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Abstract There has been much recent interest in the development of electronic vot-
ing (e-voting) systems, but there remain many outstanding research challenges for
software and system engineers. Software product line (SPL) techniques offer many
advantages for the practical development of reliable and trustworthy e-voting sys-
tems, but the composition of system features poses significant problems that can
be addressed satisfactorily only through the use of formal methods. When such sys-
tems are used in government elections then they are obliged to follow legal standards
and/or recommendations written in natural language. For the formal development of
e-voting systems it is necessary to build a domain model which is consistent with
the legal requirements. We have already demonstrated that Event-B models can be
used to verify critical requirements for e-voting system components. However, the
refinement-based approach needs to be applied to the engineering of a complete
e-voting system. We report on our approach, using Event-B contexts to model an
e-voting ontology, and its integration with an e-voting features model tree which
formally specifies the SPL. During this work, we identified the importance of mak-
ing the implicit explicit in two different ways — domain experts need to explicitly
model implicit knowledge, and Event-B modellers need to explicitly communicate
the semantics of the formal model constructs to the domain experts. If either of
these tasks is not adequately carried out then this compromises validation of the
requirements model (instance of the SPL).
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1 Introduction

Electronic voting systems are those which depend on some electronic technology
— including both software and hardware — for them to function as required [13].
Initial adoption of electronic voting systems focused on direct recording electronic
(DRE) machines, where the voting is under supervision in a controlled environment,
commonly known as a voting station. These systems drew much criticism, and many
problems were reported around the world [35]. Much progress has been made and
there is general agreement that it is possible to develop DRE that provides a reliable,
trustworthy and secure e-voting system [13]. However, there are continued reports
of problems with such systems [26], which are due to poor engineering practices
and lack of understanding of the complex interaction between e-voting system re-
quirements [32]. The state-of-the-art in such machines now promotes the use of a
form of voter verified printed audit trail (VVPAT) [47], and a risk-limiting audit or
manual recount [30].

E-voting systems make up a family of products which share common functional-
ity, but where each system has its own unique requirements [18]. As a consequence,
they are well-suited to development of a software product line [14]. Such techniques
offer many advantages for the practical development of reliable and trustworthy e-
voting systems, but the composition of system features poses significant problems
that can be addressed satisfactorily only through the use of formal methods. A for-
mal domain model for e-voting systems is a critical part of any such formal devel-
opment [15] and this correspond to the standard notion of ontology [11].

Previous work has demonstrated that Event-B models can be used to verify criti-
cal requirements for e-voting system components [5, 6]. Recently, it has been shown
how the the refinement-based approach can be applied to the engineering of a com-
plete e-voting system [12]. The next step in our research is the integration of the
SPL approach for formal specification of system requirements, and the refinement
of such a specification to a concrete implementation. We report on our ongoing
work, using Event-B contexts to model an e-voting ontology, and its integration
with an e-voting features model tree which formally specifies the SPL.

Our research has identified the key issue of making explicit that which may be
implicit — domain experts need to explicitly model implicit knowledge, and Event-
B modellers need to explicitly communicate the semantics of the formal model con-
structs to the domain experts. If either of these tasks is not adequately carried out
then this compromises validation of the requirements model (instance of the SPL).

In general, “explicit” means clearly expressed or readily observable whilst “im-
plicit” means implied or expressed indirectly. However, there is some inconsistency
regarding the precise meaning of these adjectives [1]:

• Logic and belief models [29] — “a sentence is explicitly believed when it is
actively held to be true by an agent and implicitly believed when it follows from
what is believed.”

• Semantic web [42] — “semantics can be implicit, existing only in the minds of
the humans [. . . ]. They can also be explicit and informal, or they can be formal.”



An e-voting formal Software Product Line 3

• Requirements engineering community [45] — use the terms to distinguish
between declarative (descriptive) and operational (prescriptive) requirements,
where they acknowledge the need for “a formal method for generating explicit,
declarative, type-level requirements from operational, instance-level scenarios in
which such requirements are implicit”.

We propose a more formal (explicit) treatment of the adjectives implicit and explicit
when engineering electronic systems.

The remainder of the paper is structured as follows. Section 2 provides an
overview of e-voting machines: the complexity of the requirements, the different
types of implementations, and the legal aspects. Section 3 is concerned with build-
ing a formal domain model as a type of ontology, and examines the question of
when the explicit shoud be implicit (if ever). Section 4 reviews some real-world
examples of e-voting systems where problems have arisen because of the implicit-
explicit duality. Section 5 reports on our ongoing research and development of a
SPL for e-voting: using Event-B to specify a domain ontology, a SPL feature tree
and a generic system architecture, in order to support a feature-driven refinement
process towards a correct-by-construction implementation. The paper concludes in
Section 6.

2 E-voting machines

2.1 Complex, interacting requirements

Since the earliest analysis of e-voting systems [20], it has been argued that there are
many complex interactions between the different requirements that these systems
may be required to meet. Much of the current research in this area is concerned with
better understanding these interactions, designing and implementing systems that
meet certain combinations of requirements and evaluating the use of such systems
during elections:

1. Authentication [10] - how to guarantee that the person who wishes to record a
vote is the person they claim to be?

2. Anonymity/Privacy/Secrecy [7] - I should be able to vote without anyone know-
ing how I have voted.

3. Verifiability/Auditability [49] - I should be able to check that the voting process
was executed correctly.

4. Accuracy [9] - whether the votes were tabulated/counted following the election
rules.

5. Usability [3] - if the voting interface is easy to use for the voters and election
administrators.

6. Understandibility/Trustability [39] - Can voters understand how the system works,
and can they trust that their understanding is correct?
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7. Fault Tolerance/Security from attack [37] - is the system secure against attacks
and tolerant of faults in its component parts (electronic or otherwise).

8. Availability [28] - can access to the e-voting system be attacked, leading to a
denial of service?

9. Maintainability [18] - as requirements change can the system evolve in order to
maintain correct behaviour?

10. Cost/Lifetime [35] - will the machines cost more/less than the traditional systems
(over the lifetime of the system), including development and maintenance costs?

11. Openness/transparency [38] - is difficult to guarantee when parts of the system
are outsourced.

There are numerous documented complex interactions between these different
requirements. For example, it is difficult to provide a usable interface when applying
complex cryptographic protocols for security. Verifiability and anonymity appear to
be inconsistent - how can a voter demonstrate that their vote was counted incorrectly
if they cannot demonstrate how they have voted? Authentication and anonymity are
difficult to guarantee when a voter has to identify themselves to the same machine
that will be used to record their vote. Understandibility is compromised when com-
plex cryptographic protocols are used to provide verifiability. Fault-tolerance and
auditability both increase the cost of system development and maintenance. Making
the system code open source may conflict with other security requirements.

2.2 Remote Electronic Voting

Remote electronic voting (REV) permits the voter to record a vote without having
to be physically present in a supervised environment [27]. The voter must use unsu-
pervised mechanisms for recording and transmitting their vote [19] In the modern
world, this will most likely be an electronic computer/device that is connected to
the internet [24]. Coercion is the biggest risk [8], and authentication is a major chal-
lenge [34]. Denial of service attacks have already been observed [41]. Computer
viruses and malware provide powerful attack mechanisms, that have already been
developed [22].

2.3 End-to-end verifiable systems

With End-to-end verifiable systems (E2E-V) [25], voters have an opportunity to ver-
ify that their vote is cast as they intended and correctly recorded (individual verifia-
bility) Anyone can verify that all recorded votes were properly included in the tally
(universal verifiability). Such systems provide a high degree of evidence that the
outcome is correct, assuming that the voters correctly performed the verifications.
E2E-V systems typically use sophisticated cryptographic techniques for providing
privacy (although this is not a requirement). Such protocols should guarantee that
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voters do not need to blindly trust any component of the system; all components can
be scrutinised so that their computation can be verified if their trustworthiness is in
doubt. However, even requiring the use of E2E-V systems does not guarantee that
the system will meet all the requirements.

2.4 Laws Standards and Recommendations

We must ask whether a given e-voting system is lawful, as a system which does not
comply with international law should not be used in democratic elections. The fun-
damental principles of elections are firmly stated in: article 25 of the International
Covenant on Civil and Political Rights and article 21 of the Universal Declara-
tion of Human Rights. Voting systems are normally required to comply with laws at
other levels of governance, for example: constitutional, national, state, regional, etc.
These laws often make reference to international and national standards that must
be followed. An e-voting system has a myriad of inter-related legal requirements to
meet; these multiple layers do not provide solid foundations upon which to build a
system — none of the layers are fixed and the texts are open to different interpre-
tations. In some cases, there is no consistent interpretation of system requirements.
When problems arise with a particular e-voting system it is for judges to decide if
these were due to some aspect which could be said to be illegal. The final problem
to consider is that each voting system has to meet specific needs which are not di-
rectly addressed by the laws and standards. The requirements of the system must
somehow integrate these specific needs with multiple layers of laws and standards.

There are four main actors in the specification and use of e-voting system re-
quirements:

1. The standards bodies establish the requirements that all e-voting systems (within
a certain geopolitical space) must meet.

2. The procurement offices establish the requirements that a specific machine must
meet in order for it to be purchased for use in a specific election.

3. The manufacturers develop machines that meet the generic requirements speci-
fied by the standards bodies and the specific requirements stipulated by procure-
ment offices.

4. The Independent Testing Authorities test the delivered machines to ensure that
they meet the requirements.

Unfortunately, there is evidence that the communication and co-ordination between
these actors is poorly managed [33].
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3 Need for a formal domain model: ontology

3.1 Terminology: dictionaries and glossaries

The European Council of Europe e-voting recommendations [46] recognises that
consistent use of terminology is key, and states: ‘In this recommendation the fol-
lowing terms are used with the following meanings: . . . ” The terms that it chooses
to include are: authentication, ballot, candidate, casting of the vote, e-election or
e- referendum, electronic ballot box, e-voting, remote e-voting, sealing, vote, voter,
voting channel, voting options and voters registrar. The list is very incomplete, but
it is a first importat step towards developing an e-voting domain ontology. It should
be noted that, even in this short set of definitions, fundamental terms are used in-
consistently. A formal ontological model would facilitate automated validation of
model consistency.

A number of other countries, outside of Europe, have also developed glossaries
for their particular voting systems and requirements, for example: Canada1, Aus-
tralia 2 and USA3. The level of detail in such glossaries varies from a short list of
terms to hundreds of pages. There is a clear need for a standard ontological domain
model.

3.2 When the explicit should be implicit: ontologies and
domain-specific languages

In all forms of communication, implicit shared understanding improves signal
rate, and is often necessary in achieving an acceptable communication mechanism.
Shared implicit understanding is good when it is coherent. There should always be
an explicit representation of the implicit knowledge as a base reference, if needed.
This is the role of an ontology [21].

When a community of developers share much common knowledge then the next
step is the development of a domain-specific language (DSL) [44]. Many such DSLs
are structured in terms of domain features [43], and this provides a strong link to the
SPL modelling and development approach. Building a DSL is a complex task [36],
and there has been much recent research on using formal approaches [4]. Integration
of DSLs and ontologies requires the use of formal methods [48].

With respect to the implicit/explcit dichotomoy, such DSLs bring the best of both
worlds. Shared domain knowledge is implicit when the DSL is used to describe and
synthesise systems within the domain, but is also explicit when used to reason about
and analyse such systems. The implicit aids human-human interaction and commu-

1 www.elections.ca
2 www.aec.gov.aufooterGlossary.htm
3 www.eac.govvoting-equipmentvoluntary-voting-system-guidelines
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nication. The explicit aids automation and tool development. Both are necessary for
model validation.

4 E-voting: Examples of when the implicit should be explicit

4.1 DUALVOTE - e-pen

The authors have been involved in the development of a novel e-voting system
(DUALVOTE) that provides an innovative interface for e-voting using an electronic
pen [31]. The advantages of the system arise out of the way in which it generates
a paper vote (for audit) and an electronic vote simultaneously. However, there were
some problems that arose when testing the system (during real elections) because of
the unpredictable behaviour of the voters [17].

A major issue was that the developers had made implicit asssumptions about
voter behaviour which had never been explicitly stated to the voters. The correct
functionality of the system was dependent on these assumptions being true. Unfor-
tunately, this was not the case:

• Some voters recorded their vote using their own pen rather the e-pen that was
provided. We wrongly assumed that all voters would record their votes using the
e-pen.

• Some voters recorded their vote on a surface other than the electronic surface
provided. The instructions explicitly stated that they should write on the surface
provided, but it was wrongly assumed that all voters would follow the instruc-
tions.

• It was explicitly stated that any identifying mark on the ballot paper which could
uniquely identify the voter would render the vote invalid. However, there was no
explicit statement of how a machine could automated the identification of such
invalid votes. The system failed to function correctly because the election ad-
ministrators had implicit (domain specific) knowledge of how voters could mark
their vote which had never been explicitly stated. As an additional complica-
tion, this knowledge varied from election-to-election and from constituency-to-
constituency. There were even disagreements between election officials in the
same voting station as to what would render a vote invalid.

• The electronic voting interface was a limited resource and tying up the resource
could lead to a denial of service type attack. We implicitly, and wrongly, assumed
that all voters would spend a reasonable amount of time to vote. This was based
on us wrongly assuming that voters would not deliberately attack the voting sys-
tem. A simple attack, in this case, would be to stay at the voting interface for a
long (unreasonable) amout of time. The implicit need to timeout a voter should
have been explicitly stated and defined before the voting process started.

Our DUALVOTE experience highlighted the need to make the implicit explicit when
developing voting systems.
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4.2 Implicit Programming Language Semantics

While analysing an e-voting system we identified issues that arise when system
components are developed independently, and they make inconsistent assumptions
about the global system and its environment. A good example of this arises when
system software is written using different languages. The meaning of the software
behaviour is now dependent on the semantics of the programming language con-
cepts. Unfortunately, concepts that share the same syntax (in different languages)
do not always share the sme semantcs.

This can happen with concepts as simple as arrays [16]. In this study, two com-
ponents of the system were developed using different modelling/programming lan-
guages/techniques. Each of the developers had correct implicit understanding of the
semantics of arrays in the language they were using (and an explicit statement of
these semantics was available). However, the semantics of arrays was different in
each of the two languages. As votes moved from being recorded in one language
to being counted in another language, their representations changed. The inconsis-
tency was caught late in development (during testing), but it would be better if such
issues had been avoided at the beginning of development.

4.3 Negative counts - can anything be too obvious?

It is obvious that a vote count for a specific option (or candidate) should not be
negative. Returning a negative count is clearly an error. Such negative counts have
been reported in real elections. We must ask how such a stupid error could have
happened. Should non-negativity of counts be explicit in the requirements speci-
fication? In order to answer this question we need to examine a major difference
between modelling languages and programming languages with respect to integer
representation.

In Event-B, there are 3 in-built types that can be used for counting: integers,
naturals (including 0) and naturals (excluding 0). If we model a count as a natu-
ral (NAT) then the model guarantees that the count has a non-negative value. There
should be no need to explicitly state this as it is implied by the semantics of NAT.
However, if the client (the person specifying the system requirements) does not
know/understand the formal semantics of Event-B then how can they validate the
model as being correct? After validation, the model has to be implemented. Most
programming languages do not contain the notion of a natural number as a primitive
type. As a consequence, it is not surprising that a count could be implemented as
an integer (which does permit negative values). In such a case, a program invariant
(stating that the count is always non-negative) would have solved the problem. This
property of NATs is implicit in the Event-B model; thus the the non-negative count
invariant is not explicitly stated and may be overlooked in an integer-based imple-
mentation. Of course, using a refinement-based development method will prohibit
an incorrect implementation.
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A similar issue occurs with many other model language semantics. A good ex-
ample is that of sets. The modeller knows that a collection of entities modelled as a
set implicitly guarantees that the collection contains no repeated elements; but the
client may not know this. In e-voting, it is often very important that collections have
such set-like behaviour. How should we validate such models?

4.4 Vote Coercion in a Typical Voting Station

Formal methods are generally used in the development of electronic systems. How-
ever, they can also be used in modelling and analysing traditional voting systems
(with no electronic components). Insight from the formal development of e-voting
systems has helped us to identify previously undocumented issues with the tradi-
tional systems. Without a formal model — explicitly modelling assumptions — the
correct functioning of a traditional system can be guaranteed only if the implicit
assumptions are valid. Unfortunately, many of these implicit assumptions have not
been explicitly documented and are true only because the actors in the system be-
have in a certain way. A simple example from voting a polling stations in France
illustrates this case.

In remote voting, there is a major threat of man-in-the-middle attacks on the
communication network between the voting booth and the ballot box. Such attacks
have been modelled using formal methods and we have a good understanding of
how systems can be defended against such attacks. By explicitly modelling such at-
tacks, we can verify that our systems are protected against them. It has been claimed
that no such threats exist when using traditional paper voting at a controlled voting
station, as there is no underlying network to be attacked. Such reasoning is based
upon a false assumption that is implicit in the correct functioning of a traditional
voting station; namely, that voters do not interact with other parties between record-
ing their vote anonymously in the booth and the submission of the recorded vote in
the ballot box . In France, and in other countries, the passage between the booth and
the box is not strictly controlled. The implicit need for voters to transfer their vote
directly from the booth to the box is, in general, not explicitly enforced. This could
lead to problems of coercion and vote buying. The problem is mitigated by the fact
that the polling station is a public area where voters can be observed; but there is no
guarantee that invalid behaviour of voters will be witnessed.

5 When the explicit should be implicit: ontologies and
domain-specific languages

In all forms of communication, implicit shared understanding improves signal
rate, and is often necessary in achieving an acceptable communication mechanism.
Shared implicit understanding is good when it is coherent. There should always be
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an explicit representation of the implicit knowledge as a base reference, if needed.
This is the role of an ontology [21].

When a community of developers share much common knowledge then the next
step is the development of a domain-specific language (DSL) [44]. Many such DSLs
are structured in terms of domain features [43], and this provides a strong link to the
SPL modelling and development approach. Building a DSL is a complex task [36],
and there has been much recent research on using formal approaches [4]. Integration
of DSLs and ontologies requires the use of formal methods [48].

With respect to the implicit/explcit dichotomoy, such DSLs bring the best of both
worlds. Shared domain knowledge is implicit when the DSL is used to describe and
synthesise systems within the domain, but is also explicit when used to reason about
and analyse such systems. The implicit aids human-human interaction and commu-
nication. The explicit aids automation and tool development. Both are necessary for
model validation.

6 A SPL for e-voting

In this section we provide a brief overview of our current work in developing a
formal SPL for e-voting.

6.1 A feature tree model for e-voting

In Fig. 1 we illustrate part of the feature tree for an early version of our SPL proto-
type.

Fig. 1 The (partial) feature tree for an e-voting SPL
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From the diagram (which shows only part of the full feature tree model) we
see that VoteCounting is a mandatory abstract feature of our e-voting SPL.
ValidityChecking is a mandatory (sub) feature of VoteCounting which
can be done either automatically or manually (which are modelled as concrete fea-
tures). In the VoteRecording branch, voter list access rights (VLAccessRights)
must be defined, and may be given to the administrators and/or the public. The de-
tails of individual requirements associated to each feature are not important. We note
that the number of features (in the complete tree) was chosen to provide a SPL which
was simple enough to develop, but complex enough to provide a proof-of-concept.
In our current version, our SPL can be configured into hundreds of different concrete
instances.

6.2 Formalisation in Event-B

The tree is specified formally in an Event-B generic context, which is generated
automatically from a feature-tree graphical editor. The configuration of the specific
instance of the SPL can also be done interactively using a graphical editor. Again,
we generate automatically the Event-B context corresponding to the instance. At this
stage, the formal methods guarantee that the tree instantiation is a valid instance of
the SPL, respecting the constraints specified in the feature tree model. We now have
to associate behaviour with each of the features in the tree. Currently, we follow a
3-tier approach:

1. Each feature has an associated context where static relationships between sets
and constants are specified. These sets and constants are taken from an e-voting
domain ontology context. (Fig. 2 illustrates the context that is generated for an
instance corresponding to the second round of a presidential election in France.)

2. Each feature has an associated state, which is a union of all system variables that
it is concerned with. Features specify an invariant over the relevant state. The
state variables are also part of the domain ontology

3. Each feature can be associated to one or more events that correspond to changes
to its relevant state variables. The events are also modelled in the domain ontol-
ogy.

As such, the domain ontology groups together all the concepts (static and dynamic)
that are shared between the SPL features. More details of the formalisation of the
feature tree can be found in [2].

Combining these 3-tiers into a single abstract Event-B machine is the main chal-
lenge that we are currently addressing.
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Fig. 2 The instantiated context for Presidential Election Round 2

6.3 A pipeline design pattern

The initial abstract machine is modelled as a simple pipeline, of 4 phases - set up,
voting, counting and audit (see Fig. 3). We have identified a useful formal design
pattern, where a state variable in one phase becomes a constant in the next phase:

• During election set up the list of candidates and list of electors is variable (as they
must register before being added to the lists). However, once set up is completed
these lists must be fixed.

• During the voting step, the list of electors who have voted is variable (names get
added as votes are recorded). However, once the polling station closes this list is
fixed before the count begins.

• Counting, in phase 3, will be complete when the list of ballots counted is com-
plete,, and then we can start the final audit phase.

We note that the precise semantics of the pipeline operator have recently been
published [12]. We also note that the same paper addresses a correct-by-construction
refinement approach using the same architecture. However, the initial abstract ma-
chine in this work is not initially generated from the SPL feature tree. The devel-
opment of the feature tree model and the validation of the pipe-line approach were
done in parallel, and, as such, are not yet fully integrated.
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Fig. 3 The pipeline architecture

6.4 Feature-driven refinement towards implementation

Developing features as a sequence of refinements guarantees correctness if such a
sequence can be found. The order in which features/refinements are added is very
important. We propose that such refinement should be driven by the feature config-
uration. Developing features in parallel poses many additional issues with respect to
feature interactions [14]. We can usefully classify feature pairs in terms of the way
in which they interact following the approach for composing fair objects [23]. As
we identify (enemy) features that have contradictory requirements, we update the
feature tree with a constraint to preclude their composition. As we identify (politi-
cian) features that need special co-ordination in order for them to work correctly, we
refine the system in such a way that guarantees such a co-ordination. Features that
require no special co-ordination in order to work correctly together are known as
friends and their refinements can be safely developed in parallel (unlike with politi-
cians). Development of a feature-driven refinement method is a major challenge in
the formal development of software product lines [?], and is the major challenge in
our future research..

7 Conclusions

We have presented our on-going research and development of a formal SPL for
e-voting. We have placed this work within the context of domain ontologies and
demonstrated the need to better model and understand the implicit-explicit seman-
tic dichotomy. Even if we trust the systems that we develop formally using our
approach, we still do not know how we can get the public to trust them. We argue
that if the SPL is trustworthy then it guranatees the trustworthiness of every ma-
chine that is built using it. Using our approach does not guarantee the absence of
unwanted feature interactions. However, it will aid in detecting such interactions
and make explicit to the client the incompatibilty between certain features. In the
future, we would like to develop a prescriptive assurance case mechanism (such as
seen in [40]) based around the SPL model. As we configure and develop more and
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more e-voting systems using our approach, we may consider the SPL e-voting fea-
ture tree as a type of Domain Specific Language which evolves as we improve our
understanding of feature interactions. As future work, we are interested in whether
the formal SPL domain language ontological approach generalise to other problem
domains.
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