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Abstract

We believe that a more rigorous method of specification and validation can be achieved by
first developing a specification architecture whose high-level semantics are based on object
oriented concepts. This architecture promotes the construction of new functionality in a
formal manner using rigorously notions of composition and inheritance. An object oriented
approach will also facilitate incremental approaches to validation and verification.

We present, our first steps towards producing such an architecture for the Plain Old Tele-
phone Service (POTS), which is specified and validated using a formal object oriented lan-
guage based on LOTOS. The method by which the formal model is derived from the informal
understanding of the requirements is examined. Validation based on meta-analysis of the
problem structure is elucidated.
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1 Introduction

The problem of feature interactions in telephonic systems is well documented. Formal lan-
guages have been used in the development of such systems to improve the means of analysing
requirements models for undesirable behaviour. Unfortunately, there is no high-level means of
synthesising and analysing systems in which many features exist (as is the case in real telephone
networks). Thus, it has been necessary in the past to utilise ad-hoc means of specifying features
and testing their functionality in complete systems.

We believe that a more rigorous method of feature composition and validation can be
achieved by first developing a service specification architecture whose high-level semantics are
based on object oriented concepts. This architecture promotes the construction of new features
in a formal manner using rigorously notions of composition and inheritance. The object oriented
approach will also facilitate incremental approaches to validation and verification.

We present our first steps towards producing such an architecture. Specifications are given
using LOTOS (we discuss the different styles and techniques which this language supports and
motivate the adoption of an object oriented approach) although the same principles should be

applicable in a wide range of languages.

2 Introducing LOTOS

LOTOS (Language Of Temporal Ordering Specifications), see [11, 48, 28], is a wide spectrum
language, which is suitable for specifying systems at various levels of abstraction. Consequently,
it can be used at both ends of the software development spectrum. Its natural division into ADT
part (based on ACT ONE [21]) and process algebra part (similar to CSP [27] and CCS [37])
is advantageous sinceit provides the flexibility of two different semantic models for expressing
behaviour, whilst managing to integrate them in a relatively coherent fashion.

2.1 Syntax and Semantics

LOTOS is a language using a finite alphabet of observable actions to describe systems as a
set of interacting processes. One can distinguish between basic-LOTOS and full-LOTOS. In
basic-LLOTOS, the interaction between processes is described by pure synchronisation without
exchanging values, whilst in ful-LOTOS processes can exchange values of particular sorts!.
Process definitions can also be parameterised by sorts. It is the abstract data type part of the
language which defines the sets of values (sorts) which can be used for such parameterization

in the process algebra specifications.

'In fact, sorts can be used to parameterise the labelling of events at particular gates. Then, events can be
conceptualised as some sort of exchange of data between behaviour expressions during event synchronisation.



Syntax: Basic LOTOS

In this section, we present the syntax of basic-LOTOS. For further details on these topics we
refer to [5]. In the syntax of basic-LOTOS, a process is defined by its behaviour expression.
In the usual manner, construction operators are defined for creating new behaviour expressions

from simpler expressions (see the following table) :

Name Syntaz
maction stop
unobservable action prefix ;B
observable action prefix qg; B
choice B-1[|]B-2
general parallel composition Bi|[g1,- -+, gn]| B2
pure interleaving Bi]|| B2
full synchronisation Bi|| B2
hiding hide g1,---,¢9, 1n B
process instanciation Plg1, -y gn)
success ful termination exit
enabling By >> By
disabling Bi[> Bs

Semantics: basic-LOTOS

The operational semantics of LOTOS is defined as a simple behavioural tree of actions. The
set of actions that a behavioural expression can perform at any given time in its execution are
defined by following the following axioms and inference rules. The following notations are used:

S denotes the set of user-definable gates

S’ denotes any subset of S

g1, -, gn ranges over S

g™ ranges over S U {4}

u ranges over S U{i}

ut ranges over S U {7,d}

B, By, B], - - - represent behaviour expressions



Name Axtoms and Inferences rules
Inaction no rules
Prefix w;,B -5 B
Termination | exit —— stop
vt
Choicel Bl;_{_Bl
Bi[|B: = B}
» B, X Bland ug s’
Compositionl y T
Bills1B: = Bills"]| B
9+ 1 9+ 1
" By = Bj and B — B,
Composition3 -
B1|[S]|B. = Bi|[S]|B;
B*5 B and ut ¢ S
Hidingl e
hide S in B X~ hide S in B’
B-L B andge s
Hiding? anc g€
hide S in B — hide S in B’
B1 5 Bj
FEnablingl ! 7) }
B1 >> By — B} >> B>
5
B B
FEnabling?2 i il
Bi >> By — B>
B o
Disablingl B — B !
Bi[> B> — Bi[> B>
+
B, 5 B
Disabling? S
Bi[> B £ B;
5
B B
Disabling3 )
B, [> By — B2
/ I , / RN,
Instanciation | _Erecess Ploi, -+, gn] := By and Bi[gl/gl, s gn/gn] — B
P[glv"'vg'ﬂ] M—> B/
Relabelingl | B2 B0 =[91/g1 - 90/ga] and g/g € &
B¢o — B'¢
+
: B == B and pt & {gi, -, g}
Relabeling?2 T
B¢ L5 B¢

2.2 Specification Styles

Different styles have been identified for writing LOTOS specifications [48]. Each style is closely related
to the description of the behaviour of the system. The style can be said to reflect the way in which the
behaviour being specified is understood. A style can enforce a particular problem conceptualisation by
restricting the way in which the LOTOS can be used.

In the desciption of observable behaviour, a system behaves like a black boz, i.e. the internal events
are not visible. Two fundamental styles dominate:

e The monolitic style uses the choice and sequence operators to explicitly define the behaviour as
an action tree. This style is useful for debugging and testing the specification of small systems.



This style does not adhere to any of the commonly accepted principles for the construction of non-
trivial behaviour. It provides no means of decomposing problems and the specifications constructed
in this way are said to be semantically flat.

e The Constraint-Oriented style composes a set of independent constraints in parallel. A con-
straint is simply a behavioural expression at some level of abstraction. We identify three types of
constraint which are useful for the development of system behaviour:

— The local constraints are applied internally to the components of the system.
— The end-to-end constraints are applied between the different components.

— The global constraints are applied to the overall of the system (at its external interface).

The constraint oriented style is abstract, implementation-independent, and provides a stepwise
means for developing system requirements. However, it is not well suited to the specification of
problems where the constraint decomposition does not reflect the structure of how the system 1s
to be understood. Certainly, the notion that two interacting entities can constrain each other’s
behaviour is useful (but defining the entities themselves as constraints does not seem a fruitful ap-
proach to structuring a system in an understandable way. Furthermore, such an approach does not
give the specifier a means of using internal structuring mechanisms to imprve the understanding,
development and re-use of components.

System behaviour can also be described as a white boz, i.e. the internal and external events are
observable. One can identify two fundamental styles :

e The State-Oriented style can be viewed as the extension of the monolitic style with state
variables. The specification is defined as sets of alternative (parameterised) sequences. Each alter-
native 1s guarded. This style provides a directly implementable system described as an automata.
However, it is tedious for defining systems with many different states. The paremeterisation pro-
vides only one level of compositionl structure whereas it would be beneficial to view a system as
state machines inside state machines inside state machines etc .. ..

e The Resource-Oriented style describes each resource of the system as a process and uses the
parallel operator to compose them. The internal actions can be hidden by making them invisible
from the external behaviour of the system. In this style, the specification imposes a correspondance
between specification and implementation. Furthermore, although there are often many different
types of resource in a particular problem domain, the style does not offer any means of helping to
distinguish between them. Classification of different types of resources is a useful way to improve
understanding and component re-use. The resource oriented style does not address these issues.

In practice, a mixture of theses styles is often used to describe system behaviour (for instance we can
use the resource-oriented style at the top of the specification and each resource can use any style among
the monolithic, the constraint-oriented and the state-oriented). More generally, the different styles are
clearly suited to modelling behaviour at different levels of abstraction. The problem with this is that
during system development there is never a consistent level of abstraction for the whole system model,
and so we end up having LOTOS specifications with a mixture of styles. This inconsistency is made
worse by the fact that choices of style, changes of style, different mixtures of style, etc ... are not well
documented (or even understood). What we need is a consistent specification style which can be used
at different levels of abstraction. One such style is object oriented, and we base our work on the formal
object oriented development method (FOOD) in [22]. This is reviewed in the next section.



2.3 LOTOS in POTS specifications: a critique

The Plain Old Telephone Service (POTS) problem has been addressed by LOTOS specifiers in many
different papers.

[2] views the telephone system as a set of nodes connected by lines. Each line can be used to
transmit several conversations simultaneously. Each conversation is called a channel. A conversation is
not transmitted on one single channel: it follows a path formed by several physical lines. The nodes
consist of switching modules performing the switching modules of channels. They proposed an algebraic
abstract model, modeled as an object, that records the history of functions which are used to manipulate
it. (For example, the function that may connect or disconnect a channel is modelled as a service at the
interface of the object.)

Tvrdy[29] published an early paper about the specification of telephone systems in LOTOS; this was
followed by several more specific papers[9, 36, 51]. In general, the specification of the telephone system
i1s done using the constraint-oriented style. The description uses a mixture of different styles but with
the constraint-oriented style dominating the others. These works are similar in their specification of the
Plain Old Telephone Service (POTS). The underlying structure is common (although the specifications
themselves are very different). This structure is illustrated in figurel.

user,talk

, Cdla \ Global

/ Called Controller

y ! Constraints

4 Single-Connection

user talk

Caller

Called Controller

Single-Connection

Multi-Connection

POTS System

Figure 1: POTS Arcitecture

Intuitively, composition is represented by containment: for example, many single-connection pro-
cesses are composed to make a multi-connection process. Interleaved processes (when there is no syn-
chronisation) are drawn on top of each other: for example, caller and called in a single connection both
interact with controller but never synchronise with each other. Processes synchronisations are repre-



sented by thick lines connecting process boxes: for example, POTS synchronises with multi-connection
and global constraints (on the same gates).

Within this architecture, the integration of a new feature is done by making the appropriate modi-
fication to the user on which the feature will be activated i.e the caller or the called or both as well as
its controller. The main drawback 1s that for each feature the specifier must decide how to extend the
POTS system to support it: the efficiency of this method depends on the knowledge and experience of
the specifier. This structuration suffers from its inability to permit incremental system extensions which
do not require changes to the general architecture model. Furthermore, the notion of feature is absent
from the conceptualisation: the addition and combination of features is just somehow tagged onto the
system structure in some unobvious manner.

The two different types of extension are illustrated in figure 2

Original System
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Figure 2: Extended POTS

We aim for an architecture which supports the incremental development of systems in a modular
fashion. The principle is one of open for extension but closed to alteration. An object oriented strategy

adheres to this principle.

3 00 LOTOS

LOTOS is chosen as a suitable object oriented requirements capture and design language for the telephone

service (and features) specification because:

e it suits our need for semantic continuity from analysis to design: the ACT ONE requirements
model can be incorporated within the full LOTOS design model.

e LOTOS has already been the subject of research with regard to its suitability for modelling object
oriented systems and incorporating object oriented principles: for example, see [3, 50, 44, 34, 32,

18, 13].

e There 1s wide support, often in the form of tools, for the static analysis and dynamic execution of
LOTOS specifications: for example, see [49, 26, 6, 40].

e LOTOS has already been applied to the problem of POTS and feature specification, although not
in an object oriented manner.



3.1 Object Oriented Principles and Advantages

The object oriented paradigm arose out of the realisation that functional decomposition is not the only
means of structuring code: an alternative is to construct a system based on the structure of the dataZ.
Emphasis on data structure led to the encapsulation of functional behaviour within data entities: objects>.

Object oriented concepts were conceived in Simula [39], went through infancy in Smalltalk [25, 24]
and could be said to be leaving adolescence, and approaching maturity, in the form of many different
languages (for example: Objective C [17], C++ [47], LOOPS [4], Flavours [12, 38], CLOS [19, 31], Eiffel
[35] and Common Objects [46]) and methods (for example: those of Rumbaugh [45], Coad and Yourdon
[14, 15], Cox [17], Meyer [35] and Booch [8, 7]).

There has been much interest in combining formal and object oriented methods. The research falls
into two main categories:

e i) Using Object Oriented Techniques To Construct Formal Models

The success of object oriented techniques in software development has led to much interest in
using the same techniques for building formal models. Much of this work centres on the definition
of object oriented constructs, or the interpretation of object oriented concepts, in an existing
formal language. Good examples of the type of work which has been done can be found in
[13, 3, 18, 32, 44, 50, 23, 43, 34, 33]. This work has led to recognition of the inconsistent use
of object oriented terminology, highlighting the need for a concensus of opinion. Further, much
of the work shows the difficulties inherent in modelling object oriented behaviour in a semantic
framework which was not designed for such a purpose.

e ii) The Development of Object Oriented Semantics
The lack of agreement on the meaning of object oriented constructs, reinforced by the informal
semantics of most object oriented programming languages, has led many people to produce formal
object oriented semantics, for example see [10, 55, 42, 52, 20]. The thesis by Wolczko [54] provides
a more complete view of the technical issues, whilst Wegner [53] and America [1] examine the
philosophical aspects.

The FOOD approach of Gibson [22] is based on these theoretical foundations and has also proven
itself in the specification of service specifications in an industrial telecommunciations environment, For
that reason, it is chosen as our method for the development of our LOTOS POTS specifications.

The principles which make object oriented approaches sucessful are, in our opinion, as follows:

e Conceptual consistency
This is the ability to reason about systems at different levels of abstraction using the same concepts
(albiet, also expressed at different levels of abstraction). Shifting levels of abstraction does not
mean changing the things that you are thinking about only the way in which you are thinking
about them. Thus, an object oriented model can progress from the abstract to the concrete in a
continuous fashion.

e Simplicity
The main concepts are those of encapsulation, composition and classification. These notions are

20f course, there are programming languages which do not place emphasis on functional or data structure,
but we do not consider them in any detail as part of this work.

Two well known data-based sofware development methods which are generally accepted as not being object
oriented are the quite similar approaches put forward by Jackson [30] and Orr [41]. These approaches are closely
related to the object oriented paradigm in the initial analysis stages, but digress from the standard object oriented

view as they approach implementation.



3.2

familiar to all engineers and provide a good basis upon which problem understanding and modelling
can begin.

Open for extension
The notion of subclassing provides a powerful means of extending the behaviour of a system (or
subsystem) class without having to make changes to already specified behaviour.

Closed to alteration

Once parts of a system are coded and validated then they can be incorporated in a new system
(i.e. reused) in a very safe way which ensures that the behaviour they offer is not changed (even
though their implementation may be changed).

Emphasis on re-use
The methods emphasize re-use by incorporating re-use operators as part of the language semantics
(they are not just syntactic sugarings).

Controlled Polymorphism

The ability of an object to be viewed as a member of different classes (depending on context of
use) is very important. This is a powerful mechanism which is also open to abuse in universally
polymorphic languages. However, the classification hierarchy in object oriented systems provides
a means of controlling this facility (without reducing its utility). By allowing any object to be
treated as a member of any of 1ts ancestor classes, we can use the property of substitutability to
maintain the correctness of our ever changing systems.

OO ACT ONE: Requirements Models

The abstract data typing language ACT ONE provides an executable (abstract) model for customer

validation. The structure of the resulting ACT ONE requirements model corresponds to the structure

of the problem domain, as communicated by the customer.

The concrete syntax which we employ in the object oriented requirements model incorporates the

following:

A means of categorising entities into classes of behaviour.

A mechanism for representing a set of operations associated with each class, where each operation
associates one or more classes of entity with a resulting class of entity. In other words, a means
of recording the external interface of a class so that all operations (on class members) can be
statically ‘type checked’ for correctness.

A means of defining the behaviour associated with each operation. In other words, a set of
equations or axioms which give meaning to the operations.

A facility for defining one class of behaviour in terms of other component classes of behaviour.
An explicit means of representing the structure of the problem domain.
Parameterised classes of behaviour (genericity)

Inclusion polymorphism (subclassing).

An ADT provides us with a means of specifying ‘implementation free’ behaviour. This is ideal

for requirements capture: analysts must try to identify and record what is required rather than how

these requirements are to be met. However, a set of requirements must always contain some structure
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otherwise it would be impossible to record or understand them. The object oriented method of analysis
and requirements capture encourages the recording of certain structural aspects of the problem domain.
This aids understanding and gives the designers an initial structure upon which the design can be
developed. In this way a formal statement of object oriented requirements is useful in later stages of
development on two accounts: 1t unambiguously defines what is needed and it provides a structure for
understanding the needs.

Tt is clear that type and class should not be confused [16], but we do believe that types can be used to
implement the semantics of the class notion. Types are more general than classes. In our development we
generate type specifications from a formal model of object oriented requirements. The set of behaviours
that can be specified in this way 1s much smaller than the set of all behaviours which can be specified
using ADTs. The differences between types and classes (subtypes and subclasses) arise from the way in
which the terminology is applied rather than from differences in the underlying principles. The three
roles of types, namely abstraction, re-use and validation, are equally applicable to classes:

e Abstraction: classes define an abstract interface behind which all the properties of objects in the
class are encapsulated.

e Re-use: classes provide a fundamental package of re-usable behaviour.

e Validation: object oriented systems can be statically analysed to guarantee that all service
requests to each object in the system, which may occur in the system lifetime, are available as
part of the interface of the class to which the object belongs.

Problems arise in conceptually relating class with type when type is taken to represent a purely static
syntactic interface. It is necessary to consider the behaviour offered by type ‘members’ through their
interfaces. Abstract data types provide both syntactic and semantic views of interface. Consequently,
we support the view that classes and ADTs can be usefully related in a formal framework.

The exact syntax and semantics of our OO ACT ONE is shown in the POTS requirements models
in the next section.

3.3 0O LOTOS: Design Models

The step from analyis to design requires an extension to the requirements model to incorporate semantics
for object communication and concurrency. A process algebra provides a suitable formal model for the
specification of these properties. LOTOS, which combines ACT ONE and a process algebra in one
coherent semantic model, provides a means of constructing object oriented design semantics.

The design phase of our development starts with the transfer of an ADT specification into a full
LOTOS specification. In this way, we can start to reason in terms of higher level constructs such as
communicating processes. Quite deliberately, in our method, high-level design features are abstracted
away from during requirements capture. The requirements model says what rather than how. ADTs do
play a major role in LOTOS designs: they maintain the underlying abstract behaviour whilst the process
algebra 1s used to define the more concrete high-level design properties.

Given a set of system requirements specified in ACT ONE, there are a number of different ways
in which these requirements can be translated to an initial abstract LOTOS design. Object oriented
designers must initially identify the communication aspects of the way in which the underlying object
oriented behaviour is to be fulfilled. The designers of a system must decide how the behaviour is to
be offered at its external interface (and what this external interface should look like). This simple
decision can affect the rest of the design process. Identifying an object oriented communication model
and specifying the translation from OO ACT ONE, is not simple. There are a number of alternative

11



models and a number of ways in which these can be specified. Four of these alternatives are examined in
the thesis by Gibson[22]. The list is not exhaustive and the ways of specifying the models are limitless.

The principle in each case i1s that a process definition is parameterised by an ACT ONE class
specification. Every operation associated at the external interface of the class must be an event which
the LOTOS process can always synchronise with. The parameterisation of the event corresponds to
the input/output parameters of the operation being requested. The process algebra is then used to
coordinate inter-object communication. This is examined in more detail when we show the LOTOS

POTS design.

3.4 OO Development

We show the effectiveness of LOTOS in representing object oriented POTS designs. The object oriented
LOTOS specification is open to formal manipulation, as part of the design process, as a means of aiming
towards a particular implementation environment. However, for the sake of simplicity, we report only on
the most abstract POTS design which includes a high degree of implementation freedom whilst capturing
our requirements precisely and completely.

The POTS development illustrates how an object oriented approach narrows the gap between analysis
and design. Consistency of representation, and conceptual congruence between the way in which the
problem is defined and the way in which it is solved in an implementation, led us to believe that it was
correct to use the structure of the initial analysis model as a high level design. Much of the work done in
analysing a problem is therefore incorporated in the design of a solution. Our initial analysis identified
components of the system, i.e a decompositional approach was applied to the whole problem. Each
of the components was further decomposed until decomposition was no longer necessary to improve
understanding. This implied a purely top-down method, whereas the actual development combined
this with a bottom-up strategy. Components, 1.e. the object oriented processes, were specified such
that different parts of the system were at different levels of abstraction during the development of the
specification.

Architectural Concerns

There is a definite structure contained in the LOTOS specifications of the POTS model. We need to
address the question of why it is there. In large, complex specifications it is impracticable to reason
about the behaviour of the system as a whole. This suggests that a conceptual decomposition of the
problem must be inherent in the specification. We will refer to a specification as being structured only
if the decomposition of the problem is explicit.

The main benefit of having a structured specification is that it can be used to aid understanding®.
Clearly a specification that is easier to understand is also easier to implement. The introduction of
structure should also make the system more amenable to changes whose effects are kept localised as
much as possible.

Arguments against structured specifications concentrate on their constraining nature. Implementers
may argue that the decomposition of the system, as captured by the specification, is not the way in
which they would choose to structure the code. There may be a conflict of interest between writing the
specification to aid understanding and writing it in a way that eases the step towards implementation.

This 1s certainly a concern when implementers are working to specific constraints imposed by the
programming language or performance demands. In some cases the conflict of interest between the

Tt is likely that a poor structure could also hamper understanding.
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specification and the implementation may mean that the structure within the specification cannot be
followed by the implementers. It is effective use of systems analysis and bottom-up knowledge that
mitigates against this.

Within the object oriented paradigm, this problem is not as prominent. The decomposition of a
system into a set of communicating objects is consistent at all stages of the development cycle. In
particular, there is a closer binding between the specification and implementation architectures. The
price for this is that object oriented specifications are less abstract. The structure of the problem has
not been abstracted; instead 1t has been carefully represented in the specification with the intention that
it be used in the implementation.

A perfect scenario would occur when the initial system analysis produced an informal problem
decomposition that is acceptable to both specifiers and implementers. Here we mean acceptable in the
sense that the decomposition can be used directly by both. In the object oriented paradigm this would
require the objects within the specification to have counterparts in the implementation. The structure
of the system would then be completed by realising the communication between these components.

There are other advantages in reusing the specification structure in the implementation:

e Generality
Writing a structured specification requires making a number of design decisions. In an object
oriented specification these decisions are often concerned with producing components that are
general. This generality can then be exploited for component extension and reuse.

¢ Testing
Making the specification and implementation structures as isomorphic as possible makes traceabil-
ity easier, in the sense of a design audit. Testing the system can be done in a bottom-up fashion.
This gives more confidence in the code being a valid implementation of the specification.

¢ Controlling Change
Extending or changing the system can be achieved in a more controlled manner. In an object
oriented specification, modifications can be kept localised. However, if the implementation has
a different structure from the specification then updating the code to match the specification
may require changes across the whole system. Structural compatibility means that changes to
the specification can be more easily incorporated in the implementation. Verification of the new
system can concentrate on the components that have been altered.

The POTS problem domain is also unique because of the inherent executability of the requirements
models. Telecom engineers are well versed in presenting informal feature specifications as types of
simple state transition systems. The OO ACT ONE semantics are based on a formailisation of objects
as instances of state transition machines (together with a sound theory for the relationship between
classes of objects). Thus, we hope to show that an object oriented approach is also natural for feature
specification.

4 POTS Specification

4.1 Introducing POTS and Features

The telephone system may be regarded as a system with a set of phones and a switch(POTS) which
establish the connection between them see the figure below 3.
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Figure 3: Telephone System

Each phone is identified by a unique number. Thus it also identifies the user. The users communicate
via POTS by using a well defined set of primitives. These primitives reflect what the user can do. A simple
scenario to illustrate how the user can used the system may be the user lifts his handset and dials the
number of the callee. Next, the connection will be established between the users if the callee is not
busy and they begin talking. Finally, the communication terminates by one of the users dropping
their handset. POTS allows at most two users to be connected and several sumletanous connections.
The possibility for several users to be engaged ar the same time in one connection is considered as an
additional feature. The behaviour of POTS is that which any (competent) telephone user is familiar
with.

The plain old telephone service (POTS) forms the basis for many complex forms of telephone
feature. A feature is some service offered to meet some communication need. Features are the funda-
mental building blocks for telephonic communication. The difference between feature and service (which
is some sort of base behaviour for a group of features) is not important in our presentation.

We must ask why the development of telephone services is in any way different from the development
of other systems. Why cannot we apply traditional development methods in the development of such
systems? The answer is: we can employ standard methods but there i1s an added complexity in the
specification of feature which requires something more. Namely, telecom systems evolve at a rapid rate
and the increments of development are features. Thus we do not have a stable base upon which to build
a firm foundation. The only means of providing a stable architecture of development is to develop a
high-level understanding of features and to build a generic framework in which this understanding is
captured.

The feature interaction problem is stated simply as follows. A feature interactionis a situation
in which system behaviour (specified as some set of features) does not as a whole satisfy each of its
component features individually. The problem is further compounded by features being deliberately
defined to interact. These so called "wanted feature interactions" are problematic because they are
fundamentally no different from "unwanted interactions". We therefore require a means of identifying
all types of interaction, letting the customer decide whether the interaction is wanted, an if not wanted
then providing a facility for removing it. This is where a formal language for the representation of
features is very important.

As we see things, the problem with the current work on feature interaction is not that the work is
incorrect, but is that it is not easily extensible to be able to manage future feature requirements that
arise from the rapidly growing capabilities of our telecom systems. The introduction of a new feature is
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not incremental in the sense that we require. For a new feature specification we must be able to validate
its behaviour before it is implemented. We must be able to validate its behaviour without having to
validate the behaviour of all other features in the network (again). We must be able to identify areas
where feature interactions do not exist, may exist and definitely exist. Thus making our integration of
a new feature into a system much easier. Finally, we must be able to re-use already existing features in
the production of new features. This is not a simple task.

4.2 POTS OO ACT ONE requirements model

There are two main classes in the POTS requirements model, namely: Telephone and POTS. All other
classes, except Signal and Hook (which are just simple enumeration types), that are used by these two
main classes are not specific to the POTS problem domain. The additional classes that appear in the
POTS requirements model are as follows:

e UID and UIDGen
These are used to identify telephones (users) and to generate new user identifications which have
not been previously allocated.

e USet
This is simply a set of users with operators for adding and deleting users, and checking if the set
is empty or contains a particular user.

e UPair
This class is a simple 2-tuple (pair) of user identifiers.

e UPSet
This class 1s a set os identifier pairs.

¢ Hook
This class provides a simple enumeration of the state of the hook of a telephone (either on or off).

e Signal
This class is a simple enumeration of the state of the signal from a telephone (whilst on or off
hook). The signals available are silent, ringing, talking, ready and busy.

The means by which the ACT ONE syntax and semantics are used to define classes of behaviour is
illustrated by the Telephone and POTS class specifications which follow. It should be noted that these
ACT ONE specifications can be derived directly from a more syntactically rich object oriented language
called OO ACT ONE. This enforces the object oriented principles which would not be evident in any
arbitrary ACT ONE specification.

4.2.1 The Telephone Class
The ACT ONE interface specification of the Phone class is given by the operations defined below:

type Telephone is UserID, POTS sorts Telephone

opns

NewTelephone:UID -> Telephone (* INITTALISER *)
strTel: UID, Hook, Signal -> Telephone (* STRUCTURE *)
listen: Telephone -> Signal (¥ ACCESSOR *)

offHook: Telephone -> Bool (* ACCESSOR *)
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ID: Telephone -> UID (* ACCESSOR *)

enabled: Telephone -> Bool (* ACCESSOR *)

drop, lift: Telephone -> Telephone (* TRANSFORMER *)
dial: Telephone, UID -> Telephone (* TRANSFORMER *)
dialln: Telephone, UID -> Telephone (* INTERNAL *)
otherBusy,otherFree: Telephone -> Telephone (* INTERNAL *)
otherChangeHook:Telephone -> Telephone (* INTERNAL *)
TelephoneEXC:-> Telephone (* EXCEPTION *)

The following notes should help to explain the syntax and semantics of the ACT ONE code.

The type Telephone is used to package together a number of sort definitions together for re-use.
Tn this case it packages two predefined type packages (UserID and POTS) together with a new sort
(Telephone) into a new type package.

The NewTelephone is an INITTAL value which corresponds to a Phone in its initial state.

The STRUCTURE StrTel is used to define the components of every phone to be fixed as a triple of
an identifier, a hook state and a signal state.

The ACCESSORS returns value to the requester of such a service (without changing the internal
state of the object). The enabled accessor is common to all OO ACT ONE objects. Tt returns
true provided the object 1s not in an exception state.

The TRANSFORMERS define services which change the state of a Telephone object, but do not
require any result to be returned to the service requester.

The INTERNALS define state transformations that occur nondeterministically inside the Telephone
and cannot be requested through its external interface.

The EXCEPTION is common to all OO ACT ONE specifications and is used to represent undesirable
(or as yet undefined) behaviour.

The semantics of the Telephone class are defined by the ACT ONE equations of the Telphone sort.
These are as follows:

eqns forall UID1,UID2: UID, tell,tel2: Telephone,

hook1,hook2: Hook, signall,signal2: Signal

ofsort Bool

offHook(strTel(UID1, hookl, signall)) = hookl eq off;
enabled(TelephoneEXC) =false; enabled(strTel(UID1,hook1,signall)) =true;
ofsort Signal

listen(strTel(UID1, hookl, signall)) = signall;

ofsort UID

ID(strTel(UID1,hook1,signall)) = UID1;

ofsort Telephone

NewTelephone(UID1) = strTel(UID1, on, sil);

(listen(tell) eq tal) and not(offhook(tell)) => talk(tell) = tell;
not((listen(tell) eq tal) and not(offhook(tell))) =>

talk(tell) = TelephoneEXC;

hookl eq on => drop(strTel(UID1,hook1,signall)) = TelephoneEXC;
hookl eq off => drop(strTel(UID1,hook1,signall)) = strTel(UID1,on,sil);
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Figure 4: Phone O-LSTS Interface Diagram

(* LIFT %)

hookl eq off =>

lift(strTel(UTD1,hook1,signall)) = TelephoneEXC;

(hook1 eq on) and (signall eq sil) =>
lift(strTel(UID1,hook1,signall)) = strTel(UID1,off rea);
(hook1 eq on) and (signall eq rin) =
lift(strTel(UTD1,hook1,signall)) = strTel(UID1,off,tal);

(* DIAL *)

hookl eq on => dial(strTel(UID1,hook1,signall),UID2) = TelephoneEXC;
(hook1 eq off) and (not(signall eq rea)) =>
dial(strTel(UID1,hook1,signal1),UID2) = TelephoneEXC;
(hook1 eq off) and (signall eq rea) =
dial(strTel(UID1,hook1,signal1),UID2) = strTel(UID1,off,sil);
hook1 eq off =>

dialln(strTel(UID1,hook1,signall), UID2) = TelephoneEXC;
(hookl eq on) and not(signall eq sil) =
dialln(strTel(UID1,hook1,signall), UID2) = TelephoneEXC;

(hookl eq on) and (signall eq sil) =
dialln(strTel(UID1,hook1,signall), UID2) = strTel(UID1, on, rin);
(* OTHERBUSY, OTHERFREE, OTHERCHANGEHOOK ...
end type (* Telephone *)

Similarly*)

The 0-LSTS diagram for the Telephone class is given in figured.

This 1s a state transition system representation of the telephone behaviour. The accessors are not
marked (they are simply null state transitions which return the appropriate values representing the state
of the phone). Internal transitions are identified by the dotted state transformations.
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Figure 5: POTS O-LSTS Interface Diagram

4.2.2 POTS
The interface specification of the POTS class is defined by the ACT ONE operations below:

type POTS is UPSet, USet sorts POTS, Hook, Signal, HS, STist
opns

NewPOTS:-> POTS (* INITTALISER *)

strPOTS: UPSet,UPSet,UPSet,USet,USet -> POTS (* STRUCTURE *)
stateUhook: POTS, UID -> Hook (* ACCESSOR *)

stateUsignal: POTS, UID -> Signal (* ACCESSOR *)

containsU: POTS, UID -> Bool (* ACCESSOR *)

enabled: POTS -> Bool (* ACCESSOR *)

whoRinging: POTS, UID -> UID (* ACCESSOR *)

whoTalking: POTS, UID -> UID (* ACCESSOR *)

dial: POTS, UPair -> POTS (* TRANSFORMER *)

drop: POTS, UID -> POTS (* TRANSFORMER *)

addU: POTS, UID -> POTS (* TRANSFORMER *)

lift: POTS, UID -> POTS (* TRANSFORMER *)

POTSEXC: -> POTS (* EXCEPTION *)

The POTS specification also includes the specification of the Hook and Signal classes. They provide
the behaviour of a system of telephone (users) which can communicate in pairs. There is no (theoretical)
bound on the number of users. The validation of POTS was much more complicated than the validation of
the Telephone class. The O-LSTS interface diagram of POTS is shown in figure 5. Note that the internal
state decomposition does not match with the external accessor services: the external view is by user
whilst the internal view is predominantly by user pairs. This is typical in object oriented specifications
where the user interface abstracts away from much more complex internal details (much like the way in
which the telephones on a real network abstract away from the underlying network complexity).

The structure of the POTS class is of interest. The first parameter represents the set of user pairs
who are talking to each other. The second parameter represents the set of user pairs where the first is
off hook and hearing a ringing sound and the second 1s on hook and hearing a ringing sound. The first
has called the second and the second has yet to answer (even though they are free to do so). The third
parameter represents the set of user pairs (caller and callee) where the caller is receiving a busy signal
because the callee is not available. The fourth parameter is the set of telephones which are currently on
hook. The final parameter is the set of all user (identifiers).
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Clearly the internal state representation of the POTS system is in some ways arbitrary. In object
oriented terms; it is only the state which can be seen through the external (accessor) operators which is
important. The state composition above was chosen for its extensibility and simplicity.

4.3 Validation

One of the main advantages of using an object oriented specification is in the area of validation. Since
the structure of the problem domain is represented directly in the requirements model, we can perform
a compositional validation. (This is not so advantageous with the simple telephone but was useful with
POTS, where we validated the behaviour of the components before the whole system was checked.)

Testing also increased understanding of the problem domain. For example, we discovered many case
scenarios which were incorrectly specified (in our original models and pre-exisiting models of POTS).
Testing was simply a means of validating that desirable scenarios were allowed by our ACT ONE model,
and that undesirable scenarios were forbidden. The tests were carried out by hand using the lite toolset.
We believe that we will need to create new tools which hide the underlying LOTOS and present behaviour
at a level of semantics more appropriate to the communication of requirements in the problem domain.

The validation was carried out by completely checking all possible states in our state transition
system requirements models. The new state of the system after a given transformation is specified
by an opertion. Term rewriting of ACT ONE expressions is used as the operational semantics for
our requirements model. The new state of a system (after a transformation) is validated through the
appliation of accessor operations. This is illustrated below for the Telphone class.

4.3.1 Telephone Validation

The following code was generated by the lite tool set. Tt completely validates the telephone requirements
model:

state 'UQ !On !silent

— I(dialln) ?7UID1-0:UID —— state U0 !On !ringing
— lift —— state U0 'Off ready

state 'UO Off ready

— drop —— state U0 !On !silent

— dial ?UID1-1:UID —— state 'UQ 'Off !silent
state 'UQ 0Off !silent

— drop —— state U0 !On !silent

— I(otherFree) —— state U0 'Off Iringing
— I(otherBusy) —— state U0 !Off !busy
state U0 !Off !ringing

— drop —— state U0 !On !silent

— I(changeHook) —— state U0 !Off !talking
state U0 'Off 'busy

— drop —— state U0 !On !silent

state U0 !Off !talking

— drop —— state U0 !On !silent

— I(changeHook) —— state U0 !Off !busy
state U0 !On !ringing

— lift —— state U0 Off !talking

— I(changeHook) —— state U0 !On !silent
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It should be noted that these tests were carried out on the process algebra specification of the
Telephone behaviour which was generated as the initial object oriented design. The process algebra
simply wraps the functional behaviour specified by the ACT ONE in a communication shell (where
gates correspond to services). This process algebra code is automatically generated from the ACT ONE
and it aids the testing of the ACT ONE behaviour model.

4.3.2 POTS Validation

The validation of the POTS object acts as a good example of how to completely test a system with a
potentially infinite number of states. Clearly, the number of states in the system grows exponentially
with respect to the number of telephones. Every telphone in the system is in one of six states (the state
where the telephone is off and silent cannot occur in POTS because the system knows immediately if the
other phone being called is busy or free and therefore the callee never enters the intermediate off-silent
state). The other six states (as seen in the telephone specification) can be read through the external
accessors of the POTS class.

Given that the POTS system can have any number of users then how do we validate its behaviour
with the customer. The simple answer 1s to start by validating a system with one user, then a system
of two users and then a system of three users, etc .... Then, we can reach a point (n-users) where
the addition of another user does not add any further complexity to the observable behaviour. Thus
the system is completely validated. (A proof by induction could be carried out if we have some sort of
meta-language for validation. However, this is beyond the scope of our work.) The question is: what is
the n-value for the number of users in the case of POTS. The answer is three.

Given a system of POTS with one user then (from that user’s point of view) the addition of another
user can increase the number of states that this user can be in. For example, the user cannot talk unless
there 1s someone else to talk to. Clearly, then, we must test with more than one user.

Given a POTS with only two users, there are some states which we can test which we cannot test
with one user. However, two users is not enough because if we add another user then (from the original
user’s point of view) there are some states which they can (collectively) be in when there is a third user
which they cannot reach by themselves. For example, userl can be on and ringing whilst user2 can be
off and busy. This is not possible unless a third user is dialling userl. Clearly, then, we must validate
POTS with at least three users. A simple analysis, however, shows that there is no three user view of
the POTS system which cannot be reached with three users alone. Thus a complete validation of POTS
can be done by validating POTS with three users. We should also note that in POTS we can add users
dynamically as behaviour progresses. However, this does not change the state of the existing telephones
in the system and so we do not need to test this dynamic addition. Instead, we test POTS with a static
number of users (namely three).

Given a 3-user POTS, we have a finite state machine of 216 states to validate (with approximately
4 transitions from each state). This is more than can simply be done by hand (even with use of the lite
tool set). To simplify the task, we identify symmetry in the state model. Clearly, the state of a 3-user
POTS is a permutation of the state of any three telephones. Thus, we reduce the number of states we
have to validate to 56. Finally, we note that the state invariant of POTS can be used to reduce this
number even further. For example, the invariant states (amongst other things) that the number of users
talking is always even. We are left with 16 states and 37 transitions to validate. This is much more
manageable and was done quite quickly using the available tools.
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Validating the Invariant

The use of an invariant to reduce the state space being tested is dependent on two things. Firstly,
we must prove that all initial states (in this case there is just one) satisfy the invariant. Secondly, we
must prove that all state transformations are closed with respect to the invariant. This is easily done
in the POTS ACT ONE specification by ensuring that no exception values occur in a complete trace of
behaviour.

4.4 POTS System Design

Given the (validated) ACT ONE specifications of the POTS and Telephone classes, we move forward to
the design of a parallel system of telephones. This is done using the process algebra part of LOTOS,
together with the ACT ONE requirements model. The first step is to generate full LOTOS specifications
of POTS and Telephone processes. The functionality (state changes) of the system is maintained directly
through the ADT specification. The way in which a system offers this functionality through its interface
is defined by the process algebra part. A simple remote-procedure-call semantics for service requests is
chosen in the initial designs, for simplicity.

PROCESS Telephone[drop, lift, dial, listen, offHook, dialln, otherChangeHook, otherBusy, other-
Free] (Telephonel: Telephone): noexit:=
hide otherChangeHook, otherBusy, otherFree in

([enabled(drop(Telephonel))] -> drop!ID(Telephonel);
Telephone[drop, lift, ..., otherFree| (drop(Telephonel))

il

([enabled(lift( Telephonel))] -> lift!ID(Telephonel);
Telephone[drop, lift, ..., otherFree] (lift(Telephonel))

il

(dial?UID1:UID!ID(Telephonel)[enabled(dial( Telephonel,UID1))];
Telephone[drop, lift, ..., otherFree| (dial(Telephonel,UID1))

il

(listen!TD(Telephonel); listen!listen(Telephonel)!TD(Telephonel);

Telephone[drop, lift, ..., otherFree| (Telephonel)

il

(offHook!TD(Telephonel); offHook! offHook(Telephonel)!TD(Telephonel);
Telephone[drop, lift, ..., otherFree| (Telephonel)

il
(dialIn!TD(Telephone1)?UID1:UID[enabled(dialln( Telephone1,UID1))];

Telephone[drop, lift, ..., otherFree| (dialln(Telephonel, UID1))

il

([enabled(otherChangeHook(Telephonel))] -> otherChangeHook!TD(Telephonel);
Telephone[drop, lift, ..., otherFree| (otherChangeHook(Telephonel))
il

([enabled(otherFree(Telephonel))] -> otherFree!ID(Telephonel);
Telephone[drop, lift, ..., otherFree| (otherFree(Telephonel))

il

([enabled(otherBusy(Telephonel))] -> otherBusy!ID(Telephonel);
Telephone[drop, lift, ..., otherFree| (otherBusy(Telephonel))

) endproc (* Telephone *)
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The enabled operation (common to all OO ACT ONE specifications) can now be used to guarantee
that events occur only when they are possible (for example, a user cannot lift a phone which is already
off hook). Tt should also be noted that internal (nondeterministic) transitions are now hidden from the

external user of the telephone object.
The initial LOTOS POTS design follows the same pattern as that for the telephone:

PROCESS POTS[dial, drop, lift, addU, stateUhook, stateUsignal, whoRinging, whoTalking]
(POTS1: POTS): noexit :=

(dial? UID1:UID? UID2:UID [enabled(dial(POTS1, strUPair(UID1,UID2)))];

POTS|dial, ..., whoTalking] (dial(POTS1, strUPair(UID1,UID2)))

il
(drop? UID1:UID[enabled(drop(POTS1,UID1))];

POTS|dial, ..., whoTalking] (drop(POTS1, UID1))

)i
(Iift? UID1:UID[enabled(lift(POTS1,UID1))];

POTS[dial, ..., whoTalking] (lift(POTS1, UID1))

)i
(addU? UID1:UID[enabled(addU(POTS1,UID1))];

POTS[dial, ..., whoTalking] (addU(POTS1, UID1))

i
(stateUsignal?UID1:UID; stateUsignallstateUsignal(POTS1,UID1);

POTS|dial, ..., whoTalking] (POTS1)

il
(stateUhook?UID1:UID; stateUhook!stateUhook(POTS1,UID1);

POTS|dial, ..., whoTalking] (POTS1)

i
(whoRinging?UID1:UID; whoRinging!whoRinging(POTS1,UID1);
POTS|dial, ..., whoTalking] (POTS1)

]l
(whoTalking?UID1:UID; whoTalking!whoTalking(POTS1,UID1);

POTS[dial, ..., whoTalking] (POTS1)
) endproc (* POTS *)

These objects are now to be incorporated in a LOTOS design of a distributed parallel POTS system.
The process specifications of these components are maintained throughout the whole design process.
The final telephone network structure is shown in figure 6.

The telphone and POTS processes are used as specified in the initial design. A new control process is
used to organise the communication between the central POTS database and the network of telephones.
Each telephone 1s hidden behind a telephone interface which is used to control the multi-way synchroni-
sation of the LOTOS process algebra. Unfortunately, in LOTOS the number of gates is static in a given
specification and so we cannot create new gates as we create new telephone processes. Hence, we need
to have all telephones synchronise on the same internal tgates when they communicate with the control.
This is achieved by using the interface processes to participate in all events, but to ignore those which
are not specifically targetted at its particular phone.

4.5 Verification

Given the LOTOS specification, we must now verify it against the initial requirements model. This
is done by running the same validation test cases through our smile simulator. In this case, we must
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Figure 6: Telephone System High Level Design

also attempt to test different resolutions of internal events. During system execution, we often have a
choice between a set of internal events. The way in which such a choice is made should not alter the
external correctness of the system with respect to observable behaviour. The formal verification of this
was not carried out as part of our research. However, it should be noted that because we have a formal
requirements model (and a formal design model) we should (in theory) be able to prove correctness.
This is for future work.

4.6 Adding Features

The suitablity of the architectures for the addition of features is now examined. Two features were
examined: call waiting and three way calling. We do not go into any details of these features because we
are not yet happy with their specifications. We have mangaged to add the features (and validate) their
behaviour without too much trouble. However,we have not yet mnaged to do this without changing the
internal structure of our system. The main reason for this is that we have not managed to find a suitable
object conceptualisation for a feature. Once this is developed then it should be possible to plug together
features in a way similar to which we put together POTS and the network of telephones. This is our
current area of research.

Call Waiting

Call waiting (Cw) is a feature whereby a customer in the talking state is alerted by a call waiting tone
when another caller is attempted to call him, The feature allows the customer (with the service activated)
to alternaly talk to the original and newly calling parts. If the customer with the service activated hangs



up while one party is on hold, the customer with the service activated is either automatically rung back
and upon answer is connected to the held party or the held party gets the busy signal.

Three way calling

The Three way calling (Twc) is a feature that allows the customer in the talking state to add a third
way party to the call. To add a third party to the call, the Twc customer place the other party on hold
and dials the number of the third party and then the Twc connection will be established. If either of the
other two parties hangs up while the service activating customer remains offhook, the Twc 1s returned
to a two party connection between the remaining party.

5 Conclusion: A Feature Oriented LOTOS Architecture

We wish to be able to construct systems of telephone services where features can be requested (and
disposed of) dynamically by telephone users, and where new features can be added by telephone service
providers. We believe that an object oriented LOTOS framework may be a step towards this goal. We
hope to classify different categories of feature and provide mathematical theoerems for the way in which
categories interact (a kind of feature interaction meta-analysis). Based on this theory, we hope to provide
high level construction mechanisms (defined using OO L.LOTOS) which can be used to build systems from
feature objects. Then, we have an architecture which is feature oriented.

LOTOS is a suitable specification language for capturing the behaviour of a complex system as a
collection of interacting concurrent objects. There is a correspondence between objects and processes,
and between message passing and event synchronisation. This helped to incorporate the structure of
the specification in the design. A consequence of this was an obvious relationship between the different
stages of the development process. The LOTOS specification acts as a formal design. It not only specifies
the requirements of the system, but it also provides a framework within which the implementation can
be built.

The advantage of a consistent specification style is the ability to structure specifications in such a way
that design approach can be explicitly stated. Complex architectures, in particular, require a consistent
structured approach to aid comprehension. The object oriented LOTOS style seems ideal because of the
way 1t allows for the modelling of systems as interacting parts, each of which can have a straightforward
mapping onto real world implementation entities.

Inheritance

The OO LOTOS work provides inheritance mechanisms based on the notion of subclasses as valid re-
placements. Subclassing in the POTS problem domain depends on our ability to identify classification
relationships between groups of services that share specific properties. We have reason to hope that
features will fall into a finite set of feature classes and that we will be able to formally identify properties
which will be useful in the construction of new features from those features that are classified appropri-
ately. Thus we will have sets of abstract feature classes and a high level of analysis based on the abstract
behaviours. Thus feature interaction can be dealt in a generalised manner. Features and (combinations
of features) will inherit properties that will be useful for validation and verification.

Before inheritance can be used at all stages of the development process, it is important not only that
inheritance relationships exist but also that they can be exploited. Libraries of components need to be
created and inheritance needs to be used as naturally as any other language construct. High level tools
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create a meta language which 1s customer oriented in the sense that the fundamental building blocks are
those seen in the problem domain (rather than those seen in the specification language semantics). This
is a great advantage.

OO LOTOS Deficiencies

LOTOS does not provide us with semantics for the fair resolution of nondeterminism. Continuing work
shows the need for such fairnessin the specification of other features (and feature combinations). LOTOS
has not got great tool support for the validation and verification of telephone services. This tools are all
language dependent in the sense that they are based on the low level semantic constructs. We require
a tool which is more problem domain oriented (though which may be based on underlying LOTOS
semantics).
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