Designers look for solutions to problems. They search
a solution space to arrive at a final design. The way in
which the search is carried out may be methodical, but
never deterministic. To design is to blend the old with
the new: designers must use their experience and previous
work (the old) to find a solution to their problem (the new).
The creative side of design can be categorised as mixing
three different modes of work: creating new components

1The student is the first author on the paper, and recently graduated
from the NUI Maynooth, Ireland on the MSc (Software Engineering) de-
gree programme.

J Paul Gibson
Department of Computer Science
NUI Maynooth, Ireland.
email: pgibson@cs.may.ie

which are variations on already existing components and
combining these new components in well-accepted ways;
finding new ways of using components or combining com-
ponents; and gaining insight into a problem and building a
design (component) to utilise this insight.

A main problem in software engineering is that good
software designers commonly have to work in all three
modes, and have to have mastered the process of combin-
ing these different ways of working.

In purposeful design, the designers have some goal
to aim for and this goal is evident throughout the design
process. Designers are involved in each design step in an
attempt to reach thir goal. Central to purposeful design is
the customer requirements. There are two extremes to the
way in which designers can develop understanding of the
requirements: designers perform their own problem anal-
ysis to develop an initial requirements model, or designers
accept a requirements specification in which the require-
ments are completely and consistently recorded.

In practice, design occurs somewhere between these
two extremes. It is the role of designers to restructure the
requirements model to best use the resources in the tar-
get implementation environment. We support the argument
that this key movement from requirements to design is very
poorly understood[7, 6] - even in the most mature of soft-
ware development companies/industries/processes.

Through innovative teaching techniques (based on
Problem Based Learning[4]), we place emphasis on mas-
tering design as a process, rather than on mastering design
as a language (or model). We argue that this produces bet-
ter software engineers who can transfer these techniques
into real industrial projects in order to improve the quality
of the systems being developed.

1.2 Technology Transfer

Students act as one of the main conduits for technology
transfer between academia and industry. Academics are
responsible for ensuring that their students understand the
most up-to-date theory and practice, and students are re-
sponsible for promoting these new techniques when they
move out to an industrial setting. In this paper, we report
on the efforts of a single individual in fulfilling their role as

a newly qualified graduate in this technology transfer pro-
cess.



1.3 The industrial case study/placement

The following article is based on the first author’s experi-
ence as a Machine Control Systems engineer working for
Hewlett-Packard (HP) Ireland at the Dublin Ink-Jet Man-
ufacturing Organisation (DIMO) site. We report on the
lessons that can be learnt about the UML with respect to
its introduction into industry, and the feasibility of relying
on recently graduated students to make such a transfer suc-
cessful.

The primary members of the project team were a de-
veloper and a domain expert. The Unified Modelling Lan-
guage (UML][3, 10]) was to be used to assist requirements
elicitation and design. As a student, emphasis is tradition-
ally on learning the UML as a language. Consequently, it
is not surprising that software engineers are good at using
UML as a static representation of a design (or designs), but
are less good at using UML to record the process of design.
As a software developer, the emphasis should be on apply-
ing the UML to solve real design problems, and to use the
models to record and justify design decisions.

The necessary transition from being able to “speak
the language” to being able to “think using the language”
is analysed as part of this report. This is complementary to
a second problem being analysed: that of bringing UML to
an industrial setting for the first time, where there are expe-
rienced software engineers (who happen to lack experience
in UML). We ask: is it possible, or desirable, or reasonable
for a newly graduated student — albeit with an MSc — to
instigate such technology transfer?

1.4 UML — the scope of our analysis

As part of testing the technology transfer of UML from
academia to industry, we decided to focus on the following
guestions:

e (i) UML is good as a common language, but does it
support a good design process?— Both the devel-
oper and the domain expert were familiar with “speak-
ing UML", and were eager to explore its use in the
description of real systems requirements and design;
it would enable both parties to “talk the same lan-
guage” when discussing the requirements of the ap-
plication, and how functionality would be delivered to
the user. However, would it facilitate the recent grad-
uate in transferring their academic experience of mov-
ing from requirements to design out into an industrial
environment?

e (ii) UML is wide spectrum, but can it help in the
transition from requirements to design? — It was
believed that UML could be used in each phase of the
project. Using such a wide-spectrum language would
aid in the move from requirements to design, which
had been identified as a “difficult step” by the devel-
opers.

Sections 2,3 and 4 examine these questions in more detail.

2 Requirements Modelling Using UML — a
Technology Transfer Challenge

The requirements elicitation phase of the project began
with meetings between the domain expert and the devel-
oper. Many of the high level requirements were obtained at
the preliminary meetings. It was agreed that there would be
three main user groups: Technical users, Super users, and
General users. Subsequently, consultations were held ev-
ery two weeks with the domain expert until the functional
requirements specification was initially frozen. The follow-
ing sub-sections detail the elicitation of these requirements
with a focus on the challenges the use of UML presented in
this context, how they were overcome, and the significance
this may have for future studies of technology transfer of
this nature.

2.1 Challenges Using UML

There is a widely documented set of features of the UML
that describe the challenges that using it presents. While
these challenges are widely known, it can be difficult to de-
termine in what capacity they are being explicitly addressed
by the software engineering community and industry. The
key area with regard to the challenge of technology trans-
fer is the difference between understanding the syntax and
semantics of the UML models and then the successful ap-
plication of these models as part of a process.

During the construction and refinement of the UML
Use case diagrams the goal was to find out how best to rep-
resent the requirements. A subset of the aforementioned
known features was encountered that can make require-
ments engineering a challenging task.

2.2 Functional Requirements Elicitation:
Working with Use Case Diagrams

The first challenge encountered with the use of Use Case
diagrams was correct application so that there was a min-
imum of unnecessary functionality or elaboration that was
non-value-added and hindered the objective that they were
intended to assist. In this regard it took a number of iter-
ations of diagrams before the core set of functionality to
be delivered to each user type was agreed upon. The early
iterations of diagrams contained too much information:

e unnecessary functionality in terms of what was being
delivered to the user,

e complexity in terms of inter-relationships of actors
and flow of control with regard to the user, and

e system functionality that was not involved in deliver-
ing value to the user.

From our teaching experience, this was a problem that
would not normally have been explicitly identified when
UML was being learned in an academic environment. The



catalyst to overcoming this challenge was the gradual elic-
itation of core features and a focus on value-added when
determining the addition of new features. This founda-

tion work in the project was enabled by the communica-

tion between the developers. This highlights the role of

inter-personal communication in requirements elicitation

and technology transfer that allows the parties involved to
speak the same language. It was found that UML was suc-
cessful as a tool to assist this.

2.3 Ambiguity in Use Case Diagrams

Wherever ambiguity is encountered, a challenge is pre-
sented in terms of how to resolve this ambiguity. In the
case of Use Case diagrams, it was found to be how to cor-
rectly encapsulate system behaviour, so that the minimum
of system activity is displayed, and the maximum of sys-
tem functionality is delivered to the user. This also must
be performed in such a manner that neither too much nor
too little functionality is attributed per Use Case, as it may
result in an unbalanced view of the value delivered.

The UML promotes Use Cases and Use Case dia-
grams to express system requirements. For modelling the
requirements of a system the UML User Guide[3] advises
that:

“Modeling the requirements of a system involves
specifying what that system should do (from a
point of view of outside the system), independent
of how that system should do”

The running theme is that the Use Case diagram
should express what functionality is being delivered to the
user, but hide how that functionality is delivered. This is
consistent with the wider view of how Use Case diagrams
should be used:

“Use case diagrams are used to show the func-
tionality that the system will provide and which
users will communicate with the system in some
way when it provides that functionality” Bennett
et al.[1].

This method works well in theory, but it is easy to see
where problems may arise in practice. The first point to no-
tice is that the description of a Use Case, as per the UML
User Guide[3], defines the value that is delivered to the ac-
tor by the “set of sequences of actions . .. that a system per-
forms”. It is then advised that the manner in which the
system works should be hidden, or not expressed in the di-
agram.

This challenge was overcome in the project by focus-
ing on the core value delivered to users, and leaving out
any system requirements, as these would be properly ad-
dressed only by first concentrating on a solid set of user
requirements. In the context of this project it is regarded
as an approach improvement as it simplifies the manner
in which UML can be applied at this stage. Without the

decision to focus on core value delivered to the user, it is
doubtful that this approach improvement would have been
made. For this reason it is regarded that the use of UML
and its support tools and documentation does not assist the
beginner in resolving ambiguity in Use Case diagrams. It
may be that such challenges will only be overcome with ex-
perience, implying that more case study practise would be
of benefit to the beginner, and so further assist successful
technology transfer.

2.4 External vs. Internal Actors

The challenge in using actors is knowing where and when
to use them, and to use them in such a way that does not re-
sult in ambiguity. Through investigation it was found that
the system delivers value “to an actor” and an actor “rep-
resents a role that a human, a hardware device, or even an-
other system plays with a system”. This may result in con-
fusion in the Use Case diagram. For example, the image
of an actor is that of a stick-man (which may be associ-
ated directly with people and hence users); and secondly,
if there are also actors representing other systems then the
exact context in which that actor is interacting with another
system needs to be correctly understood. This type of con-
textual understanding is difficult to learn from traditional
lectures, and comes only through experience of actually do-
ing design as part of the problem solving process.

The tool used to assist the resolution of this ambigu-
ity in the project was the documentation of Use Cases and
the flows in Use Case diagrams. In this way the developer
is forced to explicitly state the context in which an interac-
tion between the user and the system is happening, and in
which an interaction between the system and another sys-
tem is happening. Then the meaning of the requirements
is not so dependent on the graphical representation of the
requirements but the meaning attributed to the diagram by
the document. The reason that the confusion may only be
partially resolved is that, more often than not, the Use Case
documentation will be constructed using natural language.
This may be a necessary evil during this phase as the re-
quirements are exposed to frequent changes, and maintain-
ing unambiguous Use Case documentation could prove too
much of a drain on resources. For this reason Use Case di-
agrams are probably best used simply as a tool to aid the
elicitation of the high level requirements. This is the man-
ner in which they were used in the project. Again this high-
lights the need for additional resources such as documen-
tation to assist the removal of ambiguity and assist such a
technology transfer where the technology itself is proving
difficult to work with. In particular the education of the
parties involved as to the potential areas where ambiguities
may be introduced will assist communication between the
parties and enable a fast resolution.



2.5 Functional Requirements Elicitation:

Refined Use Case Diagrams

One of the basic challenges presented to the beginner with
the move into the detailed requirements stage is the man-
ner in which the increasing number and type of diagram
should be managed. In the case of the project the challenge
was that there were multiple end-user types with different
functionality associated with each. It was decided that it
would be of value to the developer if the layout and flow
of detail in the UML Use Case diagrams mapped well to
the Functional Requirements specification. To facilitate a
clear and logical structure in the Functional Requirements
specification a number of improvements were made to the
structure of the Use Case diagrams:

e packages were used to logically separate the rele-
vant configuration data tables that would manage the
database,

e sub-packages were used to logically separate the user
groups with permissions on each of the configuration
data tables, and

e each Use Case was documented in order to address its
relevance to the context in which it was being used.

These actions segregated the Use Case diagrams into
logical and manageable sets, which facilitated a focused ef-
fort on particular segments, where necessary. It also helped
us to pin-point and discard unnecessary functionality, to re-
veal the key areas that would be the focus of the functional
requirements specification. The improvements were aided
by the use of UML packages.

In terms of technology transfer, the essence of this
improvement was the introduction of logical segregation
and simplicity in layout to aid further requirements elic-
itation, without which the benefit of using the new tech-
nology could not be fully realised. This problem, albeit
simple, again highlights the fact that lessons learned with
experience in modelling are not being fully addressed prior
to engaging in real problems resulting in difficulty for the
beginner.

Overall the adoption of Use Case diagrams for the
purpose of refining the high level functional requirements
was found to be fundamental to successful development, as
it presented a common framework from which both parties
could contribute to the development of the requirements.

3 Moving from Requirements to Design

A major challenge in any software engineering project is
the move from requirements to analysis and design[8], the
most basic reason being that there is no prescriptive mecha-
nism for achieving a successful transition. There are many
different methods of transition and types of analysis avail-
able, and this presented a challenge in terms of selecting the
best method or combination of methods to suit the project.

A number of techniques were investigated prior to deciding
which approach to take.

3.1 From Requirements to Design: Choice of
Transition Approach

The Use Case driven approach, as advocated by the UML
User Guide, was initially investigated. It was found that
to use this approach successfully may present a number of
challenges to the beginner. Given that the UML had been
chosen as the framework for moving from requirements to
design, the UML User Guide[3] advises that: “To get the
most benefit from the UML, you should consider a process
that is: Use case driven, Architecture-centric, Iterative and
incremental”

While the User Guide does prescribe how to perform
each type of modelling, it does not prescribe an approach
for moving from one phase to the next. An interesting
contrast exists within this process: the Use case driven ap-
proach has already been described as having a “bottom-up”
flavour, an architecture-centric approach is clearly “top-
down”.

A top-down approach could be described as focusing
on abstract views of the system components - for example
a Component diagram or a Class diagram. This architec-
tural blueprint serves as a solid basis against which to plan
and manage software component-based development. An
architecture-centric approach therefore supports such non-
functional design features as scale-ability, portability, and
re-usability. From our beginner’s viewpoint, for such a pro-
cess to be successful —where there is a bottom-up drive to a
top-down-centric process — an experienced developer is re-
quired to recognise how elements from the problem domain
translate to a program architecture that accommodates high
level non-functional design features. The reason for this is
that while Use Case diagrams and Use Case documentation
may aid the discovery of classes and relationships, there is
no exact transition method for moving from requirements
to design. How well the transition is performed may be the
result of a combination of two main factors:

e the experience of the developer and familiarity with
the problem domain, and

e how well the choice of approach to make the transition
is applied.

For these reasons it was decided that the Use Case driven
approach would be difficult to apply in this project.

After investigating some other transition approaches
and class discovery methods in use, it was decided to use
the Class-Responsibility-Collaborator (CRC)[9] approach
as a starting point, with the aim of achieving a more com-
plete transition. We were attracted by the option of using
documentation to draw its input from, rather than just the
UML Use cases by themselves. The nouns and verbs from
the problem statement and high level requirements were



highlighted to identify potential classes and potential re-
sponsibilities. A CRC session followed. Through “stan-
dard manipulation” of cards, a set of classes was chosen
that the developer was comfortable with. As the design is
not the actual implementation, it is sufficient that the devel-
oper is comfortable with the initial set of classes in order to
proceed. This reflects the maxim that there is more than
one way to model a system. While the CRC approach did
not need the UML to be applied, it was possible to trans-
late directly into UML the results of the CRC session. Itis
therefore seen as a benefit of using the UML that a range
of object-oriented techniques can translate directly into the
UML. The interoperability of such techniques and tools fa-
cilitated a successful technology transfer for this section of
the project.

3.2 Initial Analysis: Super Imposition of the

BCED Approach

The UML design was now at the stage where analysis of
the system requirements could commence. After a number
of analysis methods were investigated it was decided that
the BCED approach was the most suitable for this project.
The Boundary-Control-Entity-Database (BCED) approach
is an extension of the Boundary-Control-Entity (BCE) ap-
proach, which may be described as an analysis pattern for
web application design. Itis derived from the Model-View-
Controller (MVC) framework][8].

The BCE approach involves a division of classes into
three categories. The Boundary classes correspond to the
user interface or presentation layer, the Control classes cor-
respond to the middle layer that contains the application
logic and the Entity classes represent the data management
layer in a three-tier architecture. In this way, each class
division maps to a specific tier in the physical domain. In
the BCED approach the entity package is separated out into
those packages that store database information in program
memory and those that contain the database specific con-
nection, read and write information. This separation is a
good feature of design as it “provides a level of indirection
between the application and the database”. The approach
was super-imposed upon the project’'s Class diagrams that
were the result of applying the CRC technique. In a similar
vein to the application of the CRC approach, the use of the
UML facilitated the application of this analysis method.

After the application of the BCED approach the sys-
tem design now had a clear structure and was ready to be
developed and improved using known design techniques
and tools. The use of these techniques and tools is detailed
in the following sections with regard to the use of UML as
part of technology transfer.

3.3 Sequence Diagrams

Several scenarios were developed to test the program de-
sign and investigate how the user functions and system

functions would operate under certain circumstances. The
construction of the Sequence diagrams revealed much
about the current design, such as where there were unnec-
essary classes and methods, and incorrect apportionment
of functionality, i.e. methods in inappropriate classes. The
use of Sequence diagrams also helped focus on dataflow
through the system. This was an aspect of the system that
had not been previously examined. The Sequence diagrams
show how the system should work dynamically, so it serves
as an artefact to refer to when developing how the sys-
tem passes messages to achieve some goal. The primary
function of the sequence diagrams is as an analysis tool[3]:
“Modeling a flow of control by time ordering emphasizes
the passing of messages as they unfold over time, which is
a particularly useful way to visualize dynamic behavior in
the context of a use case scenario”.

As a result of the Sequence diagrams, some classes
were discarded and their functionality was subsumed into
one of the main controlling classes. The initial spread of
functionality among classes had been too great, so that
classes that had only one purpose. Consequently, there had
to be more message passing sequences than should be nec-
essary. For these reasons the use of the UML Sequence
diagrams is regarded as a useful design tool to test system
behaviour and reduce complexity. Refined Sequence dia-
grams also serve as an artefact to demonstrate how the sys-
tem works in certain situations. Only a bare understanding
of the UML is necessary to understand the purpose these di-
agrams serve and are therefore a goodexample of straight-
forward technology that can be expected to be successfully
transferred by recently qualified students.

3.4 Aggregation and Generalisation

It was decided to examine the class model with respect to
enhancing the relationships from an object-oriented per-
spective. Two examples of this are aggregation and gen-
eralisation.

The model was first examined for opportunities to use
aggregation. Consequently, many of the disadvantages that
are associated with inheritance could be avoided. One of
the main sources of these disadvantages is the fact that as
functionality is inherited down the chain of sub-classes,
if the super-classes or base class changes it can have far
reaching effects for the sub-classes that were not initially
accounted for. This is described in Requirements Analysis
and System Design as: “Changes to the implementation of
a super-class will have a largely unpredictable effect on the
subclasses in the application system. This is true even if
the super-class interface remains unchanged”[8].

The model was then examined for opportunities to use
generalisation (or inheritance). The basis for using this type
of relationship in a design is that it enables re-use of func-
tionality. Therefore to see if this type of relationship may
be of benefit in a design, the functional requirements and
the current design may be examined with the aim of iden-
tifying common functionality. A common way in which



generalisation is implemented in designs is to identify nat-
urally occurring hierarchies that may translate into a super-
class/sub-class hierarchy in the program design. The most
obvious case for this in the project was the fact that there
were three user groups assigned. It followed that the Su-
per user is a type of General user, and the Technical user
is a type of Super user. This was then explicitly specified
in the class model, where a purely abstract class was also
introduced.

The application of these two design techniques to
the system demonstrate a successful case of transferring
knowledge expressed previously only in theory, to real-
world application. Again the use of UML was an important
factor as it was the medium through which these techniques
could be expressed and referenced.

3.5 Collaboration Diagrams

Collaboration diagrams are a kind of Interaction diagram
similar in nature to the Sequence diagrams previously de-
scribed. The aim of a Collaboration diagram is to illustrate
a certain degree of user or system functionality. They in-
dicate where branching or iteration may occur within the
program design. A Collaboration diagram was developed
for each scenario as per the Sequence diagrams. For a num-
ber of scenarios it was found that the same Collaboration
diagram was sufficient. This is what is known in modelling
as a mechanism, which aids the reduction of complexity
within the program. As the diagrams were developed, the
Class diagram was correspondingly modified to reflect any
new additions or changes. It was decided at this point that
putting further effort and time into the development of the
design at this level would not add much more value as it
was quite possible that the design would undergo modifi-
cation once the implementation commenced.

For the reasons described above the use of Collabo-
ration diagrams was beneficial, but for the level of com-
plexity involved in the project and the experience of the de-
veloper in applying such design tools, it was reaching the
stage where it was becoming more time consuming and less
value-added to perform further analysis and design. This
may indicate an area that the people involved in the tech-
nology transfer should be careful to avoid, which is one
where it is becoming more difficult to realise value from
the tools and techniques to be transferred. This may lead
to a de-valuing of the tools and techniques resulting in a
discontinuation of their use.

4 Effect of Evolving Requirements on Sys-
tem Design — Capability of the UML to
Cope with Change

Itis well accepted that evolving requirements are one of the
main causes of the failure of software projects[2]. A most

important example of changing requirements is the case
where the requirements were poorly engineered in the first

place, where either key requirements were left out or mis-
understood, or the main users or stakeholders were not in-
volved in the requirements process. This is well described
by Martin Fowler[5].

The project requirements may be classified as “fairly
static” — that is to say, from the outset of the project it
was known that once a requirement had been identified and
described in detail then it was thought unlikely to change.
However, the first major change came during the period that
the user requirements were being initially “closed-out”. It
was found that an extra layer of complexity had to be in-
troduced into the way that the users could select and view
data. This change was incorporated immediately into the
functional specification. As little analysis or design work
had been performed, the change had no impact for system
design. The next change that occurred was a few weeks af-
ter most of the analysis had been performed. The database
that the application had been intended for — Oracle —
was changed to Microsoft SQL. The physical change of the
database was not going to happen for six to eight months.
At the time of the change no implementation logic or SQL
database query commands had been generated. While this
was a major change, with respect to some of the supporting
systems, it had little impact for the application. This is an
example of the usefulness of the BCED approach, which
had been facilitated in the design by the use of UML. It
shows the importance of the object-oriented capability that
UML gives designers, along with the fact that design and
analysis patterns such as the BCED approach may translate
directly into a UML design. For the purposes of the prob-
lem domain that the project resided in, it was found that
UML was rich enough to allow a system design to be im-
plemented that was robust to small changes such as those
described.

It is accepted that a system with more dynamic re-
guirements would be needed to properly assess the capa-
bility of UML to cope with change. Given that there was
still change present in a project with requirements that may
be classified as “static” provides anecdotal evidence of the
types of problems that may arise and how improved atten-
tion at the design stage can save time and effort. With re-
gard to the process of technology transfer, we found it dif-
ficult to draw any reasonable conclusions about the succes-
ful transfer, into an industrial environment, of the student’s
knowledge of, and experience with, evolving requirements.

5 Conclusions and Recommendations

5.1 UML

In the experience of the developer the most positive aspect
of using UML in this manner was that it provided a com-
mon framework for communication of requirements. The
process of modelling helps to focus the discussion on par-
ticular aspects of the system and ensures everyone involved
is “together”. A positive side of using the Use Case dia-



grams was that they enabled a clear set of high level func-
tional requirements to be agreed upon.

The ambiguous aspects of the Use Case diagrams
contributed to the developer seeking an alternative ap-
proach to the Use Case driven approach to assist the move
from requirements to analysis and design. It was found that
there was no general method for performing this transition.
The key to making a successful transition may be the ex-
perience of the developer. For analysis it was found useful
to look at currently existing solutions (such as the BCED)
approach rather than “re-inventing the wheel”. The use of
Sequence and Collaboration diagrams helped us to explore
how the system would actually behave, as well as how the
program design may work from a high level.

Given that the requirements of the project were gen-
erally static, it is a point of interest that there was still a
degree of change to the requirements as discussed in sec-
tion five. This is in line with the wider view that change
to requirements is generally underestimated. In the expe-
rience of the developer this notion of requirements evolu-
tion and the need for an adaptive process is not limited to
software development and may be found in all manners of
projects right throughout engineering. As previously stated
the project in question was not a stringent test of the capa-
bility of the UML to cope with change.

As an overall evaluation from the point of view of
a beginner responsible for technology transfer, UML was
found to be difficult to apply in a manner that best suited
the context of the problem. A common language (like
the UML) is a necessary but not sufficient requirement for
good design process involving teams of developers. UML
does not provide any special assistance in moving across
the spectrum of development. Consequently, we argue
that the step from theory to practice — in how the wide-
spectrum nature of the language can be more rigorously
managed and exploited — would be better taken with the
guidance of an expert.

5.2 Design and Technology Transfer

Academic courses dealing with software design need to be
more problem-oriented and less language-oriented. Learn-
ing the UML is not the same as learning how to design soft-
ware (using the UML). Recent graduates have a responsi-
bility to transfer their knowledge of the new theory under-
pinning design as a process, rather than just to demonstrate
their mastery of a specific design language, model or tools.
Our small project demonstrates that such transfer can take
place: however, it is not easy and it is unrealistic to expect
the “average graduate” to play this important role.

Acknowledgements

Special thanks to Bill Andrews for his role as the domain
expert.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Bennet. Object Oriented Systems Analysis and De-
sign using UML McGraw Hill, 1999.

Barry W. Boehm. Software risk management: Princi-
ples and practiceslEEE Software8(1):32-41, Jan-
uary 1991.

Grady Booch.The UML User Guide Addison Wes-
ley, 1999.

G.E. Feletti D. BoudThe challenge of problem-based
learning Routledge Falmer, 1998.

Martin Fowler. UML Distilled: A Brief Guide to
the Standard Object Modeling Languag@ddison-
Wesley, 2003.

J.Paul GibsonFormal Object Oriented Development
of Software Systems Using LOT.OEhesis csm-114,
Stirling University, August 1993.

Paul Gibson. Formal requirements engineering:
Learning from the students. lAustralian Software
Engineering Conference 2000 (ASWECO@an-
berra, Australia, April 2000. IEEE.

L. A. Maciazek. Requirements Analysis and Sys-
tem Desigh — Developing Information Systems with
UML. Addison Wesley, 2001.

Ewan Tempero Robert Biddle, James Noble. Reflec-
tions on crc cards and oo design Aroceedings of the
Fortieth International Confernece on Tools Pacific:
Obijects for internet, mobile and embedded applica-
tions volume 10. ACM, 2002.

J. RumbaughThe UML Reference Manuahddison
Wesley, 1999.



