
Software Engineering as a Model of Understanding
for Learning and Problem solving

J Paul Gibson
NUI Maynooth, Ireland

pgibson@cs.nuim.ie

Jackie O’Kelly
NUI Maynooth, Ireland

jokelly@cs.nuim.ie

ABSTRACT
This paper proposes a model which explains the process of
learning about computation in terms of well-accepted soft-
ware engineering concepts, and argues that our approach to
understanding how problem-solving skills are acquired is an
innovation over well-accepted learning theories and models.
It examines how all students make sense of computational
processes; by reporting on experimental observations that
have been made with school children, and with university
undergraduates. We observed little difference between chil-
dren and adults with regard to how they learn about com-
putation, and suggest that the strong similarities are due
to a common set of problem-solving techniques which are
fundamental to all problem based learning, in general, and
learning about computation, in particular. To conclude, we
demonstrate that our model — based on software engineer-
ing concepts — is useful when reasoning about the relation-
ship between problem solving and learning to program.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education; I.2.6 [Learning]: Misc.; D.2
[Software Engineering]: Misc.

General Terms
Algorithms, Experimentation, Human Factors, Theory

Keywords
Computing Education Research

1. INTRODUCTION
In the last few years, both authors have independently

been involved in problem-based learning (PBL) experimen-
tation, inspired by the successful work being done in teach-
ing programming to computer science students (see [21], for
example). The 1st author has primarily been interested
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in observing young children (in schools) as they play with
games and puzzles, and solve problems. His goal is to try
and get a better understanding of the algorithmic learning

process in order to improve the way in which he teaches
university students about software engineering. The 2nd au-
thor’s motivation is primarily in using problem-based learn-
ing as a means of helping CS1 students to:

• think critically and be able to analyze and solve com-
plex, real-world problems;

• work cooperatively in teams and small groups; and

• demonstrate versatile and effective communication skills,
both oral and written.

The two authors — through discussion about their PBL
observations — recognised a similarity between how children
in schools solve problems and how young adults in univer-
sity solve problems. This commonality was formalised by
identifying software engineering techniques common to both
groups of students; and they then validated — from com-
prehensive notes — that both groups had been observed ap-
plying these principles during the problem solving process.

This paper reports on the first steps towards constructing
a theory that: software engineering provides a good frame-

work for reasoning about how children and adults learn to

solve problems. It motivates the construction of such a the-
ory through critical analysis of already existing observations.
A rigorous validation is far from being complete; but our
own conclusisons are that such a theoretical model: mer-
its further investigation, may provide insight into the fuzzy
boundary between deep and shallow learning, and should
help us to construct a theory of problems that would provide
a foundation for reasoning about problem-based learning for
software engineering and learning how to program.

1.1 Learning Theory and Models: our
innovative approach

There are hundreds of well-published complementary, and
competing, theories of learning. The highly cited review by
Hilgard and Bower published over half a century ago[20] is a
good introduction to the foundations of learning theory. In
this paper, we focus on the well-accepted theories that have
had most influence on our own research into the areas of cog-
nition and problem solving, and teaching how to program:
Piaget, Bruner, Guildford, Gardner, Papert, Schoenfeld and
Bloom.

Cognitive structure is the concept central to Piaget’s the-
ory. (See the work by Brainerd[6] for a good overview and



analysis of Piaget’s seminal contribution to the field.) These
structures are used to identify patterns underlying certain
acts of intelligence, and Paiget proposes that these corre-
spond to stages of child development. Piaget’s most in-
teresting experiments, with respect to the work presented
in this paper, focused on the development of mathematical
and logical concepts. His theory has guided teaching prac-
tice and curriculum design in primary (elementary) schools
in the last few decades. However, his work predates the
development of software engineering as a discipline and it
is therefore unsurprising that it does not make reference to
any of the concepts within the model that we propose.

Piaget’s theory is similar to other constructivist perspec-
tives of learning (e.g., Bruner [7], which model learning as
an active process in which learners construct new concepts
upon their current knowledge and previous experience: in-
formation is selected and transformed, hypotheses put for-
ward and tested, and decisions made. As a result of fol-
lowing this theory, teachers encourage students to discover
principles by themselves: this is the foundation upon which
problem-based learning is built. Our model is complemen-
tary to this work as the software engineering concepts make
the process of learning much more concrete.

Similarites can be seen between the constructivist view
and the theories of intelligence such as proposed by Guild-
ford’s structure of intellect (SI) theory [17] and Gardner’s
multiple intelligences[12]. Typically, these theories structure
the learning space in terms of skills, for example: reasoning
and problem-solving, memory operations, decision-making,
and language. These skills are at a higher level of abstrac-
tion than those seen in the model that we propose.

Piaget’s ideas also influenced the seminal work by Sey-
mour Papert in the specific domain of computers and edu-
cation[28]. Papert argues that children can understand con-
cepts best when they are able to explain them algorithmicaly
through writing computer programs. In his constructionist
world, computer technology and programming play a criti-
cal role in helping children to learn. We support Papert’s
argument by demonstrating that programming (software en-
gineering) skills may be fundamental building blocks of the
learning process.

As computer scientists, we were also influenced by the do-
main of teaching mathematics. In particular, Alan Schoen-
feld argues that understanding and teaching mathematics
should be treated as problem-solving [30]. He identifies
four skills that are needed to be successful in mathemat-
ics: proposition and procedural knowledge, strategies and
techniques for problem resolution, decisions about when and
what knoweldge and strategies to use, and a logical world

view that motivates an individual’s approach to solving a
particular problem. Our algorithmic understanding view
would suggest that the strategic decision making process
is founded on fundamental software engineering principles
and concepts.

To conlcude this brief review, Bloom’s taxonomy[4] of
educational objectives is a fundamental model of learning
which provides a well-accepted foundation for research and
development into the preparation of learning evaluation ma-
terials. It structures understanding into 6 distinct levels:
Knowledge, Comprehension, Application, Analysis, Synthe-
sis and Evaluation. An important aspect of Bloom’s Tax-
onomy is that learning is incremental — each level must
be “mastered” before progressing to the next. We do not

believe that our model of learning will necessarily be incre-
mental in the same way. It is for future research to analyse
whether this is inconsistent with Bloom’s model, and to ex-
amine the potential consequences for our model.

In this short overview of the learning theories that have
most influenced our research — and most of the research in
this area — it can be seen that we propose building a model
of learning that is very different in nature to the generally
accepted models; though not necessarily inconsistent with
them. As software engineers and teachers of computer pro-
gramming, we identified that our understanding of problem
solving is at a different level of abstraction to any of the
existing frameworks; yet it provides useful insights into the
learning process, in general, and learning how to program
(to solve problems), in particular. This was the main mo-
tivation behind our proposing the development of “a new
theory of problems” that would be useful to computer sci-
ence educators who are not necessarily experts in learning
theory.

1.2 CS1: Learning in University
It is well accepted within the computer science community

that first year students find programming difficult. There is
an abundance of papers in the proceedings of SIGCSE1 and
ITiCSE2 that confirm this. One of the major stumbling
blocks for students is the abstraction of the problem to be
solved from the exercise description[23]. In order to try to
overcome this difficulty, the 2nd author introduced a work-
shop into the first year programming module[27, 22]. We
used the term workshop to specifically emphasise a meeting
of concerted activity, along with problem solving, among a
small number of participants. The workshop involved the
students working in groups to solve problems. Each student
in the class was assigned to a formal group for an entire
semester and each group was assigned a separate workspace.
Attendance at the workshops was complusory.

It is our experience — and anecdotal evidence from lec-
turers in other universities concur with us — that once a
student sits in front of a computer, they feel compelled to
be using the keyboard or the mouse, and that they do not
take the time to map out a solution to the given problem.
Therefore, we deliberately prohibited the use of computers
during the workshop. We gave the groups a basic frame-
work (which they could change) to tackle the problem. This
framework asked them to consider the problem as presented,
clarify the kernel of the problem and the product to be de-
veloped and restate the problem in their own words. In
addition, they could generate ideas/hypotheses through the
use of brainstorming, identify the key issues and constraints,
and develop a step-by-step set of instructions to solve the
problem. The overall objective with the use of these work-
shops and peer learning groups was to:

• develop the students’ problem solving skills,

• develop the students’ critical thinking skills,

• encourage alternate approaches to problem solving through
group work, and

• encourage deep learning approaches.
1ACM Special Interest Group on Computer Science Educa-
tion — http://www.sigcse.org/
2Innovation and Technology in Computer Science Education
— http://www.cs.utexas.edu/users/csed/iticse/



It was our belief that if we could improve the students’
abilities in these areas there would be a discernible posi-
tive result. In a separate report we analyse the problems in
validating such claims[26].

1.3 Refinement: Learning in Schools
The 1st author has, over a number of years, made a num-

ber of observations with respect to the way in which children
(aged 3 to 18) learn to solve puzzles and play games. As a
software engineer, he observed that children learnt through
a process of refinement, and discovered and successfully em-
ployed well-known software engineering techniques. Even
the youngest children exhibit “advanced” software engineer-
ing practices in the way in which they learn. In fact, it
seemed strange that some of the software engineering tech-
niques that university students find difficult to employ are
a fundamental part of algorithmic learning (i.e. learning to
think algorithmically — with the explicit need to make sense
of computational processes — in order to solve problems).

In the schools, we run a series of sessions that revolve
around the children solving problems using algorithms. The
same problems are used with all students (irrespective of
age); but, of course, the problems are open-ended in the
sense that more advanced students are exposed to more ad-
vanced variations. Also, the time that each class spends
with a problem may range from 30 minutes to a number of
hours (spread over a number of sessions).

The following list gives a flavour of the types of problems
that we have run in a number of schools: (1) Prime num-
ber recognition, (2) Searching, (3) Sorting, (4) Noughts and
crosses (tic-tac-toe)[14], (5) The matches game, (6) Shortest
Paths, (7)Maze Walking, (8) The 15-puzzle, (9) The Tower
of Hanoi, (10) Magic Squares, (11) Scales weights, measures
and balancing, etc. It is beyond the scope of this article to
report on all these sessions. Rather, we report on 2 typical
sessions – The Tower of Hanoi and Guessing and Searching

– which illustrate the software engineering techniques we ob-
served the children adopting as a natural part of learning.

It should be noted that the goal of the sessions in the
schools is not to teach the children problem-solving skills.
The goal is to observe the children when they are asked
to solve problems. They will, of course, learn how to solve
problems from being exposed to specific instances. Note also
that we do not have specific learning objectives associated
with specific problems. However, we do have specific things
that we are looking out for (from previous observations). In
the conclusions, we comment on the software applications
that we have developed, and are developing, in order to make
objective observations without the observer influencing the
outcome of the sessions.

2. THE SOFTWARE ENGINEERING
COGNITIVE TOOLS

In the following sections, all the examples are taken from
simple software engineering exercises. The formal defini-
tions we propose illustrate only that the concepts can be
given precise meaning through formal methods. Our motiva-
tion is that these formal concepts in the domain of software
engineering are ideal candidates for building a more scien-
tific foundation for a vocabulary (i.e. a formal modelling
language) when reasoning about problem solving, computa-
tional learning and algorithmic understanding.

The graphical notation, for non-deterministic finite state
machines (NFSMs), that we use has formal semantics (see,
for example [13]), but for the purposes of this paper our in-
tuitive explanations should be enough to convey their mean-
ing.

2.1 Refinement
Refinement is a relationship between an abstract specifi-

cation and a more concrete specification, leading ultimately
to something concrete enough to be executed[24, 2]. There
are different ways in which refinement can be precisely de-
fined, all of which are more or less intuitive. A constructive
view is that refinement is a method of software construc-
tion that allows (abstract) specifications to be iteratively
refined into other (more concrete) specifications resulting in
an efficient implementation. Algorithm (process) refinement
allows this translation to occur over a procedure or code
fragment. Data refinement allows the data representation
to be translated into a better data structure.

It should be noted that refinement is often conceptual-
ized as removal of non-determinism. This view is particu-
larly useful when analyzing games and puzzles where poor
players resort to random moves in more or less challenging
positions[3].

2.2 Example: Sorting and process refinement
Typically, an abstract specification of sorting a list of el-

ements is as follows:

Input: a list, I say, of n elements I0, . . . , In−1

Output: an ordered list, O say, of n elements
O0, . . . , On−1 such that:

O is a permutation of I , and
∀i, j, Oi ≤ Oj ⇐⇒ i ≤ j,

This can be refined into an algorithmic ‘solution’ to the
problem of sorting:

1. Take the Input list I and copy into list O.

2. If O is ordered then return this as Output,
else swap 2 randomly chosen elements of O.

3. Goto step 2

We can specify this algorithm as a non-deterministic fi-
nite state automaton (NFSA). In figure 1, we illustrate the
notion of refinement when sorting a list of only 3 integer
elements. The states are labelled with the list of integer el-
ements. The transitions (all non-deterministic) are labelled
by arcs and correspond to the random swaps. Note: we
have not represented the null transitions (where an element
is swapped by itself) in the NFSA. The terminating state
— where the list elements are ordered — is shaded. This
terminating state cannot be exited.

We can see that from any starting state, it is always possi-
ble that the terminating state will be reached. Some simple
maths shows that the probability of terminating in the final
ordered state tends to 1 as the number of random swaps
tends to infinity. Temporal logic — through the notion of a
fair object — could be used to specify that the system — im-
plemented as an object — will always eventually terminate
in an ordered state[16].



Figure 1: Random sorting of a 3-element list

Figure 2: First sorting process refinement

In effect, this NFSA represents a very inefficient solution
to the problem of sorting a list of 3 integers. Refinements
– that remove some of the non-determinism of the system
(solution) – can be used to generate a more efficient solution.
Consider the alternative solution in figure 2.

In this first refinement, we have removed all swap tran-
sitions that exchange elements that are already in order3.
Now, simple reasoning – validated by a visual analysis of
the unidirectional flow in the system — shows that the max-
imum number of transitions required to reach the terminat-
ing state is 3. The solution is better than the previous one
because it is more efficient; where efficiency is measured by
the number of fundamental operations — in this case, swaps
— that must be executed in arriving at the final solution.
The removal of non-determinism, in this case, has trans-
formed a correct solution into a better correct solution.

To conclude this example, consider the (non-unique) op-

timal solution to this problem in figure 3, where further re-
finement of the original system has given an optimal NFSA.

2.3 Example: Traffic lights and data refinement

Consider the NFSA in figure 4 that represents a traffic
light system, where there are 2 lights for 2 flows of traffic.

In this case, the intention is that traffic can go through
in at most one direction at any particular instance in time.
Both streams of traffic can also stop at the same time (per-
haps to let pedestrians cross the road).

Data refinement is concerned with adding structure to
the way in which non-deterministic transitions occur, usu-
ally through the addition of new intermediate states. In
this case, we may choose to have the data value Stop,Stop

refined into 2 different values Stop,Stop1 and Stop,Stop2,

3We can also, in the same refinement, explicitly remove
the null transitions where elements are swapped with them-
selves.

Figure 3: Second optimal sorting process refinement

Figure 4: Traffic Light System

say. The NFSA on the left side of Figure 5 shows how this
is done.

In fact, this data refinement starts to make sense from the
point of view of practical software engineering and problem
solving when we combine it with an algorithm refinement.
The system in the left side of figure 5 is equivalent4 to the
original system in figure 4. A problem with both is that it is
possible for the system to get into a cycle of states whereby
one direction of traffic never gets to Go. In order to refine
the behaviour of the system, we would like to ensure that
such an unfair scenario is precluded. We do this by carrying
out a process refinement — on the new system with 4 states
— which removes the non-determinism in deciding which of
the two Stop,Stop states are moved into when a Stop,Go

4We are using the notion of equivalence in an intuitive man-
ner. There are many formal notions of equivalence which we
could use to verify our statement.

Figure 5: Traffic Light System - data refinement



Figure 6: Traffic Light System - subclassing (spe-
cialisation)

or Go,Stop state is left. Then, from either one of the two
Stop,Stop states we are guaranteed to return to a different
state from which we have just come. This can be seen in
the NFSA on the right hand side of figure 5.

2.4 Subclassing: Extension
In the traffic light example, imagine that we wish to have a

means of recording the number of times that the system was
requested by pedestrians (in state Stop, Stop). A natural
software engineering solution to this problem would be to
define a new traffic light system that carried an extra state
counter. The behaviour of the system would be exactly as
before, if we ignored the new count mechanism. In standard
software engineering terminology, this is known as a subclass
(extension) to the original system. (A formal treatment of
this can be found as part of the classic theory of objects[1].)

Ignoring the extra count state variable reduces the NFSA
back to the original behaviour. However, we have now ex-
tended its behaviour. The new system (subclass) does every-
thing the old system (superclass) does, and more.

2.5 Subclassing: Specialisation
Another formally defined type of subclassing does not cor-

respond to extending already existing behaviour, but intu-
itively corresponds to specialising it[25].

Consider the situation — illustrated in figure 6 — where
the behaviour of the system is strictly partitioned into 2
separate classes: (a) where the stop and go signals alter-
nate and traffic is always flowing (in only 1 direction at a
time); and (b) where the traffic is either completely stopped
(in both directions) or flowing in both directions. There is
no way for the system to move between these 2 separate
sub-behaviours. We say that behaviours of system (a) and
system (b) are specialisations of the original system.

2.6 Re-Use through Composition
In software engineering, software is usually not built from

scratch. Normally, already existing software artefacts (from
the set of documents and models that are built during the
engineering of a software system - analysis, requirements,
validation, design, verification, implementation, tests, main-
tenance, versioning and tools) are reused, in a wide range of
ways, in the construction of a ‘new’ software system. Soft-
ware reuse is one of most documented but least-well under-
stood elements of the software engineering process[9, 11, 29,

10]. It would, of course, be surprising if we did not observe
this type of re-use in the learning process.

2.7 Genericity: Universal and Constrained
In software engineering, modelling languages usually pro-

vide a means of specifying parameterised behaviour. Typi-
cally, we see this in the form of generic data structures. A
classic example is that of a stack (with ‘LIFO’ behaviour of-
fered through methods push and pop). This provides great
opportunity for reuse: if you need a stack of integers and
someone provides a generic stack then all you need to do
is reuse their generic stack by instantiating the type para-
meter to integer. A stack is a classic example of universal
genericity because it makes no assumptions about the types
of things that are being pushed on and popped off.

In contrast to the universal genericity of a Stack, the first
sorting example is a classic example of constrained gener-
icity: we should be able to sort lists of any type of entity
provided, of course, there is a way of comparing and ordering
any 2 such entities. In effect, we are constrained to sorting
only those things that can be sorted.

2.8 Re-using or re-usable
There is a trade-off in all software engineering between

designing a system for maximizing re-use in the future; and
for designing a system to maximize the re-usable entities
from the past[8]. In the Traffic Light System example (see
figure 6), there are two obvious types of re-use in play:

• it would be natural (for a software engineer) to trans-
form the state into a composition of 2 boolean vari-
ables in order to be able to re-use an already existing,
well-understood component; and

• it would be natural (for a software engineer) to make
the traffic light system a re-usable component for re-
use in larger, more complex systems.

The first type of re-use requires little additional effort on
the part of the software engineer, and is a technique that
is relatively easy to teach to students. The second type of
re-use requires (typically) much more additional effort on
the part of the software engineer, and is a technique that
is relatively difficult to teach to students. Furthermore, in
real industrial practice, there is a clear compromise between
design for maximising re-use and design for maximising re-
usability. We will propose, in our conclusions, that this
trade-off may provide some insight into how to formulate
the notions of deep learning and shallow learning, and how
to distinguish between them.

3. THE CASE STUDIES
We chose to report on 2 studies: the first concentrates on

observations in schools, the second focuses on observations
with University students. Both these studies are representa-
tive of the wide range of problem case studies that we have
executed and observed over a number of years.

3.1 Case Study 1 - Searching (in schools)
In the last 7 years, the following session has been run a

total of 16 times with 16 different classes, at 10 different
schools, with students as young as 6 and as old as 17. The
mean age of the students having participated is 13. The



average class size is 18, with the minimum 10 and the max-
imum 35. In all cases, 1 teacher (or teaching assistant) is
required to be present; and for above average class sizees we
expect at least 2 such assistants. Our observations are from
a mix of classes (and students).

As with all sessions, the searching sessions run in a se-
quence of phases. For each phase, interesting observations
are highlighted and, where appropriate, we comment on as-
pects of learning where we believe that there is something
fundamental in a model of algorithmic understanding (with
respect to refinement, re-use and software engineering).

Given the large number of sessions that we have run, and
the correspondingly large numbers of mostly informal ob-
servations that we have made, it is beyond the scope of this
paper to analyse every interesting pattern or trend. How-
ever, we do identify some interesting aspects and provide
informal analysis of these sample cases where appropriate.
One of the goals of this paper is to stimulate thought as to
what aspects merit more complete and more formal analysis.

Phase 1: observing pre-requisite understanding
When searching for an object from a collection of objects,
we require only that a child can tell when 2 objects are
the same. Through experience, we adopt a technique where
sameness is based on some concrete property of the objects
in question (size, shape, colour, texture, etc). In searching,
we have had most success with lengths (the property) of
pieces of string (the objects).

First we generate a reasonable number of pairs of pieces
of string; where: the pairs are of equal length, and all pairs
have different lengths. For example, a typical problem will
have the following pairs, in no particular order, where the
numbers represent lengths:

{(4, 4); (2, 2); (5, 5); (10, 10); (16, 16)}.

Second, we separate the pairs into 2 collections:

{4, 2, 5, 10, 16}and{4, 2, 5, 10, 16}

Thirdly, we randomly mix each of them; giving, for exam-
ple:

{10, 16, 5, 4, 2}and{4, 5, 2, 16, 10}

Finally, we ask the students to put them back into a col-
lection of pairs. (This is similar to the problem of pairing
socks, which many of them will be familiar with.) In the
process of pairing, we confirm that all the children are able
to compare the lengths of pieces of string and match those
of equal length. The children do not need to actually solve
the pairing problem in order to progress. Now that we know
that children know how to check if 2 pieces of string have
the same length, we can proceed to searching.In this case, we
require only that a child can match a single piece of string
with another piece of string in a collection. How you present
the collection, and how you constrain their manipulation of
the collection is key to observing the learning process.

We demonstrate that we can hide a piece of string in a
box, and place a number of pieces of string in a number of
boxes (one per box). Finally, we hand them a piece of string
and ask them to find the matching string in one of the boxes.
However, they are told that they can open only one box at
a time; and that when a box is closed it must contain the
piece of string that was in it originally. (With the youngest

children it often takes a few minutes for them to understand
the rules of the game.)

Through experience, children are much more enthusiastic
and are more likely to actively participate in the sessions
when there is an element of competition. In this case, we
play the children against each other, playing alternate moves
of the game. In this game, a move is looking in a box for the
matching string. The first player to match the string wins
the game. (Note that this does not require the younger
students to be able to count.) All other children act as
spectators of each game; and observing the spectators is as
insightful as observing the players.

Phase 1 sample analysis: All students manage to play
the game and show complete understanding of the rules.

Phase 2: first observations (process refinement)
We first observe the children selecting boxes in a purely
haphazard, random manner. Although this, to begin with,
is a game of chance, the children still seem to think that,
for individual games, the winners are better players than
the losers. The first interesting observation is when children
realise that they have a better chance of winning if they
never look in a box that they have already looked in. This
observation usually arises from one (or more) of the children
spectators shouting out that a player has already looked
in a particular box and that they should choose another.
In terms of software engineering, the children have quite
naturally identified and communicated a process refinement
(see 2.2).

At this point, we ask children to play against each other
using the new, improved approach. However, we preclude
the spectators from speaking during a game. Very quickly,
it is observed that some of the children have problems re-
membering in which boxes they have already looked (rather
than having problems in following the new better search
algorithm). We confirm this by increasing the number of
boxes.

Phase 2 sample analysis: Approximately 50 percent
of the youngest students (aged 6) are unable to play intel-
ligently (through attempting to avoid boxes already exam-
ined). This percentage drops to zero as the students get
older, so that all students aged above 9 are able to play
with some intelligence (i.e. not purely randomly).

Phase 3: second observations (data refinement)
In the searching example, we observed 3 types of data refine-
ment (see 2.3) which the children introduced to overcome
the problem of remembering which boxes had already been
examined:

• Children searched the boxes in an ordered fashion (left
to right, e.g.). In this way they had only to remember
the last box searched in order to partition the collec-
tion of boxes into those already searched and those not
yet examined.

• Children marked the boxes already searched (using a
pen, e.g.). Now the partition was explicitly defined by
each box having an associated boolean value (marked
or not marked).

• Children moved the boxes from a “not yet examined
pile” to an “already examined pile”.



Phase 3 sample analysis: The youngest student for
which this type of data refinement was observed was 6 years
old (who looked in the boxes from left to right). In all
age groups there were a percentage of students who did not
refine their game-play to help them remember where they
looked; but this percentage dropped to almost 0 for the old-
est students (where only 1 student failed to see the limita-
tions of relying on their own memory).

Phase 4: ordering the data elements (constraining the
problem in order to help find a better solution)
The next phase is to order the boxes based on the length
of the strings within, before we ask the children to play the
game. Very quickly it is observed that not all the children
realise that the strings in the boxes are ordered by length.
The children who realise the data are ordered are observed
playing in a more structured manner. (Note that the notion
of ordering in this case introduces a new pre-requisite: it is
no longer sufficient for children to be able to check if two
strings are of the same length, they now have to be able to
tell the relative ordering of the strings.)

Over a period of time, we observe that the children effec-
tively refine their solution5 to a binary search where they do
not always optimise the search by cutting the search space
perfectly in two every time they make a guess. They know
they need to look to the left or right of the current string
box, based on the relative sizes of the search string and the
string in the box.

With children older than eight years, we almost always
observe at least one of the children adopting a “nearly per-
fect” binary search. They are observed trying to explain
their algorithm to their colleagues. This form of refinement
is fundamental to software engineering, is difficult for uni-
versity students to understand[15] and apply, yet is observed
in school children when they learn to play a game through
competition.

The children are asked if it is possible to play better?
Often they make quite solid arguments as to why their so-
lution is optimal. At this stage, we play against them and
we always find the string that is being looked for in the first
guess. We are employing a perfect hashing function, based
on knowledge of additional structure to the data values, to
map the string length directly to a particular box. They
often accuse us of cheating; and only the more advanced
students realise the trick. (We do not explain it to them if
they do not see it themselves; and often we are contacted
by teachers and parents asking for us to explain the trick!)

Phase 4 sample analysis: We have witnessed one 6
year old boy attempting to explain their use of a binary
search. This is an exceptional case, as the next youngest
to discover binary search (that we have witnessed) was 8
years old. There appears to be a clear boundary at the age
of 9 where nearly all the children appear to discover binary
search; and through discussion with the teachers this seems
to coincide with the introduction of fractions and ratios in
their mathematics classes.

Phase 5: generalising the problem
After the children have managed to refine an algorithm for
searching for a string of a certain length, we replace the

5We argue that this solution implies an implicit understand-
ing of an algorithm.

strings by some other physical entities. In most instances,
we use weights or balls (of different size). All children man-
age to generalise their solution for strings to other physical
entities which can be ordered in some intuitive fashion. This
is an example of constrained genericity (see 2.7).

Phase 6: working with abstractions
I tell the school children that I am thinking of a number
between two integer values (usually 0 and 100). The game
is that they have to guess the number I am thinking of, by
asking me questions to which I am allowed to answer only yes

or no. Quite quickly, we observe that some of the children
employ the same algorithm for the “guess the number game”
as they do for the “find the string game”. We observe that
others do not.

Phase 6 sample analysis: The age at which 50 percent
of the children (in that class/age group) can work with the
number abstraction is between 11 and 12 years old.

Phase 7: observing compositional re-use and subclass-
ing (specialisation)
I tell the children6 that I am thinking of 2 numbers that add
up to 100. I ask them to find both, following the same guess-
ing framework as they have already seen with the strings and
“guess the number” games. Before we start to play some
games, I ask them to tell me whether this game is more/less
difficult than the first (in terms of the number of moves that
it will take to find the answer). Surprisingly, most children
state that this 2-number game is more difficult because you
have 2 numbers to find. In a similar vein, I ask the children
to find a number that I am thinking of (between 0 and 100),
but I also tell them that it is odd (or even). In this instance,
they state that this game is easier than the original (even
though the size of the search space is the same for each of
these variations.)

For the minority of the children who think the 2-number
game is easier, I ask that they explain their reasoning. Typi-
cally, they provide a constructive specification of how to play
the variation using the mechanism that they have refined for
playing the original game (the perfect binary search):

“use the previous search to find the smallest num-
ber (which must be in the range 0 - 50), and then
calculate the largest number as (100−smallest).”

Of course, this search will, on average, be 1 step quicker
that the search for a single number in the range 1 — 100.
Some of the children manage to explain this improvement.
There are two components that are being re-used here (see
2.6):

• the original binary search, and

• the calculation of the largest (missing number) as a
simple subtraction.

A second noteworthy observation is that the children quickly
identify a symmetry in the problem that means that they
can reformulate their approach in terms of finding the largest
(not smallest) element first. This symmetry can be viewed
as a form of sub-classing (see 2.5) where either approach

6This phase requires us to work with older children who have
the ability to count to 100, and perform simple addition and
subtraction.



is functionally correct; but where one implementation may
be more or less efficient than another under certain circum-
stances; in other words, they are each specialisations.

Phase 7 sample analysis: The youngest student to cor-
rectly identify that the 2-number game is easier than the
1-number game was 10 years old. The oldest student who
did not understand the explanation of why this should be
the case was 16 years old.

Final Phase: Communication Observation
The number of phases that we execute can vary between 5
and 15 (depending on the school and children). We nor-
mally terminate the session with a final phase that helps us
to make more meaningful observations with respect to chil-
dren having really achieved some sort of algorithmic under-

standing of the game they are playing. Where possible, we
mix the children from the session with children who have
not participated. We routinely observe the children who
were involved in the session playing the games against their
friends. Some of them keep the algorithmic secrets to them-
selves in order to improve their chances of winning, others
take more delight in explaining the algorithms they have
learned to their colleagues.

Final Phase — sample analysis: The percentage of
students who attempted to teach the algorithms to their
peers did not appear to be correlated with the age of the
students. Similarly, we could not identify any pattern with
respect to students keeping the secrets to themselves and
their ages.

3.2 Case Study 2 - The Tower of Hanoi
The work described in this section of the paper was carried

out over two years. It is based on our recorded observations
of the interaction and communication between CS1 students
within groups and each group’s written notes and solutions
to problems. For each student in every workshop we used a
Likert type scale of 1 to 5 and rated their ability to support
their beliefs, have effective communication skills, participate
in the groups, be open to new ideas and show constructive
critical thinking[22]. We also rated the overall performance
of the group in how they tackled the given problem, if they
achieved the learning outcomes, and if they were success-
ful in reaching a solution to the problem. As each group
were required to produce a written set of instructions on
how to solve the problem and file a master copy in their
group journals, we were able to analyse and compare each
group’s solution to a given problem. We also used peer-
group formative assessment, whereby groups assessed each
others work with the proviso that any criticism had to be
constructive. In addition, we video recorded every group in
one of the workshops. In all, there were thirty-eight formal
groups over the two year period, with a group size of five
to seven students on average. In their allocated workspace
each group had the use of a white board and were facili-
tated by a post-graduate student, the 2nd author acted as a
roaming facilitator visiting and observing all groups in every
workshop. The 2nd author and the post-graduate students
met each week to discuss the previous week’s workshop and
review each group’s performance, the 2nd author recorded
these meetings.

The Tower of Hanoi puzzle, invented in 1883 by Edouard
Lucas [18] has been widely used as a programming exer-
cise in introductory computer science data structures and

Figure 7: Prop in its starting position

algorithm courses7. It has also played an important role
in experiments in the area of child psychology and learning
difficulties (see [5] for a typical example). The traditional
Tower of Hanoi consists of three pegs and a set of n, typ-
ically six to eight, disks of differing diameters that can be
stacked on the pegs. The objective is to transfer the disks
one at a time, from an initial start state into a goal end-state
in the minimum number of moves, subject to the rule that
a larger disk can never be placed on top of a smaller disk.

This problem was given to the students in the workshops
in the first week of term. During lecture time (prior to the
workshops) in that week the students looked at different
types of instructions and the language used to convey those
instructions; for example: musical scores, knitting patterns,
instructions for assembling an object and cooking recipes.
We noted the precision given in some instructions and the
ambiguity in others. We had not covered any (Java) pro-
gramming syntax.

Our objectives for the use of this problem were that the
group should:

• break the problem down into solvable units,

• identify the repeated sequence of moves required in
solving the problem,

• label/name discs and pegs,

• use conditional statements, and

• recognise that a solution may not be the most efficient.

We gave a prop (see figure 7) to half of the groups. All
groups identified the following:

• Facts: 3 pegs, n discs of decreasing size.

• Constraints: Move only one disc at a time, cannot
place bigger disc on to a smaller disc.

Observations of the “no prop” group category
These groups spent a significant amount of time trying to
decide how they would represent the pegs and discs. Some of
the initial ideas were based around using chairs as the pegs
and people as the discs, discussions ensued about how to
represent the different size of discs: should it be the tallest
person to the smallest person, or the heaviest person to the
lightest person? Another approach was the use of coins to
represent the discs and everyone was to assume that pegs
existed; subsequently pegs were drawn on a piece of paper

7It is difficult to find a data structure and algorithms book
that does not analyse the Tower of Hanoi problem; a typical
introduction to the problem can be found in the classic Walls
and Mirrors book [19]



Figure 8: Re-designed prop in its starting position

and the coins were moved on the paper. Another idea was
the use of books of different sizes as the discs and these
were placed on a table, lines were drawn on the table to
signify the pegs. Each group in this category devised some
strategy for visualising the tower. All of the groups made
use of the white board to document their moves. All groups
put a name or label on the discs and the pegs. In terms of
software engineering the students have used data refinement
and abstraction (see 2.3) when they:

• discussed different ways to represent pegs and discs;

• investigated the use of chairs, people and books; and

• put a label on the discs and the pegs.

We observed the use of constrained genericity (see 2.7) in
that were able to solve the problem using any type of entity
(coins, people, books) provided there was a way of compar-
ing these entities in terms of size (larger, smaller).

Observations of the “prop” group category.
These groups engaged in a very similar process as the groups
with no props. However, the use of the prop meant that they
were immediately able to visualise their ideas and test out
their strategy at a much earlier stage. We noticed that the
groups using the props did not use the white board and
relied solely on the prop. All groups put a name or label on
the discs and the pegs.

One of the groups in this category initially followed the
same process as the other groups. What was interesting
about this group was that they subsequently threw the prop
away as they believed the prop was designed incorrectly.
They identified a “solution” incorporating a circular pattern
(see figure 8), where the moves were refined to be clockwise

and anti-clockwise.

Find a better solution
Once a group had devised a solution for at least 3 and 4
discs, the observer intervened and asked them if they could
solve the problem with the same constraints in less moves?
This question was asked of the group irrespective of the solu-
tion that a group had formulated. This forced the groups to
retrace their steps and to question whether this was the best
solution they could devise for the instance of the problem.
The groups in the “no prop” category had their sequence
of moves recorded on the white board; and they counted
the number of moves it had previously taken them and then
tried to change their sequence to improve upon their so-
lution. This involved experimentation with random moves
and corresponded to them testing out sequences of process
refinements (see 2.2), similar to the random swapping be-
ing refined in our sorting example(see figure 2). The groups
with the prop had difficulty remembering the exact sequence

of moves they had made; it was at this stage that they made
use of the white board. One student took instructions from
the group to make the moves, a second student called the
moves made, while another student recorded those moves on
the white board.

A number of groups in both categories reduced the prob-
lem to 1 disc, came up with two different solutions, and
selected the solution with the least moves. They then intro-
duced another disc and went through the same process, once
again selecting the solution with the least number of moves.
This process continued until the students started to identify
the same sequence of moves in their solution for 2 and 4 discs
and also between 3 and 5 discs. They hypothesised that the
sequence of steps for 2 and 4 would hold for 6 discs, subse-
quently tested this by methodically recording each move on
the white board and confirmed their hypotheses held true.

The techniques used by the students here are:

• Process refinement (see 2.2) — when they solved the
same problem in less moves.

• Subclassing and genericity (see 2.5 and 2.7) — when
they identified a different sequence for odd and even
number of discs.

• Composition (see 2.6) — when they identified re-use
for the repeat sequence of moves for 2, 4 and 6 discs.

An optimal solution
We noticed that once a group confirmed a sequence of moves
was repeated they came up with a formula which would de-
termine the optimal number of moves for solving the Tower
of Hanoi with n disks. The majority of groups in the no
prop category used formula (1).

(1) moves for n = (moves for n − 1) ∗ 2 + 1

Whereas the groups who used the prop tended to develop
formula (2).

(2) 2n - 1

In both cases n represents the number of discs.

We have taken this classic problem and in the first week
of term, without giving the students the computer science
or software engineering background, asked them to solve
it. They have demonstrated to us, through their process
of solving the problem and in the concrete step-by-step set
of instructions that they produced, their implicit use and un-
derstanding of software engineering techniques. It appears
that this algorithmic understanding is made up of the same
components as we observed in the school childrens’ problem
solving skills.

4. COMPARISON
We have already discussed the similarities between the two

groups of students, based on the common types of software
engineering techniques that we observed. For completeness,
we comment on the key differences between working with
these two groups.

4.1 Communication and objective validation
A main difference is that school children and university

students have different communication skills. In order to



validate an observation that a subject has indeed some form
of algorithmic understanding one must take into account the
communication skills of the subjects. The two extremes of
the spectrum are:

• Very young children who cannot write. They do not
have a large vocabulary for speech. They can, how-
ever, communicate through a natural combination of
speech, drawing, sounds and gestures. To validate that
a young child has algorithmic understanding we have
introduced a final phase to all our sessions. This phase
mixes children who have just finished their game-playing
session with children who have not participated. We
observe that many of the children successfully commu-
nicate their playing algorithms to their friends.

• University students who have good communication
skills (written and oral). To validate their algorithmic

understanding we ask simply that they write down (in
whatever language or notation they wish) what it is
that they are doing.

In both cases, there are different strengths and weaknesses
to this type of validation. An example of the material re-
turned by the university students for the Tower of Hanoi
problem (who had access to the prop) is given below:

Note that there are two different patterns,
one for odd and one for even.

Sample solution for 3 and 4 discs.

1: Count the number of discs
2: If number of discs on peg 1 is odd,

move top disc (n) to peg 3
if even move top disc (n) to peg 2 go to step 10

3: Move n+1 to free space
4: Move n to n+1
5: Move n+2 to free space
6: Move n to peg 1
7: Move n+1 to n+2
8: Move n to n+2
9: Goto 24
10:Move n+1 to free space
11:Move n to n+1
12:Move n+2 to free space
13:Move n to n+3
14:Move n+1 to n+2
15:Move n to n+1
16:Move n+3 to free space
17:Move n to n+3
18:Move n+1 to free space
19:Move n to n+1
20:Move n+2 to n+3
21:Move n to free space
22:Move n+1 to n+2
23:Move n to n+1
24:No more discs STOP

It is beyond the scope of this paper to analyse the degree of
evidence that is required in order to state that a subject has
achieved algorithmic understanding of a problem or game.
However, in the example above, such understanding has —
we argue — been clearly demonstrated.

4.2 Size of groups and time with classes
We note that there are 2 major differences with respect

to the organisation of the sessions:

• Group size: In the school classroom, we do not run
parallel sessions across a number of groups. Thus, our

group size is effectively the number of children in the
class. In the university, we explicitly divide the stu-
dents into small groups.

• Time for sessions: In the university, each session is
strictly controlled to last a set period of time (usually
90 minutes) in a single period. In the schools, we run
sessions over a variable period of time with multiple
visits to cover a sequence of phases. Thus, the amount
of time spent on a problem or game is not fixed. The
shortest sessions are 30 minutes. The longest totalled
4 hours (over 3 visits)

It is beyond the scope of this work to examine how the
organisational differences could impact on our experimenta-
tion and observational analysis.

4.3 Maturity of subjects and deliberate
“misbehaviour”

We have already commented on the impact of age on
the ability of the subjects to communicate their algorith-

mic understanding. In schools we have observed behaviour
that never arises (as far as we have observed) in university;
namely, subjects deliberately miscommunicating their un-
derstanding. It is not uncommon for us to observe a child
playing the search game using a near perfect binary search.
However, when asked to explain what they are doing, they
deny any knowledge of their structured approach and then
simulate random playing when they know we are watching.
There are a number of explanations (usually supported by
their teachers) for this type of behaviour which are consis-
tent with our observations. We are moving towards a more
scientific objective collection of data using computer appli-
cations to simulate the game and collect data in an unob-
trusive way: this should overcome the problem of deliberate
“misbehaviour”.

5. CONCLUSIONS
We believe that the work presented in this paper motivates

further investigation and experimentation. We observed lit-
tle difference between the children and adults with regard
to how they learn about computation, and suggest that the
strong similarities are due to a common set of problem-
solving techniques which are fundamental to all problem-
based learning, in general, and learning about computation,
in particular. This common framework is usefully modelled
using well-understood software engineering techniques.

Future work falls into 3 complementary streams:

• Develop a theory of problems that could be used in
reasoning about the order in which problems should
be presented to CS1 students, and the relationships
between these problems.

• Implement a collection of Java applications for objec-
tively gathering data about the way in which school
children solve problems. Some prototypes — for sort-
ing and searching games — have already been success-
fully deployed8.

8Thanks to Marie Nangle for her final year project Algo-
rithms for Understanding Algorithms — an interactive tool
for analysis of the way in which children learn algorithmic
concepts in 2002, and Pat Phelan for his MSc Software Engi-
neering thesis Rapid prototyping an educational online game:
experimenting with sorting in 2004.



• Feed back what we have learned from this collaborative
research into the sessions that we run in the schools
and with the university students.

Our final objective is to consolidate our proposal for the
theory that: software engineering provides a good framework

for reasoning about how children and adults learn to solve

problems. This paper is a first step towards that goal.
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