
A Unifying Model for
Specification and Design

J. Paul Gibson and Dominique Méry
�

Université Henri Poincaré, Nancy 1
CRIN-CNRS URA 262, Nancy
email :

�
gibson, mery � @loria.fr

May 6, 1996

Abstract

The application of formal languages in the software development process is becoming more and more evident.
Providing formal semantics and tools for the synthesis, analysis and transformation of behavioural models is
usually the first step in the process of formal methods development. Many formal methods exist but, as yet, there
is an absence of a meta-theory of formal methods. Such a meta-theory is the subject of this paper: we call it a
unifying framework.

We present a generalisation of the software development model which reflects the standard approach of using
different languages at different stages of development. A unifying model will give a better understanding of
why and how this happens; together with strengthening the rigour of such standard multi-semantic approaches to
software development.

1 Introduction

The purpose of this paper is to generalise the software development model to reflect the fact that different languages
appear at different stages of development, to facilitate different levels of abstraction and different semantic capa-
bilities. Clearly we need a better understanding of why and how this happens, in order to improve the rigour and
formality in our development method. The paper introduces a unifying model for expressing three different types
of development step: specification refinement, program refinement and transformational refinement. The model
is shown to be generally applicable to any pair of specification and implementation languages, and, furthermore,
can be extended to any number of development languages working in one coherent framework. We instantiate the
unifying model in two distinct development frameworks, as a means of illustrating its utility. Firstly, an object
oriented development method, in which ADTs and process algebras perform the roles of our different semantics,
is examined. Secondly, we illustrate the model with respect to a development method which moves from temporal
logic specifications to UNITY implementations.

The unifying model is schematically represented by the diagram below1:
The main idea of the paper is to present some initial theory which is shown to have a semantical basis in our

different frameworks. We also discuss extensions to this work (which is at a preliminary stage) and their potential
benefits to a formal development strategy. In large projects, in particular, where analysis, design and implementation
are carried out concurrently, it is vital that we have a formal basis for relating changes in one level of development
to levels of development further on in the process.

The paper is organized as follows. In the section that follows, we shall discuss the OO ADT approach with
respect to the unifying schema. In the third section, UNITY and TLA like approaches are introduced and the

�
This work is supported by the Institut Universitaire de France and the HCM Scientific Network MEDICIS (CHRX-CT92-0054). Surface

mail : Bâtiment LORIA, BP 239, 54506 Vandœuvre-lès-Nancy, France. Phone : +33 83 41 30 79 and Fax : +33 83 41 30 79.
1The diagram is actually a simplification of the model as it represents only one branch of a specification-implementation pair-tree, where an

implementation can act as the specification being passed to one single implementation framework. In the complete model, each specification
framework may have more than one implementation framework at a lower level of abstraction.

1

1 r n-1 n

specification refinement steps

r,1 r,2 r,s r,m-1 r,m

Φ Φ Φ Φ Φ

Π Π Π Π Π

Γ Γ Γ Γ Γ

Specification

Implementation

specification

implementation

2-model

framework

specification --- implementation

specification --- implementation Multi-modal framework (linear)

Φ Π

2

implementation refinement steps

transformation refinement

Γ

Figure 1: The Unifying Model

instantiation of the schema is outlined. The fourth and concluding section briefly discusses the general model,
remarks on the design process and hints at future work within a service specification framework.

2 Object Oriented Frameworks for Requirements Capture and Design

2.1 Introducing FOOD(Formal Object Oriented Development)

[11] presents an Object-Labelled State Transition System (O-LSTS) model which can be used at all stages of
software development (from analysis and requirements capture to design and implementation). The model is con-
structive and promotes the rigorous software engineering of abstract behaviour. What is interesting, from the point
of view of finding a unification model for specification and design, is the way in which different languages are used
to implement the O-LSTS models at different stages of the development. This is illustrated in the figure below:

The figure shows only that two different languages are used at different stages of development. We now present
a short explanation of why and how this is done.

Analysis and Requirements Capture

O-LSTS specifications are written in OO ACT ONE (a language whose syntax is similar to the ADT ACT ONE).
Dynamic behaviour is defined by state transition diagrams. Analysis and execution of an O-LSTS requirements
model is facilitated by a translation to ACT ONE [9], which is used to implement the O-LSTS semantics. The
requirements model says what is required rather than how it is to be achieved in the final implementation. The
notion of subclassing provides us with a formal relationship between models (class specifications). Subclassing is
a specification refinement in our unifying model.

2

ACT ONE class 1

subclass

class 2

subclass

classn

subclass

Specification Refinements

Implementation Refinements

Pclassm

bisimulation bisimulation

There are many predefined ways
of wrapping ACT ONE code inside
a communication protocol specified
in LOTOS

T(classn) = Pclass1

bisimulation

Pclass2LOTOS
Design

transformation refinement

Requirements
Development

Figure 2: FOOD Framework

Moving to Design

The step from analyis to design requires an extension to the requirements model to incorporate semantics for object
communication, concurrency and interaction, which are abstracted away from in the initial OO ACT ONE models.
A process algebra provides a suitable formal model for the specification of these additional properties. LOTOS
[21], which combines ACT ONE and a process algebra in one coherent semantic model, provides a means of
constructing object oriented design semantics. The first step from an OO ACT ONE requirements model to a full
LOTOS design can be done in many ways. This initial step is used to specify the protocol semantics of the objects
in our requirements model (i.e. how we communicate with objects in order to use the functionality they provide).
This first design step corresponds to a transformational refinement in our unifying model.

Moving to Implementation

Design must be targetted towards a particular implementation environment. With LOTOS, this is done by refining
the specifications so that each step in the design process is correctness preserving. There are a number of useful
formalisms of correctness which are based on the notion of equivalence (strong bisimulation equivalence, weak
bisimulation equivalence, testing equivalence etc . . .). Within the O-LSTS model of FOOD, there are a number of
predefined correctness preserving transformations which can be used to step design towards particular resources in
the implementation environment2. These CPTs are implementation refinements in our unifying model.

2.2 A simple FOOD example

Consider the specification of a simple Stack providing LIFO behaviour on a store of Natural numbers. This is
specified using OO ACT ONE and results in the following ACT ONE code:

Type Stack USING Nat Is Stack

OPNS empty: -> Stack (* LITERAL *)

Str: Stack,Nat -> Stack (* STRUCTURE *)

head: Stack -> Nat, tail: Stack -> Stack (* ACCESSORS *)

add: Stack, Nat -> Stack (* TRANSFORMER *)

EQNS forall Stack1:Stack, Nat1:Nat

head(Empty) = ErrorNat; head(Str(Stack1,Nat1)) = Nat1;

tail(empty)= empty; tail(Str(Stack1,Nat1))= Stack1;

add(Stack1, Nat1)= Str(Stack1,Nat1);

ENDCLASS Stack

2Correctness in this case implies a weak bisimulation equivalence between models.

3

Consider now a step in the requirements process in which the customer expresses the need for additional be-
haviour so that the Stack can return the number of elements presently stored (we shall call this new service size).
This is easily done in OO ACT ONE by defining the equations:

size(empty) = 0; size(Str(Stack1,Nat1)) = 1+Stack1.size.

Now, we have a subclassing relationship between a Stack and a SizedStack. We return to this in the next
section, which considers the Stack design.

LOTOS: ACT ONE + process algebra

Given the Stack requirements, how do we move to the initial design? There are many different translation mech-
anisms for producing full LOTOS from our OO ACT ONE models [12]. The simplest is the transformation which
produces a remote procedure call protocol semantics. The full LOTOS thus produced contains the ACT ONE code
together with the following process algebra code:

PROCESS Stack[head,tail,add](Stack1:Stack):noexit:=

(head; head!head(Stack1); Stack[...](Stack1))[]

(tail; tail!tail(Stack1); Stack[...](Stack1))[]

(add?Nat1:Nat; Stack[...](add(Stack1,Nat1)))

ENDPROC (* Stack *)

The same translation refinement applied to the SizedStack ACT ONE specification produces exactly the
same process algebra specification, as the Stack, except that there is an additional choice of events to include the
size service.

...)[] (size; size!size(Stack1); Stack[...](Stack1))[](...

A simple design step (or implementation refinement in the unifying model) is to introduce a variable which
remembers the number of elements on the SizedStack instead of counting them every time a size request is
receive.

Concurrent Development

Given the SizedStack requirements, the implementation can procede at the same time as the requirements
are refined. Typically, we reach a stage where we must integrate specification refinements and implementation
refinements in a meaningful (and correct) way. This is illustrated in the diagram below:

ACT ONE: Stack SizedStack

LOTOS:

RPC translation refinement

RPC SizedStack
+ Size Variable

RPC translation refinement

RPC SizedStack

step5

Concurrent Development: (Step2;Step5)|||(Step3,Step4).

Integration Problem: How do we get a RPC resetable sized stack implementation with the extra size variable?

Resetable Sized Stack
RPC step4

step3

step1 step2

Resetable Sized Stack

Figure 3: Concurrent Development

The question is one of incremental development and is particularly important in systems where requirements
are continually being added in a modular fashion and implementations exist in many different forms. Feature
interaction in telecommunication systems is one such problem domain which would clearly benefit from a unifying
theory.

4

3 Temporal Frameworks for Program Specification and Program Design

Algebraic approaches, such as the OO LOTOS method seen in section2, are based on bisimulation relationships that
allow one to show that terms are equivalent according to some correctness criterium. If we consider a program we
would like to compare it with another program that is better with respect to some implementation environment. We
have to define a relationship over programs and more generally we have to include specifications in the same frame-
work. Category theory for studying combination of temporal theories, and its techniques of superposition are useful
for transforming programs by preserving correctness properties. The seminal work of Back [2, 3] has founded the
refinement calculus that is a transformational calculus over action systems in which the transformation preserves
total correctness. The UNITY [8] approach is based on a mixed calculus that includes refinement calculus over
action systems under weak fairness and refinement calculus over a temporal specification (the refinement preserves
safety properties and eventuality properties under the weak fairness assumption). In the case of TLA [13], refine-
ment is expressed as logical implication between TLA formulae. A general language expresses development steps
and a correctness criterium is based on the relationship between proofs and programs: such a relationship defines
a means of constructing proofs which address invariance and eventuality properties. The underlying operational
model does not support any notion of time or efficiency.

The instantiation of the unifying model is a way to explain UNITY [8] but also TLA [13] and Action systems [2,
3, 5]. The reasoning exploits two different languages : a (temporal) specification language and a programming
language based on action systems. The diagram of the figure 4 describes the relationship between the different
languages.

1 2 r n-1 n

specification refinement steps

r,1 r,2 r,s r,m-1 r,m

implementation refinement steps

Φ Φ Φ Φ Φ

Π Π Π Π Π

extraction step

Specification
Language

UNITY TLA

Programming
Language

UNITY
ACTION SYSTEMS

Γ Γ Γ ΓΓ

mapping step

Implementation
Language

OCCAM

Figure 4: Refinement Diagram

� a purely logical refinement step in a temporal language (as TLA, UNITY) : the refinement process is defined
as a deduction process and uses temporal rules.

� a purely transformational (or programming) refinement step in an action-based programming language (as
action systems) : the refinement process transforms action systems and preserves properties as invariance,
total correctness; the semantics of this level is related to the previous one by the notion of predicate tranformer
but technical problems appear when dealing with fairness; superposition is a technique in this level.

� a mapping refinement relates the programming level and the implentation level : in fact, the third level gathers
techniques of compiling and is the way to get real programs.

� Finally, there are steps that allow one to transit from one level to another one : an extraction step produces
an action system from a formal specification and a mapping step produces a code from a more abstract
programming language as action systems.

UNITY covers the different levels of refinement and it requires different semantics. Superposition techniques
can be improved and enriched but we think that they are domain-driven.

5

Refining in a purely logical language
The refinement of a temporal specification ��� into another temporal specification ��� is defined as an implication,
namely ��������� . TLA and UNITY use the logical refinement, and the coding of a proof system for TLA [10] or
UNITY [6] produces a refinement tool. In fact, the logical refinement is defined as a goal-directed proof process [15,
18].

Property 1 If �	� is refined into �
� , then any property of �	� is a property of �
� .
A property of �	� is a formula � that is derived from ��� and it is clear that the logical refinement preserves

properties. Different points are to be addressed. A first point is to get a useful proof system that is really useful in
the refinement process. A second point is related to the power of the specification language:

� UNITY expresses safety properties but also eventuality properties under justice assumption.

� TLA expresses safety and eventuality properties, and supports the specification of different types and combi-
nations of fairness.

The semantics of the refinement can be defined as the preservation of properties and provide a way to unify the
logical refinement and the action refinement.

The logical (or specification) refinement relationship is the goal-directed proof method: with theorem-provers,
such as Isabelle [20], implement our specification relationship. We have experimented with Isabelle to implement
a proof system [18] for a kernel of SDL [7] and our tool can be useful to derive solutions described as a set of
actions under nondeterministic fair choice. The crucial quality of the specification refinement is that it is based on
a well-known and well-mastered technique (the deduction relation).

Refining actions and action systems

A program is a set of actions executed under some scheduling policy (weak or strong fairness or general fairness);
such a program is called an action system. The refinement calculcus of Back defines a refinement preserving total
correctness of refined programs. The refinement is simply defined as follows: a program � is refined into a program�� , if any correctness property holding for � holds also for ��� . Let us give several examples of this idea.

Example 3 � 1 Action systems [2, 3, 5, 4, 16, 15, 17, 19]����������������������������! "��#�#��� means that, for any $ of % , &('*)��,+-)�$,+��.&('*)��/�!+-)�$,+ . If � is totally correct with
respect to pre and post conditions, �,� is totally correct with respect to pre and post conditions.

Example 3 � 2 AMN [1, 14]�(��0� 213����0!�� 2�4�� means that any invariant of � is an invariant of �,� . As a first consequence, the strongest
invariant of � is weaker than the strongest invariant of ��� . � and �� can contain different kinds of actions and
actions may be fully different. Yet, practical refinement of programs is carried out by modifying one action at
every step of refinement. A formal defintion of the invariant-preserving refinement is:�5��0� 213����0!�� 2�6��*7*� 8:9/;*<)�= ;2>,?A@CB � ;EDGF = 9/HJI � <2;�F5K-LM>,N) H +�� H

�
;ED +�)�= ;2>,?A@CBMO � ;EDGF = 9/HJI �� <2;�F5K-LM>,N) H +�� H

�
;ED +�P

The transformations on programs leads to increase the number of actions or to strengthen actions of a program.

6

Example 3 � 3 Unity [8]
Unity exploits the superposition techniques to help the user to transform programs. A superposition rule
adds a new action that does not modify the variables modified by the other previous actions : for instance,
a timestample is added to the program but does not change other variables and the action is added as a
concurrent action to every action. The fact that no previous variable is modidied guarantees that the previous
properties are still holding.

Relating specification and programs in our Unifying Model

When a program � is developed from a specification � , the relation can be verified by a proof or can be obtained
by construction. The main problem is to identify a set of actions from a formal specification. This step is called
an extraction and corresponds to a transformation refinement in our unifying model. If we consider a UNITY
specification, we can find a specification of an action. The foundation of the relation is derived from the predicate
transformers.

Property 2 1. � is refined into �/� , if any property of � is a property of �,� with respect to predicate transformers.

2. ��� is refined into �
� , if ��� � ��� .
3. � ��� @ � , if any model of � is a model of � .

In fact, the predicate transformers are used to build proof systems for invaraiance and eventuality properties.
In this way we can show that the three refinements are equivalent with respect to the preservation of correctness
properties. Moreover, proof systems are used to refine in the logical language [17].

Example 3 � 4� ��0� 213����0!�� 2��� ��13�� 2���2��� 0��	���� means that any invariant of � is an invariant of �,� and any eventuality of �
is an eventuality of �/� . We have not yet mentioned that this refinement is based on predicate transformer
properties. In fact, if a predicate transformer &('*)��,+ is defined for every � , then the preservation of the
eventuality properties is ensured by stating: &('*)��,+4� &('*)����!+ and

;-BMO � ;-B
states the preservation of

invariants.

4 Conclusion

We have presented only an introduction to our unifying model and commented on the need for a meta-model of soft-
ware development. Two different formal development frameworks have been shown to be particular instantiations
of our model. This is just a beginning.

We aim to continue the work in two orthogonal directions. Firstly, we must build a sound theory for the unifying
model (we believe that category theory provides a suitably powerful semantic basis upon which to start constructing
a theory of relations between languages and language refinements). Secondly, we must perform an analysis of
different software development methods to identify common patterns of refinement which occur in multi-modal
approaches. The formulation of a theory of refinement patterns is a long term goal.

Already we have identified the need for a unifying theory in the domain of telephone service (and feature) devel-
opment. The specifications and implementations are arried out in different semantics frameworks and requirements
are continually incremented. We hope that the unifying model will provide us with a better understanding of the
feature interaction problem which is currently being addressed [22].

7

References
[1] J. R. Abrial. The B book. Cambridge University Press, 1996. to appear.

[2] R. J. R. Back. On correct refinement of programs. Journal of Computer and System Sciences, 23(1):49–68, 1979.

[3] R. J. R. Back. Correctness preserving programs refinements: proof theory and applications. Mathematical Centre Tracts
131, Mathematical Centre, Amsterdam, 1980.

[4] R. J. R. Back and K. Sere. Deriving an occam implementation of action systems. In C. Morgan and J. C. P. Woodcock,
editors, 4rd Refinement Workshop. Springer-Verlag, january 1991. BCS-FACS, Workshops in Computing.

[5] R. J. R. Back and J. von Wright. A lattice-theoretical basis for a specification language. In J. L. A van de Snepscheut,
editor, Mathematics for Program Construction, pages 139–156. Springer-Verlag, june 1989. LNCS 375.

[6] N. Brown and D. M éry. A proof environment for concurrent programs. In J. C. P. Woodcock, editor, FḾE93: Industrial-
Strength Formal Methods, pages 196–215. IFAD, Springer-Verlag, 1993. LNCS 670.

[7] CCITT. Recommendation z. 100 specification and description language sdl. Note, 1988.

[8] K. M. Chandy and J. Misra. Parallel Program Design A Foundation. Addison-Wesley Publishing Company, 1988. ISBN
0-201-05866-9.

[9] H. Ehrig and Mahr B. Fundamentals of Algebraic Specification I. Springer-Verlag, Berlin, 1985. EATCS Monographs on
Theoretical Computer Science (6).

[10] U. Engberg. TLP Manual-(release 2. 5a)-PRELIMINARY. Department of Computer Science, Aarhus University, May 1994.

[11] J. Paul Gibson. Formal object based design in LOTOS. Tr-113, University of Stirling, Computing Science Department,
Stirling, Scotland, 1994.

[12] J.Paul Gibson. Formal Object Oriented Development of Software Systems Using LOTOS. Tech. report csm-114, Stirling
University, August 1993.

[13] L. Lamport. A temporal logic of actions. Transactions On Programming Languages and Systems, 16(3):872–923, May
1994.

[14] K. Lano. The B Language and Method: A Guide to Practical Formal Development. FACIT. 1996.

[15] D. M éry. The
���

system as a development system for concurrent programs: � ��� . Theoretical Computer Science, 94(2):311
– 334, march 1992.

[16] D. M éry. Proving and developing concurrent programs: a small system. In C. M. I. Rattray and R. G. Clark, editors,
Proceedings of the IMA conference on the Unified Computation Laboratory. The IMA, OXFORD UNIVERSITY PRESS,
1992.

[17] D. M éry. Une Méthode de Raffinement et de Développement pour la Programmation Parallèle. Doctorat ès sciences
math ématiques, Universit é de Nancy 1,UFR STMIA, DFD Informatique, F évrier 1993.

[18] D. M éry and A. Mokkedem. Crocos: An integrated environment for interactive verification of sdl specifications. In
G. Bochmann, editor, Computer-Aided Verification Proceedings. Springer Verlag, 1992.

[19] C. Morgan. Programming from Specifications. Prentice Hall International Series in Computer Science. Prentice Hall,
1990.

[20] L. Paulson. The Isabelle Reference Manual. Technical report, University of Cambridge, Computer Laboratory, 1992.

[21] K.J.T. Turner. Using FDTS: An Introduction To ESTELLE, LOTOS and SDL. John Wiley and Sons, 1993.

[22] P. Zave. Feature interactions and formal specifications in telecommunications. Computer, August 1993.

8

