Telephone Feature Verification: Translating SDL to TLA™
P. Gibson and D. Méry*®

2CRIN-CNRS URA 262 et Université Henri Poincaré - Nancy 1 , Batiment LORIA,
BP239, 54506 Vandceuvre-les-Nancy (FRANCE)
Email: {gibson,mery }@loria.fr

SDL is commonly used in the early stages of software development. It provides mecha-
nisms for the specification of data structure, data flow, control flow, encapsulation, infor-
mation hiding and abstract dependencies, through its support for concurrent objects. We
propose a mechanism for translating SDL into a TLATspecification, in order to provide
a proof-theoretical framework. The preservation of properties through the translation is
examined within the framework of a simple state-sequence semantics. We identify the
strengths and weaknesses of such an approach, and introduce the translation which binds
the two different semantics together. We apply the translation in the verification of two
telephone features, and their interaction.

1. Introduction

This paper reports on the research that arose in response to a need for more formal
means of verifying telecom feature systems. We believe that TLA%Tholds many attrac-
tions for rigorous development and so aim to utilise it as our mathematical basis. We also
believe that object oriented concepts offer real benefits at all stages of software develop-
ment. Our strategy is based on combining object oriented and temporal logic models in a
coherent and complementary manner. This provides us with a compositional approach to
verifying systems of interacting telephone features. In this paper we examine the process
of generating the first formal design models through a translation from SDIL to TLAT.

1.1. SDL

SDL92 [15], which we will now refer to as SDL, is an ITU (formally CCITT) standard
language which provides a well accepted means of constructing reactive systems. Us-
ing SDL, it is possible to construct models which satisfy certain safety constraints. The
validation techniques associated with the language provide automatic simulation environ-
ments and, in some cases, automatic code generation. These techniques are useful but not
sufficiently rigorous for proving properties about systems: i.e. verifying that the defined
behaviour is correct. SDL is particularly popular in telephone feature development [2].
The feature interaction problem is difficult, if not impossible, to solve without some form

*This work is partially supported by the contract n°96 1B CNET-FRANCE-TELECOM & CRIN-CNRS-
URA262 and by the Institut Universitaire de France

of formal reasoning. SDL has been used to specify features but has not proved useful in
the verification of systems of interacting features.

1.1.1. Introducing language concepts

In SDL, behaviour is defined by communicating processes. These communicate by
exchanging (parameterised) signals via channels. Processes describe extended finite state
machines (EFSMs) which change state only when a signal arrives. A signal may also
trigger the sending of other signals and update some local variables. Processes may be
grouped into blocks, the most important structural construct in SDL. A block may contain
other blocks, connected by channels, or it may contain a set of processes, also connected by
channels. The system is finally composed of several blocks, and is, of course, itself a block.
An SDL system communicates with its environment by sending and receiving signals
to/from that environment. These signals are, like internal communications, transferred
by channels. Communication in SDL is asynchronous: each process has a message queue
which buffers the incoming messages.

1.1.2. SDL is Object-Based

SDL provides object based conceptualisation [21], since we can view processes as con-
current objects. It provides the following facilities:

Instantiation: Processes, blocks and procedures are defined by types. Multiple instances
of these types are indeed distinguishable by unique identifier.

Encapsulation: In SDL, the only way to change both state and local variables is to send
a message to the appropriate process according to some well defined protocol.
Genericity: The ability to create generic behaviour expressions is very useful but not
fundamentally object oriented.

Inheritance: All SDL types may be specialised by ‘inheriting’ all features from a super-
type. This is one of the fundamental aspects of object oriented languages. However, the
SDL inheritance semantics is not powerful enough to cope with the notion of class as type
and the need for polymorphism. Inheritance, in SDL (and most other object oriented
specification languages), is more like a code re-use mechanism [12]. Thus, we say that
SDL is object-based rather than object oriented.

We choose to promote an object oriented interpretation of SDL code (wherever possi-
ble), and thus promote an object oriented style of expression which utilises our interpre-
tation mechanisms. The underlying semantic framework is illustrated in figure 1. The
object-labelled state transition semantics (O-LSTS) are taken directly from [12] and we
are currently working on their implementation in TLAT. They provide the structural
consistency as we move from SDL to TLA™T, and, from our experience, they help both
requirements modellers and designers to communicate.

1.1.3. Validation techniques

Message sequence charts (MSCs) provide one means of validating SDL specifications
are [4]. MSCs can be used to formulate requirements of an SDL specification in terms
of signal sequences. These can then be validated using an appropriate tool, like the SDL
validator [7]. Such a tool is able only to validate MSCs which observe all messages between
participants and thus it is limited in its application. Animators and code generators can

,,,,,,,,,,,,,, \ Conceptual Consistency e
! | Requirements capture : $ Refinement Process !
S valldatlon i [OO State Semantics \\verlflcatlon/ i ///
AN -y t translation ELAJ“)
AN uirements esigns
Customer *\. Formal eq g Code
Interaction | /= - - - ------- - ------------------------------ Generatlon
/~ Informal 7 popiem Software I Solution ! \
/ N I
S Doman - - === - = , Domain | |\
,/ AN - Engineering =@ — - - - -— N
\ ! : J

Figure 1: The Semantic Structure

also aid the validation process, which is always going to be informal® because of the need
for the customer to be satisfied that the behaviour expressions being validated do correctly
express their needs.

1.2. TLA*

TLATis a specification language developed by Lamport [19] and based on his tempo-
ral logic of actions [20,18], extended by notations of set theory and syntactic structuring
mechanisms. It has proved itself to be a formal, abstract and usable specification language
[17]. It is founded on simple syntax and semantics which, in our opinion, can be exploited
by anyone with basic mathematical ability. It provides a means of temporal reasoning
which does not require a large knowledge of logic. In TLA™T, a refinement relation be-
tween two specifications is simply defined as the deduction relationship in the underlying
logic. The proof of a property in TLA%is simply reduced to a proof of implication: A
specification satisfies a property, if a specification implies that property. TLATis well
supported by the theorem prover TLP [10].

1.3. Translation: A General Motivation

The translation from one language L1, say, into another language L,, say, is common
in computing science. The utility of the translation is based on the preservation of the
properties defined in the behavioural expression being transformed [3,22]. The difficulties
of formalising such an approach must be out-weighed by the potential advantages:
Degree of Theoretical Foundation — £; may not be formally defined. As such,
expressions written in £, are not amenable to the type of mathematical analysis (and
transformation) which is becoming ever more important in safety critical systems devel-
opment. By defining a mechanism for translating any given correctly defined £ expression
into an L, expression, where L, is a formally defined language, one effectively provides
L1 with a rigorous semantics. Furthermore, there is potential for re-use of well-defined
concepts in the framework of £,.
Expressiveness — Different languages have different expressional capabilities. Conse-
quently, some problem domains are more easily modelled in one language than in another.

ZInformality does not necessarily imply a lack of rigour.

Furthermore, different languages are better at working at different levels of abstraction.
Having two different languages obviously supports a wider range of expression.
Practical Support — There are many different software development tools which gen-
erally provide the following types of functionality: synthesis, analysis, validation, veri-
fication and transformation. For any given language, there are different degrees of tool
support for each of these primary functions. Translating from £; to £, offers the possi-
bility of utilising the best tools in both language domains.

Expanding user-base — Different languages have different user-bases. L£; may be
widely used in a problem domain for which £, is not commonly used. To promote the
use of L4, one can translate already existing £; behaviour expressions into L.
Improving understanding — Having different semantic models may also facilitate a
better understanding of the problem domain being considered and of the strengths and
weaknesses of each of the languages.

Re-use — An important aspect of all modelling is the ability to re-use previous work.
This re-use may come in many different forms [13,16,14,11,24]. Translation between lan-
guages facilitates the transfer of all types of re-use from one domain to the other.

1.4. Translation: SDL to TLA™*

It is difficult to rigorously relate or transform SDL models. Furthermore, SDL, unlike
TLA"is not well suited to the verification of rigorously formulated properties. SDL cannot
express properties such as liveness and fairness, which are becoming ever more important
in telephone feature specifications. SDL tool support is strongest for model synthesis and
validation. TLATtool support is strongest in the areas of refinement and verification. The
translation from SDL to TLA*should introduce many more developers to the advantages
of formal languages, in general, and temporal logics, in particular. Through translation
we understand much better the feature interactions which are due to fairness problems.
Such interactions are difficult to address in the SDL framework. There is much potential
for re-use of SDL code in a constructive, object-based manner. Within TLA%we also
promote re-use of proof components as a means of facilitating compositional verification.
Translating SDL to TLA*permits exploitation of the strengths of both languages in a
complementary manner.

1.5. Object Oriented Methods
1.5.1. Advantages

Object oriented concepts have been shown to aid model development at all levels of
abstraction and in many different problem domains [1,5,9]. They also lend themselves
to a natural state-based conceptualisation [12], incorporating the notions of abstraction,
composition, delegation and subclassing in a formal framework. Object oriented methods
encourage different types of re-use, facilitate a better understanding of the systems being
developed, aid validation and, given a formal semantics, are a step towards the type of
constructive rigorous verification which is necessary for correct system development.

1.5.2. Objects and Classes

There are two distinct conceptualisations of the term object within the semantic frame-
work which we propose. Each class has a set of member objects, each of which represents
a potential state of an object instance of that class. An object instance is a state machine

whose current state is defined by a reference to a particular object member of the class
to which it belongs. Meyer states in [25] that ‘a class is an executable entity in its own
right’. We consider each class member to be an executable finite state machine (FSM), as
defined in [12]. State transitions occur only in response to service requests. This model
can be realised, after a degree of conceptual manipulation, in the SDL framework by the
notions of block, process, channel and signal.

1.5.3. Objects and Fairness

Temporal requirements, such as liveness and fairness, must be included informally in
any SDL model. These informal aspects must be formalised by hand as we translate to
TLA™: in our telephone feature case studies, the need for fairness is evident in our for-
mal models. The O-LSTS semantics provide formal definitions for object, class, service,
subclassing, polymorphism, genericity, and composition. The O-LSTS models comple-
ment our TLAspecifications because the underlying model is that of a class as a state
transition machine. The two methods share this interpretation, but at different levels of
abstraction.

2. An Operational Semantics for SDL

2.1. An Overview
We are required to preserve the semantics of the given SDL models in the TL A*specifications

which result from the translation. We must ensure that the semantics which we attribute

to SDL (through our translation to TLA™) coincide with those as expressed in the SDL
standard. Let us denote any given SDL specification as sdl and the semantics of such

a specification, expressed as a set of infinite sequences of states closed by stuttering, as
S(sdl). Similarly, let us denote any given TLAYspecification and its semantics as t/a and
S(tla) respectively. Now, given a translation function 7: SDL — TLA®, we have the
mathematical structure as shown in figure 2:

Given sdl, and tla = T'(sdl) then: S(sdl) and S(tla) are two sets of infinite sequences
of states related by the following relationship — S(sdl) C S(tla). Now, we ensure
that any property holding for sdl also holds for tla : if a property ® holds for tla,
then S(tla) C S(®), where S(®) is the semantics of the property expressed as a
set of infinite sequences of states, and if S(sdl) C S(tla), then S(sdl) C S(®). The
preservation guarantees that any property derived from tla is also a property of sdl.
Now, after generating the tla specification we can verify our design steps as refine-
ments. These refinements guarantee that as we add new features to our system we do not
compromise the requirement properties of features already developed.

2.2. The SDL definition

The SDL syntax is represented in two different ways: textually and graphically. Infor-
mal semantic descriptions are added to these representations in the form of comments.
Our method consists of studying SDL syntax defined in the ITU (CCITT) standards doc-
ument for the purpose of understanding and defining an appropriate subset, which we
call CROCOS [23]. A subset of SDL syntax has been examined for translation. (Work
is currently being carried out to expand this subset and to incorporate the object based
syntactic constructs of SDL-92. At the moment the size of the subset is constrained by

Refinement preserves properties
VA

(S(tla) - P1)

7

SDL subset TLA+ subset _ -

7

== (S(tla) => P1)

RIS W /
/

/ Operational Semantics / v
S(sdl) =>P1 Stla) =>P1 '/

Figure 2: Mathematical Structure

the semantic framework underlying the translation process. Furthermore, we need to for-
malise the relation between the O-LSTS object oriented concepts and those found in the
standard before the translation can be extended.)

2.3. Introducing the language constructs
An SDL text specifies a system as a set of blocks communicating through channels and
using signals.
Signal sigi,...,sigp;

A Channel chany,...,chang;
System S = Block B

Block B,

A block B is either a set of blocks communicating via channels and using signals:
Signal Besigy,...,Besigy;
Channel B echany,...,Bechang;

A
Block B = Block Be B

Block BeB,

or a set of processes communicating via routes:

SignalRoute Ber,...,Ber,;
Block B A Process Be P
Block BeP,

An SDL process P is defined by a name, a list of parameters and a set of transitions.
A transition is characterized by a starting label and final labels corresponding to the
execution of different basic actions as assignment, receipt of a message, sending a message.

Process < name > (min, max)
Fpar < formal parameters >
A state start : < transitiong >
Process P =
state label; : < transition; >
state label,, : < transition,, >

The translation of an SDL system into a TLA text uses the hiding of variable as channel.
The mapping is relatively obvious and it allows us to give a TLA-based semantics for
SDL. The fact that SDL requires the definition of algebraic datatypes does not suggest
any problem because we suppose that users can utilise the abstract data type of SDL as
set-theoretical elements. In sections 2.4 to 2.7, we provide a semi-formal overview of the
way in which the translation maintains the semantics and structure of SDL systems. (As
an overview, these sections can act only as a brief justification of our approach: more
details can be obtained directly from the authors.)

2.4. Naming elements of SDL text
The naming of SDL constructs leads to a simple partition of sets as variable parameters
in the corresponding TL A specification.

System : set of names for system
Block . set of names for blocks
Process : set of names for processes
Channel . set of names for channels
Signal : set of names for signals
Variable . set of names for variables
State . set of names for states

module Basic-Notations

variable

P.S. B, Chan, Sig

2.5. Transforming transitions into TLA actions
A transition is written as follows:
{ STATE labely S NEXTSTATE label’y

>

T NEXTSTATE

label, S, NEXTSTATE label',

The control state is defined as a special variable attached to every process :
e P e [means that L is a label variable for P of the process P.
e Pe [is the current value of the control of P, and P e L’ will be the next value of L.

e the process P has variables that may be modified by TASK and P can send or
receive messages. Labels are located at the beginning of every state and before
every operation. A global assertion, namely an invariant on control, is defined to
handle the relationship between labels.

A control invariant for P is defined from the text of the process P : [control(P).
A control invariant for a block B is defined from components of B:

Icontrol(B) 2 /\ Icontrol(B')
B’eBeBlock

A control invariant for a system S is defined from components of S

2

Tcontrol(S) Icontrol(B)

BeSeBlock

The transformation of 7" into an action of TLA is as follows:
o T'is decomposed into Ty;T5;...;T,
e for any ¢ in {1,...,n}, T; becomes A;(T)(x, ")
o Ais A(Ty)(x,2") Vv A(T,)(x, 2’
o for any ¢ in {1,...,n}, A(T;) is A(Tin)(x,2") VvV A(T;;,) (x, 2')

2.6. The Next relation for a system S
We require the following notation in our definition of Next:

e For any process P, N'(P) is the disjunction of actions in P.

e For any block B, B 2 A N(B')

B'eB.Block

e For any system S, V() 2 A N(S)

BeS.Block

Finally, the global next relation for S is simply defined by a TLA*module Neat:

| module Nezt

extends ...

Other modules are required for the definition of Next and

are imported

GN(S) = N(S) A Icontrol(S)
|

2.7. A semantics for S
The definition of a semantics for S leads us to characterize a set of behaviors for S with
the help of a TLA formula; in the style of Lamport we write:

module semantics-of-S

extends ...

Other modules are required for the definition of S(S5) and

are imported

S(95) = Init(S) A GN(S) A Fairness(S)

Fairness(S) expresses a fairness condition for S. Fairness(S) can be defined with the
weak fairness (WF) or strong fairness (SF) predicates. WFaA states that, if A is con-
tinuously enabled from a given state, then A will be executed, while there is a possible
stuttering on x; SFaA states that, if A is infinitly often enabled from a given state, then
A will be executed.

2.8. Translation: The Formalisation

The main problem is to define the soundness of the translation with respect to a se-
mantics of system. Intuitively, a SDL system is semantically defined as a set of traces: a
trace of states allows us to observe the transformation of data with actions. A notion of
action can be clearly extracted from the ITU (CCITT) documentation on SDL.

Definition 1 Semantics of a system

A system S over a set of variables V is modelled by a set of behaviours Behaviour(S,V,) over
. A i A

V: o € Behaviour(S,V,) and o : o9 o, 1. 255 oy A o, =X .0y, 01,0i_1,0;

are states of the system S over V and are defined as mapping from V' to the memory values

Aoy ..oy Aim1, Aiy Ay - .. are actions over V@ an action A is defined as a set of couples of

states.

A system is characterized by a set of infinite traces over a set of variables. However, SDL
uses infinite communication channels that leads to a first observation that automata in
SDL are generally not finite state. A second observation is that we need to use a variable
for every channel. Now we turn to the translation of an SDL specification into a TLA
formula and the definition of the semantics of a system S written as an SDL specification:

e Action is [TASK X := EJ: (2’ = e(z) Ainv(z)), where inv(z) is an invariant of x.

e Action is [Start Choice Taskl Task2 Task3 ... Taskn End |: T(Taskl) Vv ...V T(Taskn)

The question of the soundness of the translation is crucial. The result is based on
equivalence by stuttering, which simply states that two traces are equivalent by stuttering,
if they are equal when you forget idle actions[20].

2.8.1. Translation: work to date

The translation of SDL into a formal framework has been done in our CROCOS envi-
ronment [23], and we have translated a subset of SDL using the wp operator for atomic
actions. We are currently considering translation of the full SDL language: the additional
structure in the TLATlogic, together with our O-LSTS semantic integration, provides a
means to facilitate a more complete object-based conceptualisation of SDL. An important

thing to note in the translation is the introduction of fairness assumptions which could
not be expressed in the original SDL systems. These fairness assumptions reflect informal
assumptions that we have made about the objects in our models. In particular, they
reflect the fact that a system of concurrent objects is actually modelled using interleaving
and a nondeterministic scheduling. The TLAtsemantics can be used to formally state
our informal assumptions about the fairness of concurrent objects in the SDL models.
This is important in the domain of telephone feature development. The behaviour spec-
ified by the resulting TLA*tmodels can be viewed as a refinment of the originating SDL
models because of the way in which the nondeterminism is treated at a different level of
abstraction.

2.9. Verification of SDL programs

Our technique has been developed to improve the way to prove properties about pro-
grams written in SDL. Several techniques can be applied to handle a SDL specification
translated into a TLA specification. A model checking technique is applied when the
TLA specification is finite-state® A direct consequence is that we need to translate a TLA
specification into an equivalent finite automaton in order to check properties on the SDL
program. Theorem proving is a more powerful approach which requires theorem prover
tool. We have such a tool, namely TLP [10], for TLA. Hence, when we have translated
an SDL program into an equivalent TLA specification, we prove properties of the SDL
program by proving properties of the TLAYproduced in the translation. Then during
design, each refinement of the TLATspecification maintains the properties as required by

the SDL model.

3. A Simple Case Study: Telephone Features

The feature interaction problem is concerned with what happens when we try to put a
wide range of telephone features together in one system. An interaction is said to occur
if the complete system does not fulfil the requirements of each individual component
feature. Feature interaction is one of the most difficult problems in this problem domain
[6,8] and must be considered in the initial stages of specification. Finite state automata
have been shown to play a role in the analysis of safety properties in systems in which
feature interactions can occur. However, it is now becoming clear that liveness and fairness
properties can also be important in such interactions. In this simple study we show the
problems that can occur when defining new features (call waiting and three-way calling
are used as examples) which extend standard telephone functionality. We compare an
SDL-alone approach with one based on a translation to TLA™T.

3.1. POTS

The Plain Old Telephone Service (POTS) requirements is represented, in figure 3, by our
O-LSTS diagram of the simplest of telephones. (In the diagram we have not represented
null state transitions which return some value to the external interface, through services
hook and signal, but do not change the internal state of the system. Their intended
semantics should be evident from the state labels.)

31If a TLA specification has only finite domains, then the generated automaton is finite.

CLASS POTSPhone USING Hook, Signal
4 7\

STRUCTURE Hook, Signal

hook:Hook
otherHook —

Oannglng I|ft ****** Oflenglng
7 OffTaI king

/

’ OtherRl ngin

\\ |
N T OffReady '
% Jrop - offSilent it
drop | . —
1 \
v otherHook \

OffBuw otherBus/

7 otherFree)]
Kl gnal:Signal

nwrr»zxoxm-Xm

| di

INTERNALS otherBusy otherFree otherHook otherRingin

Figure 3: A POTS Phone Requirements Model

3.2. Call Waiting (CW) and POTS

CW functionality is enabled only when talking to someone else, and a third person tries
to call. With CW, they will not get a busy tone (as before) but will hear a ringing tone
until they are held. CW permits the talking to one person concurrently with the holding
of another. It also permits the switching of the talking and held persons. FEither of the
two other users can hang up to leave the CW user in the standard POTS state where
they are talking to one person. The CW subscriber can also hang up leaving them in the
standard POTS OnSilent state. This is illustrated in the partial state transition diagram
for the extended telephone (we do not show all the telephone states and transitions as
they are preserved by the extension mechanism), in figure 4.
3.3. Three Way Calling (TWC) and POTS

If T subscribe to TWC then the feature is enabled only when I am talking to someone
and I receive a call from a third party. I then have a new service (connect) which permits
me to talk with both callers at the same time. In this new state I can also disconnect
either one of the two callers. This is illustrated in the partial state transition diagram for
the extended telephone, in figure 5.
3.4. CW and TWC: A feature interaction?

Traditionally, the argument for these two features interacting is as follows:

What happens if both features are activated and we are talking to someone
when we receive an incoming call? There is an ambiguity because the system
doesn’t know which feature to execute: the CW or the TWC.

We must ask whether there is really a problem here. The question is best addressed
within a formal framework: below, we examine the SDL-TLATmodels of the behaviour.
The partial O-LSTS diagram, in figure 6, is common to both models.

POT SPhone extended by CallWaiting
4 1\
drop
hold
 Mold_ lOfTakIHOIA2 | gyith——— hold
| OffTak2Hold1 T
OffTalk1Ring2 otherHook saitch
N N -~ otherHook drop B
POTSPhone | N !
e -
| N ‘_ . V < I__
: otherHook . (offTaking 1
-7 M

' OtherRingin —

& J

Figure 4: A POTS Call Waiting Extension
POTSPhone extended by TWC
4 7\
. connect connect
Off Talk1Ring2 OffTalkTalk —
A\
therRingl N -
POTSPhone o0 N o7 e diop drop

Figure 5: A POTS Three Way Calling Extension

3.5. Standard SDL Approachs
3.5.1. Informal Validation: Animation

The SDL state transition model can be animated for validation. A black-box validation
is done when the animator shows only execution behaviour as a trace of actions. White-
box testing also permits the user to see the internal state representation of the system
during execution. Both types of validation are useful for interacting with the customer,
but they are not sufficient when we consider systems with large numbers of states.

3.5.2. Rigorous Validation: Using MSCs

The SDT validator of MSCs can perform an exhaustive search on the state space of
the finite state machines representing the SDL specifications. MSCs help to structure the
validation process. The user no longer needs to interact directly with a large, complex
machine; instead, they specify sets of requirements as MSCs and these are automatially
verified against the underlying model. There are limitations to this approach:

o [t is sometimes necessary to construct huge MSCs which are difficult to understand

POTSPhone extended by TWC extended by CW
Y\ hold
- OffTalk1Hold2) | _switeh
| switch
| hol connect -~ connect
| OffTaI k1Ri ng —
|
\ otherRlngIn N
POTSF_’hq]e_\ _____ . j_\ < j ________ 1
[| —T
: otherHook ms OffTa| ki ng 1
L ! ﬁ_

Figure 6: A Feature Composition

and ultimately may not even correctly define the requirements properties that are
to be verified.

o Safety properties can be proved in this way but were found, in practice, to be too
complicated to be expressed using MSCs

e Liveness properties cannot be considered

o Assystems are refined or extended, the validation process must be carried out again.
In other words, the approach is not compositional.

3.5.3. Verifying our Feature Composition
The process of validation does not aid us with the feature interaction problem. Consider
the following situation:

The POTS telephone is validated against MSCs pl and p2
The CW-telephone is validated against MSCs cwl and cw?2

We would like to be able to formally verify each extension of the original POTS system
in such a way that the properties are preserved automatically, for example:

CW-telephone is verified against a POTS telephone =
CW-telephone automatically fulfils properties pl and p2

In the standard SDL approach pl and p2 must be separately verified against the CW-
telephone specification. The state space of a simple telephone and a few features is
relatively small and so is amenable to exhaustive testing. Consequently, we can verify
the incremental feature extensions of the POTS phone using the standard SDL tools.
However, the state space of the POTS system (where we have a set of telephones and their
features) was too large for automatic verification. It was possible to validate subsets of
the state space but there was no means of constructing a larger validation (or verification)
of the whole system in a rigorous fashion.

3.6. Verification in TLAT

TLATis not as useful as SDL for the valdiation of our requirements models Using
TLAfor verification, however, is more powerful than the standard SDL approach:
* Liveness Conditions can be verified. For example, using TLA*we are able to prove
the following requirements which we could not find a means of verifying using just the

SDL and MSC formalisms:

o [can always hang up my phone, lift it and start a new call.

o If [am talking with two people at the same time and [hang up then the two people
will always end up talking to each other.

e There is an absence of circular holds in the system: i.e. we cannot have a situation

where: P1 holds P2 holds ... holds P1.

o When I dial a number [will eventually get a busy or ringing signal.

These properties are formalised in TLA as follows:

module SPECIFICATION

extends ...

theorems

I can always hang up my phone, 1ift it and start a new call. ‘

A

DEFINITION1 = O(ENABLED ~Hang_Up_My_Phone o Lift_It ® Start_New_Call)

If I am talking with two people at the same time and I hang
up then the two people will always end up talking to each
other.

DEFINITION2 = 0O(Vpl, p2.Talking(I, p1, p2) A Hang_On(I) = Talking(pl, p2))

There is an absence of circular holds in the system: 1i.e.
Wwe can never have a situation where: P11 holds P2 holds ...

holds P1.

DEFINITION3 £ O(=(3Py,Py,..., Py : AVie{l...n—1} : Hold(P;, Piyy)))
A Hold(P,, Py)

When I dial a number I will eventually get a busy or ringing
signal.

DEFINITION4 = Dial(I, Number) ~» (Busy_Toning(I.Number)V Ringing (I, Number))

* Compositional verification can be mechanised because verification is represented by
a logical implication which can be handled directly by the TLA*theorem prover TLP [10].
* Power of expression is better when using TLATrather than MSCs for specifying
requirements properties for verification.

3.7. CW and TWC: Is there an interaction?

The two features do interact when the hold and connect actions are obliged (by each
of their feature requirements) to occur when in the state 0ffTalk1Ring2 — this is the
standard model. Clearly, these two actions cannot both be performed and, in this case, an
interaction is said to occur because both features cannot meet their obligations. With the
TLA*notion of liveness, we can guarantee that we do not stay in state 0ffTalk1Ring?2
whilst obliging neither of the two actions individually. Thus, we have no contradictory
requirements and the two features do not interact. It is the the user who chooses which
feature to execute; and if such a choice is not made liveness can be used to gaurantee that
a nondeterministic action eventually changes the state of the system.

4. Conclusions and Future Work

This paper reports on a continuing experiment into the use of formal methods in showing
the correctness of telephone feature requirements models (written in SDL). It is clear, even
at this early stage, that there is much complexity involved. Some of this complexity is
presently being ‘factored out’ in the development of appropriate translation tools. One of
the most difficult aspects of verification is the sheer size of the task. What is clear is that
the complexities of verification increase much more than linearly with respect to the size
of the models to be verified (this is particularly true for our telephone feature interaction
case study). At worst, the problem seems to be almost exponential in nature. What
is needed is a constructive approach to verification in the same vein as the constructive
approaches to validation which are evident in many of the modern object oriented analysis
and requirements capture methods. However, the problem of constructive verification
hinges on the definition of constructive proof operators which can be used in conjunction
with the operators used in the synthesis of requirements models. This is our current area
of research.

We believe that there is much to be achieved through the integration of object oriented
concepts, simple operational semantics and temporal logics. This work is a small step
towards achieving such an integration. SDL is useful in telephone feature development
during analysis and requirements modelling. TLATis useful for formal verification of
design steps and system extensions, and it also provides us with the means of reasoning
about fairness aspects of telephone services. The object oriented state-transition based
semantics provide us with a good basis on which to connect these two languages in a
complementary fashion. We have illustrated how a subset of SDL can be translated; this
subset will be expanded upon as we integrate the O-LSTS semantics with the extended
finite state semantics in the SDL standard. This will also facilitate a more compositional
approach to TLATverification.

REFERENCES

[\

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25

G. Booch. Object Oriented Development. IEE Software Engineering, February 1986.

L. G. Bouma and H. Velthuijsen, editors. Feature Interactions in Telecommunications Sys-
tems. 10S Press, 1994.

N. Brown and D. Méry. A proof environment for concurrent programs. In J. C. P. Woodcock,
editor, FMFE’93: Industrial-Strength Formal Methods, pages 196-215. IFAD, Springer-Verlag,
1993. LNCS 670.

M. Broy. Towards a semantics for sdl. Technical report, PASSAU University, 1989.

P. Coad and E. Yourdon. Object oriented analysis. Prentice-Hall (Yourdon Press), 1990.

P. Combes, M. Michel, W. Bouma, and H. Velthuijsen. Formalisation of properties for
feature interaction detection. In ISN Conference, 1993.

P. Combes, M. Michel, and B. Renard. Formalisation verification of telecommunications
service interactions using SDL methods and tools. In 6th SDIL Forum. North Holland, 1993.
P. Combes and S. Pickin. Formalisation of a user view of network and services for feature
interaction detection. In L. G. Bouma and H. Velthuijsen, editors, Feature Interactions in
Telecommunications Software System, pages 120-135. 10S Press, 1994.

Brad Cox. Object oriented programming: an evolutionary approach. Addison-Wesley, 1986.

. U. Engberg. TLP Manual-(release 2. 5a)-PRELIMINARY. Department of Computer Science,

Aarhus University, May 1994.

R. Fairley. Software Fngineering Concepts. McGraw Hill, New York, 1985.

J. Paul Gibson. Formal Object Oriented Development of Software Systems Using LOTOS.
Technical report CSM-114, Stirling University, September 1993.

Joseph Gougen. Reusing and interconnecting software components. Computer, 20, February
1986.

Raymonde Guindon. Knowledge exploited by experts during software system design. Inter-
national Journal of Man-Machine Studies, 33(3):279-304, 1990.

ITU. Specification and description language (SDL) ITU-T Recommendation Z.100, revision
1 edition, 1994.

R. E. Johnstone and B. Foote. Designing re-usable classes. Journal of Object Oriented
Programming JOOP, pages 22-35, June 1988.

L. Lamport. Hybrid systems in TLAT. In Grossman, Nerode, Ravn, and Rischel, editors,
Workshop on Theory of Hybrid Systems. Springer-Verlag, 1992. LNCS 736.

L. Lamport. A temporal logic of actions. Transactions On Programming Languages and
Systems, 21(9):768-775, September 1995.

L. Lamport. TLA™. Technical report, Digital Equipment Corporation, 5th july 1995.

L. Lamport. TLA in pictures. IEFFE Trans. on SE, 16(3):872-923, May 1995.

T. Lindner and C. (editors) Lewerentz. Case Study Production Cell A Comparitive Study
in Formal Software Development. FZ1-Publication, 1994.

D. Méry. Une Méthode de Raffinement et de Développement pour la Programmation Par-
alléle. PhD thesis, Université de Nancy 1,UFR STMIA, DFD Informatique, February 1993.
Doctorat d’Etat.

D. Méry and A. Mokkedem. CROCOS: An integrated environment for interactive verification
of SDL specifications. In G. Bochmann, editor, Computer-Aided Verification Proceedings.
Springer Verlag, 1992.

B. Meyer. Genericity versus inheritance. In Object Oriented Programming Languages Sys-
tems and Applications (OOPSLA 86) As ACM SIGPLAN 21, November 1986.

B. Meyer. Fiffel: The Language. Prentice Hall International Ltd., 1992.

