
Telephone Feature Veri�cation: Translating SDL to TLA+P. Gibson and D. M�ery�aaCRIN-CNRS URA 262 et Universit�e Henri Poincar�e - Nancy 1 , Bâtiment LORIA,BP239, 54506 Vand�uvre-l�es-Nancy (FRANCE)Email: fgibson,meryg@loria.frSDL is commonly used in the early stages of software development. It provides mecha-nisms for the speci�cation of data structure, data 
ow, control 
ow, encapsulation, infor-mation hiding and abstract dependencies, through its support for concurrent objects. Wepropose a mechanism for translating SDL into a TLA+speci�cation, in order to providea proof-theoretical framework. The preservation of properties through the translation isexamined within the framework of a simple state-sequence semantics. We identify thestrengths and weaknesses of such an approach, and introduce the translation which bindsthe two di�erent semantics together. We apply the translation in the veri�cation of twotelephone features, and their interaction.1. IntroductionThis paper reports on the research that arose in response to a need for more formalmeans of verifying telecom feature systems. We believe that TLA+holds many attrac-tions for rigorous development and so aim to utilise it as our mathematical basis. We alsobelieve that object oriented concepts o�er real bene�ts at all stages of software develop-ment. Our strategy is based on combining object oriented and temporal logic models in acoherent and complementary manner. This provides us with a compositional approach toverifying systems of interacting telephone features. In this paper we examine the processof generating the �rst formal design models through a translation from SDL to TLA+.1.1. SDLSDL92 [15], which we will now refer to as SDL, is an ITU (formally CCITT) standardlanguage which provides a well accepted means of constructing reactive systems. Us-ing SDL, it is possible to construct models which satisfy certain safety constraints. Thevalidation techniques associated with the language provide automatic simulation environ-ments and, in some cases, automatic code generation. These techniques are useful but notsu�ciently rigorous for proving properties about systems: i.e. verifying that the de�nedbehaviour is correct. SDL is particularly popular in telephone feature development [2].The feature interaction problem is di�cult, if not impossible, to solve without some form*This work is partially supported by the contract no96 1B CNET-FRANCE-TELECOM & CRIN-CNRS-URA262 and by the Institut Universitaire de France



of formal reasoning. SDL has been used to specify features but has not proved useful inthe veri�cation of systems of interacting features.1.1.1. Introducing language conceptsIn SDL, behaviour is de�ned by communicating processes. These communicate byexchanging (parameterised) signals via channels. Processes describe extended �nite statemachines (EFSMs) which change state only when a signal arrives. A signal may alsotrigger the sending of other signals and update some local variables. Processes may begrouped into blocks, the most important structural construct in SDL. A block may containother blocks, connected by channels, or it may contain a set of processes, also connected bychannels. The system is �nally composed of several blocks, and is, of course, itself a block.An SDL system communicates with its environment by sending and receiving signalsto/from that environment. These signals are, like internal communications, transferredby channels. Communication in SDL is asynchronous: each process has a message queuewhich bu�ers the incoming messages.1.1.2. SDL is Object-BasedSDL provides object based conceptualisation [21], since we can view processes as con-current objects. It provides the following facilities:Instantiation: Processes, blocks and procedures are de�ned by types. Multiple instancesof these types are indeed distinguishable by unique identi�er.Encapsulation: In SDL, the only way to change both state and local variables is to senda message to the appropriate process according to some well de�ned protocol.Genericity: The ability to create generic behaviour expressions is very useful but notfundamentally object oriented.Inheritance: All SDL types may be specialised by `inheriting' all features from a super-type. This is one of the fundamental aspects of object oriented languages. However, theSDL inheritance semantics is not powerful enough to cope with the notion of class as typeand the need for polymorphism. Inheritance, in SDL (and most other object orientedspeci�cation languages), is more like a code re-use mechanism [12]. Thus, we say thatSDL is object-based rather than object oriented.We choose to promote an object oriented interpretation of SDL code (wherever possi-ble), and thus promote an object oriented style of expression which utilises our interpre-tation mechanisms. The underlying semantic framework is illustrated in �gure 1. Theobject-labelled state transition semantics (O-LSTS) are taken directly from [12] and weare currently working on their implementation in TLA+. They provide the structuralconsistency as we move from SDL to TLA+, and, from our experience, they help bothrequirements modellers and designers to communicate.1.1.3. Validation techniquesMessage sequence charts (MSCs) provide one means of validating SDL speci�cationsare [4]. MSCs can be used to formulate requirements of an SDL speci�cation in termsof signal sequences. These can then be validated using an appropriate tool, like the SDLvalidator [7]. Such a tool is able only to validate MSCs which observe all messages betweenparticipants and thus it is limited in its application. Animators and code generators can



Requirements capture

validation verification

Conceptual Consistency

Formal

Informal

SDL
Requirements

OO State Semantics

translation TLA+
Designs

Refinement Process

Solution

Domain
Problem
Domain

Figure 1: The Semantic Structure

Customer
Interaction Generation

Code 

Software

Engineeringalso aid the validation process, which is always going to be informal2 because of the needfor the customer to be satis�ed that the behaviour expressions being validated do correctlyexpress their needs.1.2. TLA+TLA+is a speci�cation language developed by Lamport [19] and based on his tempo-ral logic of actions [20,18], extended by notations of set theory and syntactic structuringmechanisms. It has proved itself to be a formal, abstract and usable speci�cation language[17]. It is founded on simple syntax and semantics which, in our opinion, can be exploitedby anyone with basic mathematical ability. It provides a means of temporal reasoningwhich does not require a large knowledge of logic. In TLA+, a re�nement relation be-tween two speci�cations is simply de�ned as the deduction relationship in the underlyinglogic. The proof of a property in TLA+is simply reduced to a proof of implication: Aspeci�cation satis�es a property, if a speci�cation implies that property. TLA+is wellsupported by the theorem prover TLP [10].1.3. Translation: A General MotivationThe translation from one language L1, say, into another language L2, say, is commonin computing science. The utility of the translation is based on the preservation of theproperties de�ned in the behavioural expression being transformed [3,22]. The di�cultiesof formalising such an approach must be out-weighed by the potential advantages:Degree of Theoretical Foundation | L1 may not be formally de�ned. As such,expressions written in L1 are not amenable to the type of mathematical analysis (andtransformation) which is becoming ever more important in safety critical systems devel-opment. By de�ning a mechanism for translating any given correctly de�ned L1 expressioninto an L2 expression, where L2 is a formally de�ned language, one e�ectively providesL1 with a rigorous semantics. Furthermore, there is potential for re-use of well-de�nedconcepts in the framework of L2.Expressiveness | Di�erent languages have di�erent expressional capabilities. Conse-quently, some problem domains are more easily modelled in one language than in another.2Informality does not necessarily imply a lack of rigour.



Furthermore, di�erent languages are better at working at di�erent levels of abstraction.Having two di�erent languages obviously supports a wider range of expression.Practical Support | There are many di�erent software development tools which gen-erally provide the following types of functionality: synthesis, analysis, validation, veri-�cation and transformation. For any given language, there are di�erent degrees of toolsupport for each of these primary functions. Translating from L1 to L2 o�ers the possi-bility of utilising the best tools in both language domains.Expanding user-base | Di�erent languages have di�erent user-bases. L1 may bewidely used in a problem domain for which L2 is not commonly used. To promote theuse of L2, one can translate already existing L1 behaviour expressions into L2.Improving understanding | Having di�erent semantic models may also facilitate abetter understanding of the problem domain being considered and of the strengths andweaknesses of each of the languages.Re-use | An important aspect of all modelling is the ability to re-use previous work.This re-use may come in many di�erent forms [13,16,14,11,24]. Translation between lan-guages facilitates the transfer of all types of re-use from one domain to the other.1.4. Translation: SDL to TLA+It is di�cult to rigorously relate or transform SDL models. Furthermore, SDL, unlikeTLA+is not well suited to the veri�cation of rigorously formulated properties. SDL cannotexpress properties such as liveness and fairness, which are becoming ever more importantin telephone feature speci�cations. SDL tool support is strongest for model synthesis andvalidation. TLA+tool support is strongest in the areas of re�nement and veri�cation. Thetranslation from SDL to TLA+should introduce many more developers to the advantagesof formal languages, in general, and temporal logics, in particular. Through translationwe understand much better the feature interactions which are due to fairness problems.Such interactions are di�cult to address in the SDL framework. There is much potentialfor re-use of SDL code in a constructive, object-based manner. Within TLA+we alsopromote re-use of proof components as a means of facilitating compositional veri�cation.Translating SDL to TLA+permits exploitation of the strengths of both languages in acomplementary manner.1.5. Object Oriented Methods1.5.1. AdvantagesObject oriented concepts have been shown to aid model development at all levels ofabstraction and in many di�erent problem domains [1,5,9]. They also lend themselvesto a natural state-based conceptualisation [12], incorporating the notions of abstraction,composition, delegation and subclassing in a formal framework. Object oriented methodsencourage di�erent types of re-use, facilitate a better understanding of the systems beingdeveloped, aid validation and, given a formal semantics, are a step towards the type ofconstructive rigorous veri�cation which is necessary for correct system development.1.5.2. Objects and ClassesThere are two distinct conceptualisations of the term object within the semantic frame-work which we propose. Each class has a set of member objects, each of which representsa potential state of an object instance of that class. An object instance is a state machine



whose current state is de�ned by a reference to a particular object member of the classto which it belongs. Meyer states in [25] that `a class is an executable entity in its ownright'. We consider each class member to be an executable �nite state machine (FSM), asde�ned in [12]. State transitions occur only in response to service requests. This modelcan be realised, after a degree of conceptual manipulation, in the SDL framework by thenotions of block, process, channel and signal.1.5.3. Objects and FairnessTemporal requirements, such as liveness and fairness, must be included informally inany SDL model. These informal aspects must be formalised by hand as we translate toTLA+: in our telephone feature case studies, the need for fairness is evident in our for-mal models. The O-LSTS semantics provide formal de�nitions for object, class, service,subclassing, polymorphism, genericity, and composition. The O-LSTS models comple-ment our TLA+speci�cations because the underlying model is that of a class as a statetransition machine. The two methods share this interpretation, but at di�erent levels ofabstraction.2. An Operational Semantics for SDL2.1. An OverviewWe are required to preserve the semantics of the given SDL models in theTLA+speci�cationswhich result from the translation. We must ensure that the semantics which we attributeto SDL (through our translation to TLA+) coincide with those as expressed in the SDLstandard. Let us denote any given SDL speci�cation as sdl and the semantics of sucha speci�cation, expressed as a set of in�nite sequences of states closed by stuttering, asS(sdl). Similarly, let us denote any given TLA+speci�cation and its semantics as tla andS(tla) respectively. Now, given a translation function T : SDL ! TLA+, we have themathematical structure as shown in �gure 2:Given sdl, and tla � T (sdl) then: S(sdl) and S(tla) are two sets of in�nite sequencesof states related by the following relationship | S(sdl) � S(tla). Now, we ensurethat any property holding for sdl also holds for tla : if a property � holds for tla,then S(tla) � S(�), where S(�) is the semantics of the property expressed as aset of in�nite sequences of states, and if S(sdl) � S(tla), then S(sdl) � S(�). Thepreservation guarantees that any property derived from tla is also a property of sdl.Now, after generating the tla speci�cation we can verify our design steps as re�ne-ments. These re�nements guarantee that as we add new features to our system we do notcompromise the requirement properties of features already developed.2.2. The SDL de�nitionThe SDL syntax is represented in two di�erent ways: textually and graphically. Infor-mal semantic descriptions are added to these representations in the form of comments.Our method consists of studying SDL syntax de�ned in the ITU (CCITT) standards doc-ument for the purpose of understanding and de�ning an appropriate subset, which wecall CROCOS [23]. A subset of SDL syntax has been examined for translation. (Workis currently being carried out to expand this subset and to incorporate the object basedsyntactic constructs of SDL-92. At the moment the size of the subset is constrained by



sdl tlatranslation

T

S(sdl) S(tla)

Operational Semantics

tla’

Refinement preserves properties

=> P1 =>P1

=>
(S(tla’) => P1)

(S(tla) => P1)

SDL subset TLA+ subset

Figure 2: Mathematical Structurethe semantic framework underlying the translation process. Furthermore, we need to for-malise the relation between the O-LSTS object oriented concepts and those found in thestandard before the translation can be extended.)2.3. Introducing the language constructsAn SDL text speci�es a system as a set of blocks communicating through channels andusing signals.System S 4= 8>>>><>>>>: Signal sig1; : : : ; sigp;Channel chan1; : : : ; chanq;Block B1: : : : : :Block BnA block B is either a set of blocks communicating via channels and using signals:Block B 4= 8>>>><>>>>: Signal B � sig1; : : : ; B � sigp;Channel B � chan1; : : : ; B � chanq ;Block B �B1: : : : : :Block B �Bnor a set of processes communicating via routes:Block B 4= 8>><>>: SignalRoute B � r1; : : : ; B � rp;Process B � P1: : : : : :Block B � PnAn SDL process P is de�ned by a name, a list of parameters and a set of transitions.A transition is characterized by a starting label and �nal labels corresponding to theexecution of di�erent basic actions as assignment, receipt of a message, sending a message.



Process P 4= 8>>>>>>>>>><>>>>>>>>>>: Process < name > (min;max)Fpar < formal parameters >: : : : : :state start : < transition0 >state label1 : < transition1 >: : : : : : : : :state labeln : < transitionn >The translation of an SDL system into a TLA text uses the hiding of variable as channel.The mapping is relatively obvious and it allows us to give a TLA-based semantics forSDL. The fact that SDL requires the de�nition of algebraic datatypes does not suggestany problem because we suppose that users can utilise the abstract data type of SDL asset-theoretical elements. In sections 2.4 to 2.7, we provide a semi-formal overview of theway in which the translation maintains the semantics and structure of SDL systems. (Asan overview, these sections can act only as a brief justi�cation of our approach: moredetails can be obtained directly from the authors.)2.4. Naming elements of SDL textThe naming of SDL constructs leads to a simple partition of sets as variable parametersin the corresponding TLA+speci�cation.System : set of names for systemBlock : set of names for blocksProcess : set of names for processesChannel : set of names for channelsSignal : set of names for signalsVariable : set of names for variablesState : set of names for statesmodule Basic-NotationsvariableP ;S ;B ;Chan;Sig2.5. Transforming transitions into TLA actionsA transition is written as follows:T 4= 8<: STATE label1 S1 NEXTSTATE label01: : : : : : NEXTSTATE : : :labeln Sn NEXTSTATE label0nThe control state is de�ned as a special variable attached to every process :� P � L means that L is a label variable for P of the process P .� P �L is the current value of the control of P , and P �L0 will be the next value of L.� the process P has variables that may be modi�ed by TASK and P can send orreceive messages. Labels are located at the beginning of every state and beforeevery operation. A global assertion, namely an invariant on control, is de�ned tohandle the relationship between labels.



A control invariant for P is de�ned from the text of the process P : Icontrol(P ).A control invariant for a block B is de�ned from components of B:Icontrol(B) 4= ^B02B�Block Icontrol(B0)A control invariant for a system S is de�ned from components of S:Icontrol(S) 4= ^B2S�Block Icontrol(B)The transformation of T into an action of TLA is as follows:� T is decomposed into T1;T2; : : : ;Tn� for any i in f1; : : : ; ng, Ti becomes Ai(T )(x; x0)� A is A(T1)(x; x0) _ A(Tn)(x; x0)� for any i in f1; : : : ; ng, A(Ti) is A(Ti1)(x; x0) _ A(Tijn)(x; x0)2.6. The Next relation for a system SWe require the following notation in our de�nition of Next:� For any process P , N (P ) is the disjunction of actions in P .� For any block B, B 4= ^B02B:Block N (B0)� For any system S, N (S) 4= ^B2S:Block N (S)Finally, the global next relation for S is simply de�ned by a TLA+module Next:module Nextextends . . .Other modules are required for the definition of Next andare importedGN (S ) �= N (S ) ^ Icontrol(S )2.7. A semantics for SThe de�nition of a semantics for S leads us to characterize a set of behaviors for S withthe help of a TLA formula; in the style of Lamport we write:



module semantics-of-Sextends . . .Other modules are required for the definition of S(S ) andare importedS(S ) �= Init(S ) ^ GN (S ) ^ Fairness(S )Fairness(S) expresses a fairness condition for S. Fairness(S) can be de�ned with theweak fairness (WF) or strong fairness (SF) predicates. WFxA states that, if A is con-tinuously enabled from a given state, then A will be executed, while there is a possiblestuttering on x; SFxA states that, if A is in�nitly often enabled from a given state, thenA will be executed.2.8. Translation: The FormalisationThe main problem is to de�ne the soundness of the translation with respect to a se-mantics of system. Intuitively, a SDL system is semantically de�ned as a set of traces: atrace of states allows us to observe the transformation of data with actions. A notion ofaction can be clearly extracted from the ITU (CCITT) documentation on SDL.De�nition 1 Semantics of a systemA system S over a set of variables V is modelled by a set of behaviours Behaviour(S; V;) overV : � 2 Behaviour(S; V;) and � : �0 A0�! �1 : : : Ai�1�! �i�1 Ai�! �i Ai+1�! : : :�0; �1; �i�1; �iare states of the system S over V and are de�ned as mapping from V to the memory valuesA0; : : : ;Ai�1;Ai;Ai+1 : : : are actions over V : an action A is de�ned as a set of couples ofstates.A system is characterized by a set of in�nite traces over a set of variables. However, SDLuses in�nite communication channels that leads to a �rst observation that automata inSDL are generally not �nite state. A second observation is that we need to use a variablefor every channel. Now we turn to the translation of an SDL speci�cation into a TLAformula and the de�nition of the semantics of a system S written as an SDL speci�cation:� Action is [ TASK X := E]: (x0 = e(x) ^ inv(x)), where inv(x) is an invariant of x.� Action is [ Start Choice Task1 Task2 Task3 . . .Taskn End ]: T (Task1)_ : : :_ T (Taskn)The question of the soundness of the translation is crucial. The result is based onequivalence by stuttering, which simply states that two traces are equivalent by stuttering,if they are equal when you forget idle actions[20].2.8.1. Translation: work to dateThe translation of SDL into a formal framework has been done in our CROCOS envi-ronment [23], and we have translated a subset of SDL using the wp operator for atomicactions. We are currently considering translation of the full SDL language: the additionalstructure in the TLA+logic, together with our O-LSTS semantic integration, provides ameans to facilitate a more complete object-based conceptualisation of SDL. An important



thing to note in the translation is the introduction of fairness assumptions which couldnot be expressed in the original SDL systems. These fairness assumptions re
ect informalassumptions that we have made about the objects in our models. In particular, theyre
ect the fact that a system of concurrent objects is actually modelled using interleavingand a nondeterministic scheduling. The TLA+semantics can be used to formally stateour informal assumptions about the fairness of concurrent objects in the SDL models.This is important in the domain of telephone feature development. The behaviour spec-i�ed by the resulting TLA+models can be viewed as a re�nment of the originating SDLmodels because of the way in which the nondeterminism is treated at a di�erent level ofabstraction.2.9. Veri�cation of SDL programsOur technique has been developed to improve the way to prove properties about pro-grams written in SDL. Several techniques can be applied to handle a SDL speci�cationtranslated into a TLA speci�cation. A model checking technique is applied when theTLA speci�cation is �nite-state3 A direct consequence is that we need to translate a TLAspeci�cation into an equivalent �nite automaton in order to check properties on the SDLprogram. Theorem proving is a more powerful approach which requires theorem provertool. We have such a tool, namely TLP [10], for TLA. Hence, when we have translatedan SDL program into an equivalent TLA speci�cation, we prove properties of the SDLprogram by proving properties of the TLA+produced in the translation. Then duringdesign, each re�nement of the TLA+speci�cation maintains the properties as required bythe SDL model.3. A Simple Case Study: Telephone FeaturesThe feature interaction problem is concerned with what happens when we try to put awide range of telephone features together in one system. An interaction is said to occurif the complete system does not ful�l the requirements of each individual componentfeature. Feature interaction is one of the most di�cult problems in this problem domain[6,8] and must be considered in the initial stages of speci�cation. Finite state automatahave been shown to play a role in the analysis of safety properties in systems in whichfeature interactions can occur. However, it is now becoming clear that liveness and fairnessproperties can also be important in such interactions. In this simple study we show theproblems that can occur when de�ning new features (call waiting and three-way callingare used as examples) which extend standard telephone functionality. We compare anSDL-alone approach with one based on a translation to TLA+.3.1. POTSThe Plain Old Telephone Service (POTS) requirements is represented, in �gure 3, by ourO-LSTS diagram of the simplest of telephones. (In the diagram we have not representednull state transitions which return some value to the external interface, through serviceshook and signal, but do not change the internal state of the system. Their intendedsemantics should be evident from the state labels.)3If a TLA speci�cation has only �nite domains, then the generated automaton is �nite.



CLASS POTSPhone USING Hook, Signal

STRUCTURE Hook, Signal
hook:Hook

signal:Signal

lift

drop

dial

otherBusy   otherFree   otherHook   otherRingIn INTERNALS

OnRinging

On Silent

OffReady

OffBusy

lift

dial

drop

drop

drop

OffRinging

OffSilent

otherBusy

otherFree
OffTalking

otherHook

lift

OtherRingin

otherHook

E
X
T
E
R
N
A
L
S

Figure 3: A POTS Phone Requirements Model3.2. Call Waiting (CW) and POTSCW functionality is enabled only when talking to someone else, and a third person triesto call. With CW, they will not get a busy tone (as before) but will hear a ringing toneuntil they are held. CW permits the talking to one person concurrently with the holdingof another. It also permits the switching of the talking and held persons. Either of thetwo other users can hang up to leave the CW user in the standard POTS state wherethey are talking to one person. The CW subscriber can also hang up leaving them in thestandard POTS OnSilent state. This is illustrated in the partial state transition diagramfor the extended telephone (we do not show all the telephone states and transitions asthey are preserved by the extension mechanism), in �gure 4.3.3. Three Way Calling (TWC) and POTSIf I subscribe to TWC then the feature is enabled only when I am talking to someoneand I receive a call from a third party. I then have a new service (connect) which permitsme to talk with both callers at the same time. In this new state I can also disconnecteither one of the two callers. This is illustrated in the partial state transition diagram forthe extended telephone, in �gure 5.3.4. CW and TWC: A feature interaction?Traditionally, the argument for these two features interacting is as follows:What happens if both features are activated and we are talking to someonewhen we receive an incoming call? There is an ambiguity because the systemdoesn't know which feature to execute: the CW or the TWC.We must ask whether there is really a problem here. The question is best addressedwithin a formal framework: below, we examine the SDL-TLA+models of the behaviour.The partial O-LSTS diagram, in �gure 6, is common to both models.



otherHook

OffTalk1Ring2

OffTalk1Hold2

OffTalk2Hold1

On Silent

hold
hold 

switch

switch
drop

POTSPhone

otherHook

POTSPhone extended by CallWaiting

OffTalking

OtherRingin

otherHook

drop drop

Figure 4: A POTS Call Waiting Extension

On SilentotherHook

POTSPhone extended by TWC

POTSPhone

OffTalk1Ring2 OffTalkTalk
connectconnect

dropotherRingIn drop

OffTalking

Figure 5: A POTS Three Way Calling Extension3.5. Standard SDL Approachs3.5.1. Informal Validation: AnimationThe SDL state transition model can be animated for validation. A black-box validationis done when the animator shows only execution behaviour as a trace of actions. White-box testing also permits the user to see the internal state representation of the systemduring execution. Both types of validation are useful for interacting with the customer,but they are not su�cient when we consider systems with large numbers of states.3.5.2. Rigorous Validation: Using MSCsThe SDT validator of MSCs can perform an exhaustive search on the state space ofthe �nite state machines representing the SDL speci�cations. MSCs help to structure thevalidation process. The user no longer needs to interact directly with a large, complexmachine; instead, they specify sets of requirements as MSCs and these are automatiallyveri�ed against the underlying model. There are limitations to this approach:� It is sometimes necessary to construct huge MSCs which are di�cult to understand



OffTalking On Silent

POTSPhone

OffTalk1Ring2
connectconnect

dropdrop

POTSPhone extended by TWC extended by CW
hold

switchOffTalk1Hold2 OffHold1Talk2

hold

switch

OffTalkTalk

drop

drop

otherRingIn

otherHook

Figure 6: A Feature Compositionand ultimately may not even correctly de�ne the requirements properties that areto be veri�ed.� Safety properties can be proved in this way but were found, in practice, to be toocomplicated to be expressed using MSCs� Liveness properties cannot be considered� As systems are re�ned or extended, the validation process must be carried out again.In other words, the approach is not compositional.3.5.3. Verifying our Feature CompositionThe process of validation does not aid us with the feature interaction problem. Considerthe following situation:The POTS telephone is validated against MSCs p1 and p2The CW-telephone is validated against MSCs cw1 and cw2We would like to be able to formally verify each extension of the original POTS systemin such a way that the properties are preserved automatically, for example:CW-telephone is veri�ed against a POTS telephone )CW-telephone automatically ful�ls properties p1 and p2In the standard SDL approach p1 and p2 must be separately veri�ed against the CW-telephone speci�cation. The state space of a simple telephone and a few features isrelatively small and so is amenable to exhaustive testing. Consequently, we can verifythe incremental feature extensions of the POTS phone using the standard SDL tools.However, the state space of the POTS system (where we have a set of telephones and theirfeatures) was too large for automatic veri�cation. It was possible to validate subsets ofthe state space but there was no means of constructing a larger validation (or veri�cation)of the whole system in a rigorous fashion.



3.6. Veri�cation in TLA+TLA+is not as useful as SDL for the valdiation of our requirements models UsingTLA+for veri�cation, however, is more powerful than the standard SDL approach:* Liveness Conditions can be veri�ed. For example, using TLA+we are able to provethe following requirements which we could not �nd a means of verifying using just theSDL and MSC formalisms:� I can always hang up my phone, lift it and start a new call.� If I am talking with two people at the same time and I hang up then the two peoplewill always end up talking to each other.� There is an absence of circular holds in the system: i.e. we cannot have a situationwhere: P1 holds P2 holds ... holds P1.� When I dial a number I will eventually get a busy or ringing signal.These properties are formalised in TLA+as follows:module SPECIFICATIONextends . . .theoremsI can always hang up my phone, lift it and start a new call.DEFINITION 1 �= 2(Enabled :Hang Up My Phone � Lift It � Start New Call)If I am talking with two people at the same time and I hangup then the two people will always end up talking to eachother.DEFINITION 2 �= 2(8p1; p2:Talking(I ; p1; p2)^ Hang On(I )) Talking(p1; p2))There is an absence of circular holds in the system: i.e.we can never have a situation where: P1 holds P2 holds ...holds P1.DEFINITION 3 �= 2(:(9P1;P2; : : : ;Pn : ^ 8i 2 f1 : : :n � 1g : Hold(P i ;P i+1)^ Hold(Pn;P1) ))When I dial a number I will eventually get a busy or ringingsignal.DEFINITION 4 �= Dial(I ;Number); (Busy Toning(I :Number)_ Ringing(I ;Number))



* Compositional veri�cation can be mechanised because veri�cation is represented bya logical implication which can be handled directly by the TLA+theorem prover TLP [10].* Power of expression is better when using TLA+rather than MSCs for specifyingrequirements properties for veri�cation.3.7. CW and TWC: Is there an interaction?The two features do interact when the hold and connect actions are obliged (by eachof their feature requirements) to occur when in the state OffTalk1Ring2 | this is thestandard model. Clearly, these two actions cannot both be performed and, in this case, aninteraction is said to occur because both features cannot meet their obligations. With theTLA+notion of liveness, we can guarantee that we do not stay in state OffTalk1Ring2whilst obliging neither of the two actions individually. Thus, we have no contradictoryrequirements and the two features do not interact. It is the the user who chooses whichfeature to execute; and if such a choice is not made liveness can be used to gaurantee thata nondeterministic action eventually changes the state of the system.4. Conclusions and Future WorkThis paper reports on a continuing experiment into the use of formal methods in showingthe correctness of telephone feature requirementsmodels (written in SDL). It is clear, evenat this early stage, that there is much complexity involved. Some of this complexity ispresently being `factored out' in the development of appropriate translation tools. One ofthe most di�cult aspects of veri�cation is the sheer size of the task. What is clear is thatthe complexities of veri�cation increase much more than linearly with respect to the sizeof the models to be veri�ed (this is particularly true for our telephone feature interactioncase study). At worst, the problem seems to be almost exponential in nature. Whatis needed is a constructive approach to veri�cation in the same vein as the constructiveapproaches to validation which are evident in many of the modern object oriented analysisand requirements capture methods. However, the problem of constructive veri�cationhinges on the de�nition of constructive proof operators which can be used in conjunctionwith the operators used in the synthesis of requirements models. This is our current areaof research.We believe that there is much to be achieved through the integration of object orientedconcepts, simple operational semantics and temporal logics. This work is a small steptowards achieving such an integration. SDL is useful in telephone feature developmentduring analysis and requirements modelling. TLA+is useful for formal veri�cation ofdesign steps and system extensions, and it also provides us with the means of reasoningabout fairness aspects of telephone services. The object oriented state-transition basedsemantics provide us with a good basis on which to connect these two languages in acomplementary fashion. We have illustrated how a subset of SDL can be translated; thissubset will be expanded upon as we integrate the O-LSTS semantics with the extended�nite state semantics in the SDL standard. This will also facilitate a more compositionalapproach to TLA+veri�cation.



REFERENCES1. G. Booch. Object Oriented Development. IEE Software Engineering, February 1986.2. L. G. Bouma and H. Velthuijsen, editors. Feature Interactions in Telecommunications Sys-tems. IOS Press, 1994.3. N. Brown and D. M�ery. A proof environment for concurrent programs. In J. C. P. Woodcock,editor, FME'93: Industrial-Strength Formal Methods, pages 196{215. IFAD, Springer-Verlag,1993. LNCS 670.4. M. Broy. Towards a semantics for sdl. Technical report, PASSAU University, 1989.5. P. Coad and E. Yourdon. Object oriented analysis. Prentice-Hall (Yourdon Press), 1990.6. P. Combes, M. Michel, W. Bouma, and H. Velthuijsen. Formalisation of properties forfeature interaction detection. In ISN Conference, 1993.7. P. Combes, M. Michel, and B. Renard. Formalisation veri�cation of telecommunicationsservice interactions using SDL methods and tools. In 6th SDL Forum. North Holland, 1993.8. P. Combes and S. Pickin. Formalisation of a user view of network and services for featureinteraction detection. In L. G. Bouma and H. Velthuijsen, editors, Feature Interactions inTelecommunications Software System, pages 120{135. IOS Press, 1994.9. Brad Cox. Object oriented programming: an evolutionary approach. Addison-Wesley, 1986.10. U. Engberg. TLP Manual-(release 2. 5a)-preliminary. Department of Computer Science,Aarhus University, May 1994.11. R. Fairley. Software Engineering Concepts. McGraw Hill, New York, 1985.12. J. Paul Gibson. Formal Object Oriented Development of Software Systems Using LOTOS.Technical report CSM-114, Stirling University, September 1993.13. Joseph Gougen. Reusing and interconnecting software components. Computer, 20, February1986.14. Raymonde Guindon. Knowledge exploited by experts during software system design. Inter-national Journal of Man-Machine Studies, 33(3):279{304, 1990.15. ITU. Speci�cation and description language (SDL) ITU-T Recommendation Z.100, revision1 edition, 1994.16. R. E. Johnstone and B. Foote. Designing re-usable classes. Journal of Object OrientedProgramming JOOP, pages 22{35, June 1988.17. L. Lamport. Hybrid systems in TLA+. In Grossman, Nerode, Ravn, and Rischel, editors,Workshop on Theory of Hybrid Systems. Springer-Verlag, 1992. LNCS 736.18. L. Lamport. A temporal logic of actions. Transactions On Programming Languages andSystems, 21(9):768{775, September 1995.19. L. Lamport. TLA+. Technical report, Digital Equipment Corporation, 5th july 1995.20. L. Lamport. TLA in pictures. IEEE Trans. on SE, 16(3):872{923, May 1995.21. T. Lindner and C. (editors) Lewerentz. Case Study Production Cell A Comparitive Studyin Formal Software Development. FZI-Publication, 1994.22. D. M�ery. Une M�ethode de Ra�nement et de D�eveloppement pour la Programmation Par-all�ele. PhD thesis, Universit�e de Nancy 1,UFR STMIA, DFD Informatique, February 1993.Doctorat d'Etat.23. D. M�ery and A. Mokkedem. CROCOS: An integrated environment for interactive veri�cationof SDL speci�cations. In G. Bochmann, editor, Computer-Aided Veri�cation Proceedings.Springer Verlag, 1992.24. B. Meyer. Genericity versus inheritance. In Object Oriented Programming Languages Sys-tems and Applications (OOPSLA 86) As ACM SIGPLAN 21, November 1986.25. B. Meyer. Ei�el: The Language. Prentice Hall International Ltd., 1992.


