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Abstract. Formal methods should be taught as part of any degree in computing science or soft-

ware engineering. We believe that discrete mathematics is the foundation upon which software

development can be lifted up to the heights of a true engineering discipline. The transfer of for-

mal methods to industry cannot be expected to occur without first transferring, from academia

to industry, graduates who are well grounded in such mathematical techniques. These graduates

must bring a positive, yet realistic, view on the application of formal methods. Our goal is to

produce software engineers who will go out into industry understanding the principles of spec-

ification, design and implementation. As these graduates develop their engineering skills, in an

industrial setting, they should have the means, and the motivation, to integrate formality and

rigour into any environment in which they are found. In this way, the formal methods should

start to ‘sell themselves’.

This paper reports on our first attempt to teach a formal methods course as part of a degree

in software engineering. Rather than concentrating on one particular method, we worked on a

set of small case studies, using the mathematics in a flexible and intuitive manner, where the

students could appreciate the need for formality. Each case study was intended to illustrate, in

turn, the need for some fundamental formalism. An unexpected result was that we also identified

weaknesses in our understanding of formal methods: students’ naive questioning helped us to

identify how the methods, and the teaching of these methods, could be improved. In brief, it was

not just the students who were learning!

1 Introduction

Formal methods are necessary in achieving correct software: that is, software that can be proven

to fulfil its requirements. Formal specifications are unambiguous and analysable. Building a formal

model improves understanding. The modelling of nondeterminism, and its subsequent removal in for-

mal steps, allows design and implementation decisions to be made when most suitable. Correctness

preserving transformations facilitate the automatic generation of more efficent code whilst guaran-

teeing the preservation of original behaviour. Formal models are amenable to mathematical manip-

ulation and reasoning, and facilitate rigorous testing procedures. However, formal methods are not



widely used in software development. In most cases, this is because they are not suitably supported

with development tools. Further, many software developers do not recognise the need for rigour. The

most obvious solution to this problem is to teach formal methods to the graduates who will be the

backbone of the industry in the years to come.

This paper reports on the teaching of: The application of formal methods in software engineering.

By way of motivation, and introduction, a brief overview of the first lecture is given in figure 1, where

the following questions were answered:

– What is software engineering?

– What is a formal method?

– Why apply formal methods in software engineering?
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Fig. 1. Software Engineering and Formality

The figure illustrates the different steps in a traditional engineering process: analysis, require-

ments capture, design, implementation, and evolution. The formal methods are principally concerned



with maintaining correctness, the property that an abstract model fulfils a set of well defined require-

ments [1,2,6,5], between the initial customer oriented requirements model and the final implementa-

tion oriented design. The formal boundaries break down at either end of the software development

process because, in general, target implementation languages are not formally defined and customer

understanding of their requirements is not complete.

Software development has reached the point where the complexity of the systems being mod-

elled cannot be handled without a thorough understanding of underlying fundamental principles.

Such understanding forms the basis of scientific theory as a rationale for software development tech-

niques which are successful in practice. This scientific theory, as expressed in rigorous mathematical

formalisms, must be transferred to the software development environment. Only then can the de-

velopment of software systems be truly called software engineering: the application of techniques,

based on mathematical theory, towards the construction of abstract machines as a means of solving

well defined problems.

As a means of motivating the students, we mention a major study of the state-of-the-art in formal

methods [4], carried out 5 years before, which concluded by stating:

“ . . . formal methods, while still immature in certain important respects, are beginning to be

used seriously and successfully by industry to design and develop computer systems . . . ”

There are a wide and varied range of definitions of formal method which can be found in the

majority of texts concerned with mathematical rigour in computer science. (A wide range of formal

methods are considered in [7,23,21,17,24].) For the purposes of the course we propose the following

definition:

A formal method is any technique concerned with the construction and/or analysis of math-

ematical models which aid the automation of the development of computer systems.

To conclude our introduction, both to the students and in this paper, we mention the seminal

article by Hall [11] and follow-up articles by Bowen and Hinchey [3] which explore the myths of

formal methods. The students were asked to comment on each of the myths: leading to an entertaining

and enlightening discussion. We concluded that all the myths were already firmly implanted in our

students’ minds. A new goal arose: to trust the students (and the ability of our teaching) to break

down these myths in their own time and in their own way — an exam question based on these myths

was also written!

2 Related Work

The teaching of formal methods has been somewhat neglected as a subject in conferences and jour-

nals: the motivation for this paper was to increase awareness of the need for collaboration in this

area.



There has been a CTI workshop1 concerned with this subject. In general, the workshop sessions

addressed the problems of motivation, doing real proofs, and integrating formality with more graph-

ical development methods. Specific problems of teaching with Z [24], one of the favoured teaching

languages, and choosing teaching material were also examined.

A range of other papers explain the teaching of functional programming [18,19] logic [14,16]

and discrete mathematics [15] to computing science students. (Hart et. al. [12] suggest that this can

be done with school children, and many of their techniques are equally applicable for our university

students!) There is also an interesting calculator case study [22] which illustrates the formal reasoning

about programs, and comments on how this can be used to introduce formal methods. A large number

of universities also provide information, on the internet, with regard to their formal methods courses.

3 Course Overview

The course was taught at Université Henri Poincari (Nancy I), France. It is part of the degree In-

génierie Mathématiques et Outils Informatiques. The title of the course is (after translation):Software

Engineering (using formal methods). The degree would be the equivalent of an MSc

at a British University.

3.1 Student background

There are 19 students: 4 females and 15 males, 13 who have computing experience and 6 who have

not, 5 who have studied discrete mathematics at University and 14 with school level maths, 6 who

have worked in industry full-time and 4 with part-time experience, and all, except 2, had no experi-

ence with formal methods.

3.2 Course Hours and Structure

The course was to be taught in 36 hours: 12 sessions of 3 hours each. It was for us to dynamically

organise which sessions would be used for lectures, tutorials, practicals, discussions, and team case-

studies: this was done flexibly and most sessions were a mixture of lectures and case studies. The

3 hour sessions were not ideal — the attention span of students is much less than this. However, a

lecture a little, question a little, practise a little, case study a little technique reduced the potential for

"boredom" (for want of a better word) and provided much needed feedback on the teaching process,

which is vital when teaching formal methods for the first time.

1 Workshop on Teaching Formal Methods, 12 Sept 1995, The University of Huddersfield,

http://www.hud.ac.uk/schools/comp+maths/events/cti.html.



3.3 The Importance of Case Studies

As the course advanced we came to see the value of the case studies. When introducing new concepts,

a small case study (often toy problems) were used to illustrate why formalism was needed, what

sort of formalism could meet our needs and how to define and (re)use this formalism. Some of the

studies took a few minutes whilst the longest, the specification of a lift, was set as course work to be

examined. The most interesting cases are reviewed in the next section.

4 Case Studies

For each of the case studies, the following information is given:

– the source of the material,

– the time taken for the work,

– the goal of the study,

– a brief summary of the problem, and

– the lessons learned.

4.1 Study 1: Term Re-write Systems

The original inspiration for this example came from the classic text by Douglas Hofstadter [13],

which was also recommended reading on the course. Two simple term-rewriting systems were stud-

ied during 1 hour. The goal was to introduce the following concepts, using as simple a mathemati-

cal model as possible: formal system, calculability, termination, proof, theorem, decision procedure,

meta-analysis, structural induction, necessary and sufficient, isomorphisms, meaning and inconsis-

tency. As the list above shows, even the simplest problems give rise to complex vocabulary.

A typographical re-write system (TRS) is a formal system based on the ability to generate a set of

strings by following a simple set of syntactic rules. Each rule is calculable (since the generation of a

new string from the old string by application of a rule always terminates). However, a TRS may be

defined to produce an infinite number of different strings. The problem of decidability is deciding if

any given string can be generated by the TRS.

The MUI TRS

The MUI system

--------------

Alphabet = {M,I,U}

Strings: any sequence of characters found in the alphabet

Axiom: MI

Generation Rules: forall strings x such that x is a String of MUI or x =""



1) xI generates xIU

2) Mx generates Mxx

3) xIIIx generates xUx

4) xUUx generates xx

We say that a theorem of a TRS is any string which can be generated from the axioms (or any other

theorem). We say that a proof of a theorem corresponds to the set of rules which have to be followed

to generate that theorem. We asked the students to prove the theorem MUIIU. The following question

was then posed:

Can we automate the process by developing a function/machine for testing the theoremhood

of given string, in a finite period of time?

Unsurprisingly, none of the students managed to find such a mechanism! Such a machine would be a

decision procedure for MUI.

The following solution was proposed and the students asked their opinions:

For MUI we construct a tree of strings, starting from the axiom (at the root). Any applicable

rule constitutes a branch of the tree. To decide if a given string is a theorem it is sufficient to

keep extending the tree until the string is found. We know that if the string is a theorem then

the machine will terminate with result true. But, what happens if the string is not a theorem?

They all asked, as hoped, what happens if the procedure does not terminate.

Next we asked them to consider the string IIIUUUIIIUUUI. Is it a theorem of the system? The

more observant reader would say no immediately. From looking at the axioms and rules we can see

that all theorems must start with an M. However, we cannot prove this within the system: the only

proof that the system allows is a sequence of re-write rules. Such a proof has to be done out of the

system using a meta-analysis.

So, what sort of reasoning tells us that all MUI theorems start with an M. Most of the students

were familiar with mathematical induction so the notion of structural induction was not difficult to

explain.

The meta-property all theorems start with an M is called a necessary but not sufficient property

of theorem-hood. It is necessary because if it is not true of a given string then the string cannot be a

theorem. It is not sufficient because there are strings which start with an M which are not theorems.

The MUI TRS illustrates a toy formal system: it does not appear to offer any practical benefits

with respect to real computation. The next TRS shows how we can use such a system to reason about

some mathematical properties.

The pq- TRS

The pq- TRS



-----------

Alphabet p q -

Axioms for any x such that x is a possibly empty sequence of "-"s,

xp-qx- is an axiom

Rule 1) for any x,y,z which are possibly empty sequences of "-"s,

if xpyqz is a theorem then xpy-qz- is a theorem

We asked the students to define a decision procedure (a terminating boolean function) for this for-

mal system. (The secret is that all the re-write rules lengthen the given string. Thus, we can generate

a tree of theorems and we know that a string is a non-theorem when we start producing strings which

are longer than the length of the required string.)

The interesting aspect of pq- is that it provides us with a formal model of a mathematical prop-

erty: the addition of integers. For example:

--p---q----- is a theorem and "2+3=5" is true

--p-q-- is a non-theorem and "2+1=2" is false

--p-p-q---p is a non-theorem but "2+1+1=4" is true

If we intepret p as plus and q as equals, and a sequence of n -s as the integer n, then we appear

to have a means of checking x + y = z for all non-negative integers x,y,z. The third example, in the

list above, shows the syntactic limitation of pq-: we cannot reason about the addition of more than

two numbers.

We say that pq- is consistent (under the given interpretation) because all theorems are true after

interpretation. We say that pq- is complete if all true statements (in the domain of interpretation) can

be generated as theorems in the system. We say that the interpretation is isomorphic to the system if

the system is both complete and consistent.

The pq- system is isomorphic to a very limited domain of interpretation. The students were asked

how such a domain could be widened — following their suggestion, a new axiom was added: xp-qx.

This new axiom lets us generate many more theorems. The students were asked to comment on the

completeness and consistency issues. They identified a problem: the new system is not consistent with

our previous interpretation. For example: --p--q--- is now a theorem but "2+1=2" is not true. A

good solution is to change the interpretation to regain consistency. For example, we may intepret q

as ">=". Now, we have consistency, but . . . we have lost completeness. For example, "2+5>=4" is true

in our new domain of interpretation but --p-----q---- is a non-theorem.

4.2 Lift: Informal vs Formal

The original motivation for this problem came from a study which was carried out when first testing

LOTOS for specifying problems with an object oriented approach [8]. This problem was given as a

course project (3 or 4 students in each group) which required, on average, 20 hours work for each



group. The problem was for them to specify (in whatever way they wished) the behaviour of a lift.

The goal was that they would begin to appreciate the need for formality (particularly in the logic of

lift movement between floors).

The informal requirements given to the students were as follows:

Specify the requirements that a user would place on a lift system. Try to specify what is

required rather than how it is to be achieved. Explain how you would validate that your

requirements match the user’s needs. After such validation, explain how you would use your

specification to verify that a particular lift system behaved correctly.

The lift case study was a great success (for all the wrong reasons). We were hoping that their

informal specifications would be ambiguous, incomplete and inconsistent: thus showing the need for

formal models. However, the students were one step ahead, again. Three groups took an operational

approach to specification — handing in what amounted to well-documented pieces of C++ and JAVA

code. The other two groups shocked us even more by specifying the problem at a logical level of

abstraction. They stated, informally:

When I arrive at a lift on floor x and I want to go to floor y, the lift will eventually arrive at

x, let me enter, eventually arrive at y, and let me exit.

The operational groups clearly had no problems with the validation of their specification, but did

not understand the verification part of the problem. The logical groups did not know what they had

to validate, but knew precisely how to verify that a given lift worked.

To test their understanding, we proposed two lift implementations:

– A ‘supermarket model’, where the user who wishes to use the lift has to take a ticket and wait

their turn. The lift serves only 1 user at a time: going to collect them at their current floor and

then taking them to their requested floor.

– A ‘no-logic model’ in which the lift moves continually from top to bottom, and back from bottom

to top, stopping for a few moments at every floor.

Using the case study, we now had examined the problems of overspecification, and the integration of

logical and operational views.

To complete the study, we have set an exam question on the problems of compositional devel-

opment and re-use at different levels of abstraction: The students are to suggest ways in which lift

systems can be composed from 2, or more, lift components.

4.3 Sets: Abstract to Concrete

The original idea for this study came from a French text on graph algorithms [20], where the author

explained how the way in which sets where defined has a great influence in how they can be used



for graph problems: where graphs are specified as sets of nodes and arcs. This study took two hours

to complete: half the time was spent developing an ADT specification. The other half was used

to explain different implementation strategies. After the lift specification, the students seemed to

understand the need for going from the abstract to the concrete. The goal of this case study was for

them to see a development hierarchy as a step-by-step process towards implementation.

The figure below illustrates the hierarchy which we examined:

Binary Tree

Balanced Binary Tree

Array ImplementationLinked List

Ordered Link List

contains: set, element -> bool

ACT ONE

Abstract Set Specification 

eqns ... endtype

type set is element sorts set

union: set, set -> set

remove: set, element -> set

opns empty :-> set add: set, element -> set

Fig. 2. Designing a Set

This case study brought up some unforseen problems:

– In the ADT specification the groups produced fundamentally two different (yet equivalent) spec-

ifications: two groups produced specifications in which adding an element first checked if the

element was already in the set and did not change the set if this was true. Three groups produced

specifications in which the remove was defined to remove multiple elements whilst the add

allowed multiple entries. One group fell between these stools and did not realise that there was

a problem with multiple elements. The students wanted to know which specification was best:

here we had to explain the notion of equivalence, invariants and the need for extensibilty. A more



difficult question was how to specify the set more abstractly so that both of these specifications

were correct.

– In the diagram, we see five different implementation strategies. Each arrow represents a design

step in which the internal structure of the set is changed to improve performance. The question

which I faced was:

Why do we say that one model is more concrete (or abstract) than another if they are

equivalent.

Intuitively, there is something more concrete about a balanced binary tree than a linked list, but

clearly from a purely functional point of view they provide the same behaviour. How do we

formalise this notion of abstraction level?

– In the hierarchy diagram, there is a dotted link between the array implementation and the binary

tree: it is easy to implement a binary tree using an array whilst it is not so easy to do this imple-

mentation with a linked list. The students wanted to know if this concept of easy to implement

using something can be formalised.

After this case study we realised the need to look at the notion of equivalence in more detail, and

the need to re-examine the notion of abstraction level from the point of view of nondeterminism.

4.4 Graphs: Equivalence and ‘Function Follows Form’

The original idea for this study came from working on graph algorithms in Caml, a functional pro-

gramming language, with our first year students. The study took 1 hour. The goals were to examine

the importance of structure in specifications and show how equivalent specifications could have dif-

ferent structures. Different structures aid the specification of certain behaviours whilst some struc-

tures hinder the specification. The notion that function follows form was to be fundemental. Figure 3

illustrates the problem:

The question posed was as follows:

Using the lists and cartesian products in Caml, represent the graph G as shown in the diagram.

The four most interesting representations are shown to the right of the diagram. They were then

asked to write conversion functions for going from one form to any of the others, thus illustrating that

their equivalence was based on isomorphic mappings. The result was that they posed the following

questions:

– Using the first notation, what graph is represented by [(1,[(a,2)]),(3,[(b,1)])]2?

– Using notations 2,3 and 4, how do you represent a graph which contains a node unconnected to

other nodes? For example, the graph with one node and no arcs can be represented using the first

notation as [(1,[])] but cannot be represented in the other three notations.

2 This problem arose from a typing error when testing their functions.
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G:Graph
Caml Representations

 [(1,[(a,2)]), (2, [(b,3), (c,4)]), (3,[(b,4)]),(4,[(c,2)])]

[(a, [(1,2)]), (b, [(2,3), (3,4)]), (c, [(2,4), (4,2)])]

[(1,a,2), (2,b,3), (2,c,4), (3,b,4), (4,c,2)]

    ([(1,a,2),(2,b,3),(3,b,4)], [(2,c,4)] )

Fig. 3. Graph Representations

– In all the notations, the order of the elements in the lists is unimportant: is this equivalence?

– In the final notation, the second list (with one element (2,c,4), in this example) represents

those arcs which are bi-directional. In this case a list element (x,char,y) is equivalent to

(y,char,x): what sort of equivalence is this?

Unintentionally, the graph example had shown the need for invariants in specifications. The first

graph representation requires that all target nodes at the ends of arcs, are themselves found in the

graph. The students quite easily specified this invariant with a Caml boolean function. In the 3 other

representations, there is no need for an invariant because the list of arcs implicitly defines the nodes

found in the graph. However, none of these can represent the case of an unconnected node. Thus, the

representations are incomplete. The students successfully found a complete representation which did

not need an invariant.

The second part of the case study involved specifying functions and properties on the graphs.

The functions alphabet and nodes, for calculating the set of arc names and set of node labels,

illustrated the inter-dependency between function and form. The final key in the invariant puzzle was

to get them to specify a function for adding a new arc between two specified nodes. Incredibly, all

groups managed to see the importance of maintaining the invariant and specified their new operation

accordingly, albeit with different techniques: the first would not add an arc if the two nodes were not

already present, the second added the nodes if they were not already there. We come back to this

invariant preserving when we consider subclassing in object oriented specification.



4.5 Communicating Queues: Objects and Processes

We firmly believe in the integration of object oriented and formal methods [9]. The students were

introduced to the notion of an ADT encapsulating the functional behaviour of an object behind an

interface. Then, this idea was extended to consider systems of concurrent objects as communicating

processes. At this stage we had already spent a few hours with LOTOS. The example of communi-

cating queues is taken directly from our fair objects paper [10] where we examined the specification

of nondeterminism in object models. The case study took 1 hour and the goal was to try and get the

students to relate informal graphical representations with high level re-usable formal components:

this would be a proper design task. The problem is illustrated in the figure below:

Q1

push(Integer) pop:Integer

move

pop:Integer

Control push(Integer)

push(Integer) pop:Integer

TwoQueues 

Q2

Fig. 4. High level formal design

The question posed was as follows:

Given the LOTOS process specification of a Queue specify a system TwoQueues with

the following services — push an element onto the first queue and pop an element of the

second queue. Furthermore, we require elements to move nondeterministically between the

queues. The problem requires a co-ordinating Control process for moving the elements

from the first queue to the second.



This was one of the more successful studies; however, as usual, the students were placing un-

forseen demands on their teacher! We were not prepared, at this stage, to explain temporal logic but

their questions, listed below, forced us to improvise:

– Is the TwoQueues just an implementation of a Queue?

– How can we force the items to be moved from Q1 to Q2 without enforcing implementation

decisions during design?

– Is it possible to prove equivalence (provided that moves happen) between this system and a

queue; they seem the same intuitively.

– We can re-use the Queues but how do we re-use the composition mechanism?

At this point we examined the object oriented models and methods which are becoming prominent

in software development. The semantics of composition were well understood, but the next case study

was their first introduction to inheritance and subclassing.

4.6 Squares and Rectangles: Subclassing Formalised

This example was inspired from a long running thread in the comp.object newsgroup, where the

seemingly trivial specification of a square as a subclass of a rectangle was shown to be problematic.

We spent 1 hour on this study, directly after working on the formal concepts of extension and spe-

cialisation as subclassing relations. Our goal was to see if the students would themselves discover

that the question is unfair as it depends on the unspecified functionality of the program in which the

shapes will be found.

The problem posed was the following:

In a drawing program, shapes are to be represented on the screen and manipulated. There is

already a mathematical classification of shapes. For example, a square is a rectangle with

all four sides equal. Can, and should, we use this is-a relationship to define a square as a

subclass of rectangle in our drawing program?

All the students said that the is-a relationship should be used. We then posed the question of what

happens if one of the program’s functions is to move elements around the screen. Having said that

there was no problem, they were then asked why there was no problem, and could they specify a func-

tion which would cause a problem. With a bit of pushing, they managed to say that stretching a

shape may cause a problem because after you stretch a square it may longer be a square.

The lesson to be learned was the importance of the invariant in the square specification, which

states that all sides are of equal length. Provided none of the rectangle operations can break this

invariant then the square can be defined as a subclass of the rectangle. However, if an operation

such as stretch is part of the rectangle interface, then square cannot be defined as a subclass.

Furthermore, if the square is defined as a subclass of a rectangle then the square itself cannot

have a subclass extended by an operation like stretch.



5 Formal Methods and Tools

Throughout the case studies we emphasised the need for tools. We believe that it is very difficult to

teach formal methods without a good tool support.

The most difficult question for an advocate of formal methods used to be why formalise? We

propose the following response: without formality it is impossible to automate. Computers are very

powerful automation tools for performing repetitive tasks which are beyond human capablilities:

the problem is not in the complexity of any particular task, it is in the scale of the repetition. We

formalise to structure complex problems in such a way as they can be solved through highly repetitive

automation. Formal methods application depends on the tools for performing such automation. The

spectrum of tools ranges from:

– Fully automated

– Highly automated, requiring some human interaction to help the machine to complete its task

– Partly automated, where the automation is there primarily to help a human structure their own

behaviour in order to complete a task

It is important that students get to work with such a range of tools.

Students should have a means of learning through using. Lectures and tutorials do not give the

students a chance to learn from practice, at their own rate. When programming, students like to be able

to write their own programs (usually, very quickly) and see spectacular results (usually, immediately).

The students could be said to be rewarded through their efforts. With formal methods, such an effort-

reward cycle is harder to achieve and hence students do not have as much motivation to self-learn.

We would have liked to extend our use of tools: our goal is to provide one coherent framework

for: interactive specification, validation, transformation and verification. Unfortunately, we had to

split up our efforts for student-tool interaction. The following shows which parts of the course were

taught using which formalisms:

– Specifying Structure — OMT and OO LOTOS

– Specifying Requirements — Abstract Data Types

– Validation — Animation of OO LOTOS Specifications

– Verification — Completeness and consistency of algebraic specifications

– Transformation — Functional programs

– Verification — Invariant proofs using PVS

The tool sets which we employed were: SMILE for LOTOS and ADT specification, Atelier B and

PVS for invariant specification and proof, Object Geode for the graphical specification, CAML for

functional specification and some in-house O-LSTS tools (written in JAVA) for animating our formal

object oriented specifications.



6 Conclusions

Our approach to teaching formal methods tries to give an overall picture rather than concentrating on

any one method, language or tool. We believe in letting the students discover the concepts and prin-

ciples themselves, wherever possible. Our methods require interactive teaching between the lecturer

and the students, flexible course structure, group work and frequent case studies. We emphasise the

practical application of formal methods and try to teach the mathematics on demand.

This paper is intended to motivate a more collaborative approach to teaching formal methods.

This is the first year we have taught such a course and all feedback is welcome. Formal methods

need to be taught and they need to be taught well. By reporting on our imperfect attempts we hope

to help others in their teaching of this difficult subject, and to help ourselves by better understanding

the subject being taught and how it should be taught.
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