
Always and Eventually in Object Requirements

Paul Gibson, Dominique Méry,
LORIA-UMR n

�

7503-CNRS &
Université Henri Poincaré

BP 239, 54506 Vandoeuvre-les-Nancy, France
email: (gibson/mery)@loria.fr

(This work was supported by the contract —

n
�

:96 1B CNET-FRANCE-TELECOM & CRIN-CNRS URA262.)

May 27, 1998

i

Always and Eventually in Object Requirements

Abstract

Object oriented models and methods encompass a set of techniques which have been,
and will continue to be, applied in the successful production of complex software systems.
The methods are based on the simple concepts of abstraction, encapsulation, classification
and polymorphism. The formal verification of logical properties of such models is difficult
to integrate into the traditional operational view. Furthermore, most, if not all, of the object
oriented formalisms are based on the specification of safety properties and, as such, they
do not provide an adequate means of expressing liveness conditions.

We examine a mixed semantic framework in which a state-based object oriented se-
mantics is extended with the concepts of always and eventually. These semantics have
been integrated to provide a set of re-usable fair object templates whose graphical rep-
resentation can be formalised by the client for use during synthesis and analysis of their
requirements. Proof of invariant and eventuality properties is done by translation to PVS
and TLA, respectively. The utility of such an approach is illustrated through a simple
telephone feature case study.

1 Introduction

The goal of our work is to integrate the temporal logic concepts of always and eventually

into an object oriented requirements language such that the formal verification of this class of

properties can be automated. The diagram below illustrates our semantic framework.

Specification Invariant Properties

Eventuality Properties

Operational Requirements
O-LSTS OO Models

PVSB

TLA

TLA

Validation

Verification

Semantic Integration

Fair Objects

TLP
Atelier B

PVS-Prover

Provers

Animators
TLA
B
O-LSTS

Documentation

Synthesis Graphical
Fair
Objects

TOOLS

Figure 1: Integrating logical and operational requirements

Examination of all parts of our system is beyond the scope of this paper. Instead, we

concentrate on three parts:

� In section 2 we give an overview of the formal object oriented semantic model and ex-

plain how we intend to extend this model with the notions of always and eventually.

1

� In section 3 we examine the specification and verification of class invariant properties

using PVS.

� In section 4 we examine the the specification and verification of object eventuality prop-

erties using TLA

To finish, in section 5, we illustrate the application of our approach within the domain of tele-

phone feature specification.

2 Object Oriented Semantics: An Overview

2.1 Formalising Semantics

Labelled state transition systems are often used to provide executable models during analysis,

design and implementation stages of software development [7, 9, 10]. In particular, such models

are found in the classic analysis and design methods of [3, 6, 8]. However, a major problem

with state models is that it can be difficult to provide a good system (de)composition when

the underlying state and state transitions are not easily conceptualised. The object oriented

paradigm provides a natural solution to this problem. By equating the notion of class with the

state transition system model and allowing the state of one class to be defined as a composition

of states of other classes, we obtain a means of specifying such models in a constructive fashion.

We adopt a simple object-labelled state transition system semantics (O-LSTS1) which re-

gards an object as a state transition machine [13]. These semantics permit us to view objects

at different levels of abstraction. Firstly, using an abstract data type (ADT) we can specify the

functionality of an object at a level of abstraction suitable for requirements capture[23]. Sec-

ondly, we can transform our ADT requirements into a parameterised process algebra (LOTOS[2,

30]) specification for the design stage. Finally, as we approach an implementation environment,

we can view the objects in our designs as clients and servers in a distributed, concurrent net-

work. At each of these levels of abstraction we provide a means of specifying and verifying

always and eventually properties. In this paper, we report only on the requirements capture

phase of development. Furthermore, we do not deeply explore the OO issue of inheritance but

stay, in general, within a composition-based framework.

2.2 A Simple Telephone

The O-LSTS specification of a telephone is given below.

The Phone is a class which uses three other classes in its specification (ID, signal and

on-off). Every O-LSTS class encapsulates its behaviour behind an interface which defines a

1Although there exist other similar and better known semantics, we have been using O-LSTS for many years

and continue our promotion of it.

2

regard=on
listen=silent

regard=off

regard=off

listen=talk

regard=off

listen=ringing

regard=on
listen=ringing

listen=ready
regard=off

listen=busy

regard=off

listen=connecting

dialIn

lift

lift

drop

dial(ID)

otherUp

busy

regard=off

listen=noconnection

free

otherDown

noconnection

otherDown

lift dial(ID)drop listen:signal regard:on-off

Phone USING ID, signal, on-off

Figure 2: An O-LSTS telephone specification

set of services which every object in the class must offer. The Phone class interface offers five

services:

� lift: allows the user to lift a phone which is currently on hook.

� drop: allows the user to drop a phone which is currently off hook.

� dial(ID): allows the user to dial the number specified by the ID parameter.

� listen: corresponds to the current signal being given to the user.

� regard: corresponds to whether the phone is currently on or off hook.

We say that lift, drop and dial are transformer services because they change the state

of the phone. Transformers are not necessarily available to the user of the object at all times; for

example, dial is enabled only when in the state off-ready. The services listen and regard

do not change the state of the phone but do return some value to the phone user. They are called

accessors, and in an O-LSTS model such services are always enabled. (In the O-LSTS model

there is a third type of service which combines accesor and transformer functionality — these

are called duals and they are not used in the Phone specification.)

3

The Phone class contains eight member objects2: all phone instances3 must be in one of

these eight different (memeber) states. The diagram below illustrates the difference between

the object instances and object members.

Member1

Member2

Membern

CLASS

I
N
T
E
R
F
A
C
E

Instance1 Instance2 Instance3

Figure 3: Object instances and members

For each class member we must define the value of the accesor operations. Furthermore, we

must define the next state which arises after a transformer operation is requested. The O-LSTS

specification is naturally represented as a state transition diagram. For the phone we have cho-

sen the initial state to be on and silent. Starting from this state we can now validate a suite

of test traces with the client. These traces are animated using a graphical representation[18] of

our object states and service requests.

To conclude this simple example, we note that there are dotted state transitions which do not

correspond to interface services. These internal transitions, free, busy, noconnection,

otherUP and otherDown, represent the interaction between the phone and the telephone

network, which the phone user cannot see or influence. For example, when I phone someone

the ‘system decides’ whether the other person is free, busy or a connection cannot be made.

From the point of view of the user, the choice between these transitions is nondeterministic.

2Member objects are sometimes known as substates or (dynamic) subclasses.
3The term object can normally be used to mean either a class instance or a class member, without risk of

ambiguity.

4

2.3 Other semantic issues

There are many other aspects to the O-LSTS semantics which the simple phone class does not

illustrate, for example:

� Composition — where a structured class can be defined as a composition of other classes.

In section 5 we define the Phone as a composition of a Signal and an On-Off.

� Invariants — for a structured object we can define relationships between the state of

component objects which must always be true. In section 5 we use the structure Phone

specification and define invariants between the state of each of the components. For

example, if the signal is talking then the on-off must be off.

� Subclassing4 — where one class can be defined as an extension or specialisation of an-

other class. In [27] we define a hierarchy of telephone features in this way.

� An extension adds new services to a class which respect the invariant properties of the

original class. For example, a simple extension of the Phone could provide a recall last

number service.

� A specialisation strengthens the invariant properties of a class and guarantees that all the

services of the original class respect the new invariant property. The Phone cannot be

specialised because there is no partition of the member set which could be closed, with

respect to the invariant, for all the transformer services [15].

� Exceptions — for defining exception cases which should not yet be fully extrapolated

in the initial requirements capture phases, otherwise we would risk making premature

implementation decisions.

The validation of a similar O-LSTS model of a system of telephones is reviewed in [18].

The graphical synthesis and analysis of user-oriented O-LSTS requirements models is reviewed

in [20]. The verification of the completeness and consistency of an O-LSTS class specification

without invariants is reviewed in [13]. In this paper, we concentrate on the problems of:

� Specifying and proving the invariant properties.

� Specifying liveness properties on the nondeterministic transitions and using these prop-

erties in a constructive manner to prove user eventuality requirements.

4See [15] for details.

5

3 Invariants

There are many ways in which we could extend our O-LSTS models with the concept of invari-

ant properties. We chose to keep the notion of invariant as simple as possible by restricting our

attention to the relation between the state of components of structured objects.

3.1 Structured Classes: A Composition Example

In the diagram below, we illustrate how an O-LSTS can be specified as a composition of other

O-LSTSs. The intended system behaviour is as follows:

The system is to be composed from two stack components (each offering LIFO

behaviour through services push and pop). The system will offer a service push

for pushing an element onto the first stack, a service pop for popping an element

of the second stack, and a service move for popping an element of the first stack

and pushing it onto the second stack.

The graphical O-LSTS model of the system is given below:

System USING Stack

S1:Stack, S2:Stack

push(e)

S1..push(e),S2

pop=S2.pop

S1, S2..pop

move

move

S1..pop, S2..push(S1.pop)

pop: Integerpush(Integer)

Figure 4: A system composition of two stacks

The equivalent textual specification, written in OO ACT ONE [15] illustrates the abstract

data type flavour of our language:

CLASS System USING Stack

STRUCTURE: Stack, Stack

DUALS: pop-> Integer

6

TRANSFORMERS: move, push(Integer)

EQNS

System(S1, S2)..push(e) = System(S1..push(e), S2);

System(S1, S2)...pop = System(S1, S2..pop) RETURNS S2.pop;

System(S1, S2)..move = System(S1..pop, S2..push(S1.pop))

ENDCLASS System

The following comments explain the notation:

� Given an object obj which offers an accessor acc, the value returned from obj when

the acc service is requested is represented by obj.acc.

� Given an object obj which offers a transformer tr, the state of the obj after the tr

service is requested is represented by obj..tr.

� Given an object obj which offers a dual dl, the state of the obj after the dl service is

requested is represented by obj..dl and the value returned is represented by obj.dl.

� Service parameters have their class-types inferred automatically.

From the formal specification we can deduce a number of things about the Stack class

(which are verified automatically):

� The elements stored on the stack must be integers5 since the input and output parameters

for the system are integers.

� A Stack offers a push transformer.

� A Stack offers a pop dual.

This example illustrates the composition mechanism. However, it does not illustrate the

need for an invariant: there is no obvious requirement relating the state of each stack component

which must always be true for the system class to be correct.

3.2 Invariant Example

To illustrate the notion of an invariant property, consider a class Joints which specifies a

class of students who study two subjects as part of their degree. The class has two Subject

components. There is one accessor service for testing if a Joints student studies a given

subject. The textual specification is given below:

CLASS Joints USING Subject

STRUCTURES: Subject, Subject

5In fact, with the polymorphic semantics we can also allow the elements to be members of any subclass of the

integer class.

7

ACCESSORS: studies(Subject) - � Bool

EQNS

Joints(Subject1, Subject2).studies(Subject3) =

(Subject1.eq(Subject3)).or(Subject2.eq(Subject3))

ENDCLASS Joints2

With such a specification we have an additional requirement which is best represented by

an invariant property: A Joints student must always study two different Subjects. With-

out such an invariant, Joints(Maths, Maths) could be seen as a valid member of the

Joints class. To specify that this is forbidden, we have two options:

� Explicitly list all joint degree combinations which are valid.

� Define an invariant property on the Joints class structure to specify that the first com-

ponent cannot be the same as the second component.

The second option is better since an explicit statement of the invariant property improves

the understandability of the specification. This invariant is easily validated by the client and it

is the analyst’s responsibility to verify that it is correct; i.e it cannot be broken by any of the

object state transformers.

Using an invariant property follows the principle of encapsulation and makes the specifi-

cation simpler to extend. For example, if the Subjects class is to be extended to include

a new subject then this change should be possible without affecting the classes which use the

Subjects class. This is not possible with the first option, in which the principle of encapsula-

tion has to be broken for the behaviour of the degree class to be well defined. With an invariant

there is no need to change the Joints class every time a new Subject is created. The

Joints behaviour is respecified in class Joints2 to incorporate the new invariant property.

CLASS Joints2 USING Subject

STRUCTURES: Subject, Subject

INVARIANTS: Joints2(Subject1, Subject2) REQUIRES Subject1.neq(Subject2)

ACCESSORS: studies(Subject) - � Bool

EQNS

Joints2(Subject1, Subject2).studies(Subject3) =

(Subject1.eq(Subject3)).or(Subject2.eq(Subject3))

ENDCLASS Joints2

Invariant properties which are not formally verified introduce the possibility of ‘run time’

errors in an execution model. For example, consider an extension to the Joints2 class in

which a new transformer operation allows either of the Subject fields to be changed. Now,

a transformer service may result in a new state which does not fulfil the invariant property. To

avoid such problems we must:

8

� Formally verify that all transformer (and dual) operations are closed with respect to the

invariant property. In other words, if an invariant is true before a state transformation

then it must be true after the state transformation.

� Check that all subclassing relations defined by extension introduce only new services that

respect the existing invariants.

� Prove that all subclassing relationships defined by specialisation do not introduce an

invariant which can be broken by the original services.

The Joints2 invariant is called a structure invariant because the invariant property is

defined in terms of properties of the components of a structure of the class. It is also often

desirable to be able to define an invariant on a whole class rather than a structure in a class. The

syntax of such a class invariant is illustrated by the MathsJoints specification below.

CLASS MathsJoints SPECIALISES Joints2 WITH

INVARIANTS: MathsJoints.studies(Maths)

ENDCLASS MathsJoints

Note that the class invariant mechanism is simply syntactic sugaring for defining sets of

structure invariants. Furthermore, we now have an explicit subclassing relationship6 between

MathsJoints and Joints2, which we do not have between Joints2 and Joints.

The examples above do not illustrate other important aspects of the O-LSTS model which

are influenced by our invariant concept:

� Classes can be defined to have recursive structures.

� Classes can be defined to have multiple structures.

� Classes can be verified as having static structure such that transformer operations cannot

change the composition of an object.

� Classes can be allowed to have dynamic structure.

� Invariants for non-structured members of a class (the literals) can be verified through

simple syntactic inspection.

We now address the proving of such composition invariant properties in O-LSTS specifi-

cations. There are two parts to this problem. Firstly, we must consider the property language

for specifying invariants. Secondly, we must consider how to use a theorem prover for the

automated verification of these properties.

6This is important when we consider polymorphism.

9

3.3 Invariant Property Language

The language used for expressing invariant properties is very simple. An invariant must be a

boolean expression whose sub-expressions can be constructed using:

� Any operations of the boolean class

� Any of the component objects of the structured class

� Any of the accessor services offered by the component objects

In this way, we enforce the encapsulation of the state of our component objects. The con-

taining object cannot look inside a component to check if an invariant is true, it can utilise only

the accessor services provided by its components. Furthermore, with these simple rules, we

have an operational means of testing any given invariant for any object in the class. Thus, we

can check our invariants dynamically as the system executes: if we generate a state in which

the invariant is broken then we can say that the system specification is incorrect.

During validation, it is possible to test invariants dynamically. Using model-checking tech-

niques, we can also check that all traces being tested respect our invariant requirements. How-

ever, with large systems, especially those containing complex subclassing hierarchies, it is al-

most impossible to verify our invariants in this way. A modular approach requires a means

of:

� Statically proving invariants for each class in a system

� Re-using invariant proofs in subclasses of classes which have already been verified

To reach this goal, we decided to translate our specifications towards a more proof-theroetic

framework.

3.4 Translation to PVS for verification

The proof verification system (PVS) [25, 26] is a powerful tool for the verification of specifica-

tions. It consists of a specification language, a number of predefined theories, a theorem prover,

various documentation tools, and several examples that illustrate different methods of using the

system in several application areas. PVS’s highly expressive specification language facilitates

powerful automated deduction; for example, some elements of the specification language are

made possible because the typechecker can use theorem proving.

The specification language of PVS is based on classical, typed higher-order logic. The

built-in types such as the booleans, integers, reals, and ordinals, can be extended by user-

defined types. The data type constructors include functions, sets, tuples, records, enumerations,

and recursively-defined abstract data types, such as lists and binary trees.

10

As our O-LSTS semantics are implemented by translation to ACT ONE [15], we concerned

ourselves with how to map the ACT ONE specifications to the PVS data typing language. This

mapping turns out to be a simple syntactic transformation and requires little explanation. Figure

5 illustrates, informally, the syntactic manipulation which needs to be done during translation.

O-LSTS Specification

Literal L
Structure comp1, comp2

CLASS C

I(L) ^ I(L..tr1)^ I(L..dl1)

I(C(comp1,comp2)) => I (C(comp1,comp2)..tr1)

^

INVARIANT I

ACCESSORS

tr1TRANSFORMERS

DUALS dl1

EQNS

ENDCLASS C

PVS

Proof Obligations

TRANSLATION

I(C(comp1,comp2))=> I(C(comp1,comp2)..dl1)

Figure 5: Translating to PVS

The PVS theorem prover provides a collection of powerful inference routines that can be

called upon interactively, under user guidance, within a sequent calculus framework. The prim-

itive inferences include propositional and quantifier rules, induction, rewriting, and decision

procedures for linear arithmetic. In our experience, perhaps due to our being PVS beginners,

proving our invariants requires a great deal of tool interaction and our proofs continue to be

constructed in an ad-hoc manner.

PVS does provide a means of formalising user-defined procedures that can be re-used dur-

ing the proof process. These can be combined with primitive inferences to yield higher-level

proof strategies. However, our experience (or lack of experience) has not led us to discover

such useful strategies for our O-LSTS invariant proofs.

Proof scripts provide a useful documentation facility: that can be edited, attached to ad-

ditional formulas, and rerun. In the future we hope to be able to use such scripts to obtain a

compositional proof method based on our classification hierarchies.

4 Liveness, fairness and eventuality

4.1 Nondeterminism

Using the O-LSTS semantics, in co-operation with the proof of invariant properties, we can

specify and verify safety properties: which state that during system execution something bad

will never happen. We do not have a means of specifying liveness properties: which state that

something good will eventually happen.

11

Consider the specification of a shared database object. This database must handle multiple,

parallel requests from clients. The order in which these requests are processed is required to

be nondeterministic. This is easily specified without liveness. However, if the requirements

are now refined to state that every request must be eventually served (this is a fairness require-

ment which we cannot express in a safety-only semantic framework). Our only choice is to

over-specify the requirement by defining how this fairness is to be achieved (for example, by

explicitly queueing the requests). This is bad because we are enforcing implementation deci-

sions at the requirements level.

4.2 A Nondeterministic O-LSTS example

Let us reconsider the system of two stacks, seen in section 3.1. We change the system by

requiring the move service to be nondeterministic. This is illustrated in the figure below, where

we also show the composition diagram for the system:

System USING Stack

S1:Stack, S2:Stack

push(e)

S1..push(e),S2

pop=S2.pop

S1, S2..pop

move

push1(Integer) pop2: Integer

S1..pop, S2..push(S1.pop)

COMPOSITION DIAGRAM

Stack1 Stack2
push1 pop2push pop

move

pop push

System

Figure 6: Nondeterminism in a system of 2 stacks

With such a specification, the system environment can never force an element to be moved

from the first stack onto the second stack, since the move is no longer part of the external

interface of the class. The system may decide to do such moves whenever it likes; but it may

also decide to never perform a move. A typical high-level requirement for such a system is:

All elements that get popped onto the first stack must eventually be pushed onto

the second stack, by the move transition.

To specify and verify such a requirement, without making premature implementation de-

tails, we require some sort of temporal semantics for expressing the liveness property.

12

4.3 Fair Objects: TLA and O-LSTS

TLA [22] provides a simple and effective means of expressing liveness properties. The seman-

tics incorporate the notions of always (represented by the � operator) and eventually (repre-

sented by the
�

operator). Using these, we can specify different categories of liveness within

the object oriented framework. The ability to model nondeterminism at different levels of ab-

straction is the key to TLA’s utility in requirements modelling. Unfortunately, TLA does not

provide the means for easily constructing and validating initial customer requirements. By

combining TLA and object oriented semantics we can alleviate these problems. It is beyond

the scope of this paper to examine the integration of the two different semantic models: see

[19] for more details. The important concepts, found in the case study in section 5, are:

� Weak fair objects, where any internal transition which is always enabled must eventually

be taken.

� Strong fair objects, where any internal transition which is enabled an infinite number of

times must eventually be taken.

� Possible fair objects, where any internal transition which may be enabled an infinite

number of times will eventually be taken.

� Progressive fair objects, where any object which is part of a structured system will even-

tually carry out an internal action if such an action is enabled.

4.4 Eventuality requirements

Within our O-LSTS framework, we formalise the fairness requirements as eventuality con-

straints which hold between object servers and their object clients.

We have identified five different types of client eventuality requirements which provide high

level reusable concepts, and can be automatically formalised using TLA. A client may require

that a service request be serviced immediately. A client may require that a service is carried

out eventually. A client may wish a service to be performed immediately on condition that

if it cannot be done without delay then it will be informed. A client may wish a service to

be performed eventually on condition that if it cannot be guaranteed to be done in a finite

period of time then it will be informed. The client wants the service but places no eventuality
requirements on when the service must be performed (if ever).

Each service that a server offers can be classified dynamically, during execution. An im-
mediate service is now enabled. An eventual service is guaranteed to be enabled in a finite

period of time. A possible service may be enabled but it depends on the environment of the

server in forcing certain state transitions; no internal action can make the service impossible

13

to fulfil eventually. A probable service can possibly be enabled but it depends on some inter-

nal nondeterminism; no external service request can make it impossible to service the request

(event ually). An impossible service will never be enabled.

Within the fair object system, the server properties can, we hope, be made to match the

client requirements. This is the job of an interface protocol which seperates clients from servers.

In a formal model of requirements we can prove that eventuality needs are fulfilled by servers.

This is the role of the TLA theorem prover TLP[11].

4.5 Proof verification using TLP

TLP is a tool for assisting in writing, proving and reasoning about specifications using TLA,

the Temporal Logic of Actions. It provides the user with a means to write specifications and

structured proofs in a natural deduction style. TLP is based on two underlying tools, namely

LP, a ‘theorem prover for a subset of multisorted first-order logic’ designed by Steve Garland

and John Guttag at MIT as a part of the Larch Project[12], and a small tool for automatic

checking of linear time temporal logic based on boolean decision diagrams, implemented by

David Long. It translates from the TLP language to the languages of the back-ends, and there

is an interactive front-end based on GNU Emacs.

TLP can be used for deriving proofs of invariance properties7 eventuality properties under

fairness assumptions. TLP provides a way to organize proofs following proof rules of TLA

in the natural deduction style. Fundamentally, an eventually property proof requires at least

a weak fairness on the global transition relation and the weak fairness proof rule states that

at least one action must be enabled which leads to the desired eventual property. In [16] the

translation of object oriented SDL models to TLA, for the verification of liveness properties,

explains in some detail the approach we adopted.

5 Telephone feature case study

In this section we motivate the need for always and eventually semantics within the domain

of telephone feature specification. The examples are explained informally: more formal treat-

ments are found in [19, 16, 14, 17]. Here we use the examples to justify the need for a formal

means of verifying temporal requirements in an object oriented specification architecture.

5.1 The feature interaction problem

Features are observable behaviour and are therefore a requirements specification problem [31].

We concentrate on the domain of telephone features [4, 5]. The feature interaction problem is

7We decided not to use TLP for this because the translation to PVS was already complete adn, we believe, is

better suited to this task.

14

stated simply, and informally, as follows:

A feature interaction is a situation in which system behaviour (specified as some

set of features) does not as a whole satisfy each of its component features individ-

ually.

Most feature interaction problems can be (and should be) resolved at the requirements capture

stage of development[14]. The telephone feature examples in this section are taken from a large

list of specifications which we have developed using our fair object concepts[27]. Telephone

feature specification is well suited to our semantic approach because it requires a high degree

of structuring to cope with the highly compositional and incremental nature of such systems;

and there is a clear need for fairness requirements [17].

5.2 Always and Eventually in a Telephone Specification

A telephone invariant

The telephone can be specified to consist of two object components: the signal and the hook.

(In the specification in section 3 we did not specify the phone in such a compositional manner

because we had not yet met the structuring mechanism.) A state invariant which defines a

relation between the hook component and the signal component will include the following

requirement:

Always, if I am talking with someone then the telephone must be off hook

This can be formalised as a boolean invariant:

(signal = talking) => (hook = off).

In the simple finite telephone system, this is directly verifiable by checking that it is true in

all the states. Since there are only 8 states we can do this by hand — translating to PVS is not

recommended when all the states in a system can be easily verified.

A telephone eventuality

Even the simple telephone can benefit from the specification of an eventuality requirement. In

the O-LSTS phone specification it is possible to be in the state off-connecting forever. In

this state we have just dialled a number and we must wait for the system to tell us if the number

is free, busy or unattainable. A high level eventuality requirement is:

I will eventually leave the state off-connecting even if I do not force the state

transition myself.

Using TLA, this requirement is represented by a weak fairness on the noconnection event:

15

���������
	��
�����	������
���
.

If the network takes too long to decide if the requested line is free or busy, then we will eventu-

ally get a noconnected signal.

5.3 Always and Eventually in a POTS Telephone Network

The Plain Old Telephone System (POTS)[20] is the standard model for the communication

between two phone users.

A POTS invariant

In the network of many different telephones we use the POTS invariant to specify relations

between pairs of phones. For example, a simple POTS state invariant requirement is:

Always the number of phones talking is even.

This is proved by showing that it is true in the initial state (where all phones are off and

ready). Then we show that all possible state transitions maintain the required property (if it

is true before the action occurs then it is true after the action occurs). This property cannot be

checked through an exhaustive search of a system of an unbounded number of phones. It can be

checked by proving that all transitions are closed with respect to the invariant. Consequently, we

had to translate this into PVS and utilise the prover to verify the correctness of our specification.

A POTS eventuality

Within the telephone network, the POTS component controls the synchronisation between pairs

of phone connections. When one phone hangs up, for example, the POTS system must inform

the other phone user by changing the state of their phone. The updating of state information

must always eventually be carried out. For example:

When I dial the number of a phone which is free then it will eventually ring

These type of eventuality requirements can be expressed using the notion of progression,

which arises from the way in which system components are considered as concurrent objects.

In such systems we wish to specify that each of the components is fairly scheduled. In other

words, internal actions of these components must eventually be executed so that their behaviour

progresses. No component can stay in the same state forever when an internal action leaves that

state.

16

5.4 A Feature Interaction Eventuality Example

Consider two well known features: call forwarding and answer-machine.

Call Forwarding
Informally, call forwarding can be used to transfer an incoming call to another line. Thus, if I

am not at home I can, for example, forward my calls to my portable phone. Here the transfer

is an internal action and it must be completed in a finite period of time, and so we once again

have an eventuality requirement. In the specification, we make the requirement conditional on

the forwarding number being connectable.

Answer machine
Without giving the actual specification, it is clear that an answering machine requires liveness

semantics. The standard functionality is for the phone to ring for a finite period of time and

then a message to be taken. An eventuality requirement is that when I ring someone with an

answering machine I will eventually talk with them or get to leave a message. This requirement

is proven with TLP, using a fair object model of the answering machine.

Answering machine with Call forwarding
Combining these two features illustrates the difference between a standard object model and

one with eventuality semantics. Without fairness, when I telephone someone with an answer-

ing machine who has forwarded their call to another number then, if there is no answering

machine at the second phone, I cannot leave a message if they do not reply. With the fair object

requirements model, I must be able to leave a message if the person doesn’t reply (independent

of whether the call is forwarded or not). Thus, if the telephone at the forwarded address does

not have an answering machine my specification requires that the call control is returned to the

original phone so that a message can be left there.

5.5 A Feature Interaction Invariant Example

Consider two well known features: call waiting (CW) and call forward when busy (CFB).

Call Waiting:
When I activate CW its functionality is enabled only when I am talking to someone else. If I

am talking to someone and a third person tries to call me then I can chose to hold them. Now

I am talking to one person and holding another. I now have the ability to switch the talking

and held persons. I can hang up on both calls at once and become on-silent in the normal

Phone state. Similarly, either of the two other parties can hang up and I return to the state

off-talking.

Call Forward When Busy:
With CFB, all my incoming calls are forwarded to another number if my phone is already in

use. (This is usually done so that calls are forwarded to an answering service when a line is

busy.)

17

CW with CFB
CW requires that I will always be given the choice of holding an incoming call if I am talking

to someone when it arrives. However, the CFB feature may be executed before this choice can

be made and so the CW requirement is contradicted in the system containing both features.

Furthermore, a fairness condition in CFB states that eventually the incoming call will be for-

ward. However, if CW is executed, the incoming call may be held by the user and never be

forwarded. Thus we have another contradiction. This is illustrated in the figure below.

Phone extended by CFB

talking(U1)

ringing(U2) talking(U1)

CFB

talking(U1)

ringing(U2)
holding(U2)
talking(U1)

hold

Phone extended by CW

ringing(U2)
talking(U1)

hold holding(U2)

talking(U1)

CFB

Phone extended by CW and CFB

Figure 7: An Invariant Interaction

6 Conclusions, Related Work and Future Work

We have shown the utility of introducing the concepts of always and eventually into an object

oriented framework. These concepts can be used in the formal specification of user require-

ments, and passed to theorem provers for verification. The proof process is not automatic: the

tools require interaction with an intelligent user. However, the process is formal and the tools do

help us to structure, and document, our verifications. We hope to be able to find re-usable proof

strategies so that less burden is placed on the analyst when verifying these logical properties.

Our approach has been successfully applied in the domain of telephone feature specification;

we believe it is equally applicable in other problem domains where requirements are modelled

as a system of interacting objects.

In [24] we see an approach, based on the B method[1], to detecting feature interactions

as the breaking of invariant properties. In [28] we see a different technique for modelling

features using object oriented semantics, which lack a means of specifying and verifying logical

properties. In [29] we see the advantages of having a solid proof-theoretic environment when

verifying the absence of interactions between features, but they do not address the problems

of validating their models. In [21] we see another integration of operational object oriented

models with logical requirements; their approach is based on SDL and the ObjectGeode tool

but does not consider liveness issues.

Our method is far from being complete. We intend to try and relate our semantics to the

UML so that we may approach a wider audience. Furthermore, we are not happy with our in-

18

ability to prove complex invariants in highly structured systems: in particular using the theorem

provers is a less than pleasant experience which is far from being automated. Finally, we realise

that the main weakness in our approach is the mixed semantics which have not been formally

integrated.

References

[1] Jean-Raymond Abrial. The B Book. Cambridge University Press, 1996.

[2] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Computer
Networks and ISDN Systems, 14:25–59, 1987.

[3] G. Booch. Object oriented design with applications. Benjamin Cummings, 1991.

[4] L. G. Bouma and H. Velthuijsen, editors. Feature Interactions In Telecommunications. IOS Press,
1994.

[5] K. E. Cheng and T. Ohta, editors. Feature Interactions In Telecommunications III. IOS Press,
1995.

[6] P. Coad and E. Yourdon. Object oriented design. Prentice-Hall (Yourdon Press), 1990.

[7] L. Constantine. Beyond the madness of methods: System structure methods and converging design.
In Software Development 1989. Miller-Freeman, 1989.

[8] Brad Cox. Object oriented programming: an evolutionary approach. Addison-Wesley, 1986.

[9] Geoff Cutts. Structured system analysis and design method. Blackwell Scientific Publishers, 1991.

[10] T. DeMarco. Structured analysis and system specification. Prentice-Hall, 1979.

[11] U. Engberg. TLP Manual-(release 2. 5a)-PRELIMINARY. Department of Computer Science,
Aarhus University, May 1994.

[12] Stephen J. Garland and John V. Guttag. A guide to lp: the larch prover. Technical report, MIT
Laboratory for Computer Science, 1991. Also available as Digital Equipment Corporation Systems
Research Center Research Report 82.

[13] J. Paul Gibson. Formal object based design in LOTOS. Tr-113, University of Stirling, Computing
Science Department, Stirling, Scotland, 1994.

[14] J. Paul Gibson. Feature requirements models: Understanding interactions. In Feature Interactions
In Telecommunications IV, Montreal, Canada, June 1997. IOS Press.

[15] J.Paul Gibson. Formal Object Oriented Development of Software Systems Using LOTOS. Tech.
report csm-114, Stirling University, August 1993.

[16] J.Paul Gibson and D. Méry. Telephone Feature Verification: Translating SDL to TLA+, pages
103–118. Elsevier Science, 1997.

[17] Mermet Gibson and Méry. Feature interactions: A mixed semantic model approach. In Irish

Workshop on Formal Methods, Dublin, Ireland, July 1997.

19

[18] Paul Gibson. An object oriented requirements capture and analysis environment. Technical Report
CRIN-98-R-010, CRIN, January 1998.

[19] Paul Gibson and Dominique Méry. Fair objects. In OT98 (COTSR), Oxford, May 1998.

[20] Paul Gibson and Yassine Mokhtari. Pots: An OO LOTOS specification. Technical Report CRIN-
98-R-013, CRIN, January 1998.

[21] Lejeune Kerbrat, Rodriguez-Salazar. Interconnecting the ObjectGEODE and Caesar-Aldébaran
toolsets, pages 475–491. Elsevier Science, 1997.

[22] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Languages and
Systems, 16(3):872–923, May 1994.

[23] B. Liskov and Zilles S. Programming with abstract data types. In ACM SIGPLAN Notices, num-
ber 4 in 9, pages 50–59, 1974.

[24] B. Mermet and D. Mery. Detection of service interactions: An approach with b. In AFADL97,
Toulouse (France), 1997.

[25] S. Owre, N. Shankar, and J. B. Rushby. The PVS Specification Language. Computer Science
Laboratory, SRI International, CA, February 1993.

[26] S. Owre, N. Shankar, and J. B. Rushby. User Guide for the PVS Specification and Verification
System. Computer Science Laboratory, SRI International, CA, February 1993.

[27] B Mermet P. Gibson and D. Méry. Specification of services in a compositional temporal logic.
Rapport de fin du lot1 du marche no 961B CNET-CNRS CRIN, CRIN, 1997.

[28] H Prehofer. An object oriented approach to feature interaction. In Feature Interactions In Telecom-
munications IV, Montreal, Canada, June 1997. IOS Press.

[29] Rochefort and Hoover. An exercise in using constructive proof systems to address feature inter-
actions. In Feature Interactions In Telecommunications IV, Montreal, Canada, June 1997. IOS
Press.

[30] van Eijk, Vissers, and Diaz. The Formal Description Technique LOTOS. North-Holland, Amster-
dam, 1989.

[31] Pamela Zave. Feature interactions and formal specifications in telecommunications. IEEE Com-
puter Magazine, pages 18–23, August 1993.

20

