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Applying formal object-oriented design principles
to Smalltalk—80

J-P Gibson and J A Lynch

Object-oriented design comprises a set of principles that can be useful when Structuring and implementing systems,
particularly in software. Although opinions differ on the details it is widely accepted that the technigues may soon
offer a sound basis for understanding complex design and programming problems. A brief introduction and suggestions
Jor further reading are given.

This paper attempts to show how a powerful commercial software environment (Smalltalk-80)™, designed to support
object-oriented programming, can be used as suggested by recent research into fundamental aspects of object-oriented
design undertaken in British Telecom. The research established that any specification language satisfying some simple
criteria will allow a relation between objects (components of a design) that captures some properties of inheritance
(an important concept in object-oriented design which is explained below); here the relation is called refinement. It
is shown that when simple programming controls are enforced objects in Smalltalk-80 exhibit similar inheritance
relationships to those formally described by a definition of refinement in the formal language CSP. This is shown
to be helpful for system development and understanding reuse of objects and classes. The refinement relationship
is explained intuitively and the necessary controls are prescribed.

Brief introductions to CSP and Smalltalk-80 are included.

1. Introduction

nterest in the field of object-oriented design has grown
dramatically over the last few years, particularly in the
programming community. The technique involves decom-
position of systems into manageable components whose
interaction with the rest of the system is well defined. This
modularity is usually combined with abstraction (the
ability to focus on pertinent issues without worrying about
irrelevant detail) -and inheritance (allowing features
defined in one place to be used elsewhere). Different
languages may employ these features in different ways,
the merits of which are often debated [1,2,3]. Therefore

there is, as yet, no widely accepted generic theory of

objects. A more detailed summary of object languages
is given in Annex 1 and a wider discussion of their use
is found in BYTE [4].

The work described by Cusack [5,6] was the first
stage in a project aimed at developing a formal definition
of object-oriented design that could be applied to the ISO
(International Organisation for Standardisation) standard
formal description language LOTOS [7] (CSP is similar
to basic LOTOS and was used as an intellectual tool
because it is more mature and better understood). This
showed that any specification language satisfying certain
simple criteria has some useful properties associated with
object-oriented programming languages. However, these
languages are fundamentally different to object-oriented
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programming languages.-When used, they are at different
stages of the software life-cycle or often in conflicting
regimes of software production. The work leading to this
report aimed to:

e exercise the principles of OOCSP (see Section 1.1) and
- see how well they could be applied to an established
object-oriented programming language,

e identify areas where the model could be brought
closer to that of other object-oriented languages.

An improved formal model has now been developed
and is currently being applied to LOTOS. LOTOS
comprises two component languages; the process algebra
(basic LOTOS) is similar to CSP but the data-typing (ACT-
ONE) element needs more research.

11 Csp

Communicating sequential processes (CSP) is one of
a family of formal languages known as process algebras
whose full definition is given by Hoare [8]. In CSP
systems are specified by constraining behaviour (events)
to occur in certain orders. For any two distinct events one
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must occur before the other, events do not overlap. A CSP
process is a sentence describing such behaviour; constructs
exist for combining several processes into one larger
process. In general any CSP process can be viewed as an
arbitrary number of interacting (communicating)
component processes.

Cusack [5] describes a way of incorporating a formal
(mathematical) inheritance model, based on refinement,
in CSP. Any CSP process can be an object, so every object
is formally defined. Class-subclass and class-instance
relationships are indistinguishable, defined by a notion
of refinement. Here refinements only remove non-
determinism or add behaviour (new events) to an object,
the temporal ordering of existing events is unchanged. Use
of CSP in this way will be referred to as: OOCSP. The
research by Cusack [5,6] has now been further developed
to differentiate between class-subclass and class-instance
relationships. It forms the basis of some work on
modelling open distributed processing systems within the
international standards organisation, ISO.

OOCSP would be expected to follow a logical
hierarchy (rather than implementation) in the sense of
Zdonik and Wegner [9].

12 Smalltalk-80

Smalltalk was one of the early object-oriented
languages and is used in this paper because of its wide
acceptance. It was developed in the 1970s and upgraded
to its present form in 1980. All references to Smalltalk
in this paper refer to Smalltalk-80. Other object-oriented
languages are often described in comparison to Smalltalk.

Throughout this paper a knowledge of the class-
subclass structure and message passing construct in
Smalltalk is assumed. The first three chapters in Robson
& Goldberg [10] should provide enough background
material if the reader is unfamiliar with the language.
Familiarity with Smalltalk syntax is not necessary.

Smalltalk is discussed in some detail in later sections.
2. Objectives and scope

he aim of ths paper is to show that an intuitive def-

inition of the formal refinement relation in OOCSP

can be realised in a programming language. An analogous
relation, replacement, is introduced for Smalltalk.

First, correspondences are found between fun-
damentals in the two languages. These are used to reflect
the rules for OOCSP refinement in terms of Smalltalk.
They are then developed using class-subclass and class-
instance relations in Smalltalk until replacement satisfies
the intuitive understanding of refinement. Replacement
rules take the form of controls on how classes can be
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modified. Of course Smalltalk was an arbitrary choice;

the essentials of refinement could have been investigated -

for other languages.

Since memory and processing power are becoming
more abundant and less expensive it is reasonable to
assume that programming in the future will look to
enhancing capability rather than tuning and economising.
Reuse of existing software is even more attractive in this
type of environment. The ideas in OOCSP are directed
towards adding behaviour to existing specifications
without causing change in the original model. This is done
in a controlled way. A discussion of how the concept of
replacement could be useful in the building and
maintenance of object-oriented systems from ‘CSP
specifications is given below. :

It is worth noting that CSP and Smalltalk are very
different languages. They were designed from different
backgrounds for different purposes. This is not an exercise
in translation between the two languages. It is an attempt
to use the very basic but powerful concepts from OOCSP

_in a programming language (Smalltalk). Smalltalk

implementations of simple CSP specifications are
included to show how the ideas may be used in a
programming environment.

3. Summary

hen certain programming controls are enforced a
Smalltalk object can be replaced by another whilst
preserving original system behaviour exactly and adding
extra behaviour without side effects. This replacement is
analogous to refinement in OOCSP but is not (of course)

- rigorous or formally defined.

Updating and maintaining systems or finding
successive stages in an evolutionary design cycle depend
upon the ability to enhance existing systems or designs.
Replacement allows Smalltalk systems to be enhanced in
the sense that:

e an existing object is replaced by one that offers the
system additional behaviour;

e a designer’s understanding of the orig_inal object is
kept as the basis for understanding the replacement;

e the additional behaviour is incorporated explicitly in
one place;

e there are no unwanted knock-on effects to the original
system.

Replacement can also be of practical use when
building a system of objects from library components.
Components can be taken ‘off the shelf’ provided they
are valid replacements for the required objects.
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Applications programming could involve controlling the
interaction between objects rather than creating the
objects themselves. The classes of which these objects
are instances may be created elsewhere by systems
programmers.

For example, consider two CSP specifications, Sl
refining S2 (see Fig 1). S2 will be more detailed (less
abstract) or more detéerministic than S1 but when that
extra detail is ignored the two are indistinguishable to an
observer. By analogy, it is possible to find a replacement
(I2) for an implementation of S1 (I1) such that I2
implements S2. Implementations are fully determined!
but the behaviour of 12 would include all the behaviour
of I1.

refinement

S1 | m > | S2 specification

implementation

.

Fig1 OOCSP refinement and Smalltalk replacement.
The following suggest ways in which replacement may
be of practical use:

e If an object is required and replacement of it is
available (e.g. from a catalogue) then the replacement
can be used immediately. Extra behaviour can be
ignored and will not impact on the rest of the system
(i.e. I2 can be used wherever I1 can).

e Where an object is required that is a replacement for
an existing component it is desirable to evolve the
component rather than produce the object from
scratch (i.e. I2 can be developed from I1).

® In a design process where a system goes through a
number of intermediate prototypes, making re-
placements for objects in successive stages would help
in understanding the increasingly complex system.

Of course programming I1 and I2 separately and from
their respective specifications would normally yield very
different programs although their external behaviour
should exhibit the requirement of the replacement relation
(i.e. extended behaviour without side-effects). The rules
for replacement in sections 5 and 6 (summarised in section
7) are a list of guidelines a programmer must follow to

guarantee a new object replaces the original. This is not

the only way to capture the replacement relation and in
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many cases the rules only tie down informal mental checks

a designer would employ anyway. They do not deal -

specifically with implementing from CSP specifications.

The rules for replacement are defined and explained
below. There are found to be two cases, one for instances
(object replacement), the other for classes (class
replacement) which requires some extra syntactic
constraints.

4. Language comparisons

One thing that CSP and Smalltalk have in common
is that they are both languages used to describe
behaviour.

® ‘A CSP process is the behaviour pattern of an object,
insofar as it can be described in terms of the set of
events in its alphabet’’ [8].

® ““‘Objects are more than just data, more than just
containers of information. They are also more than
just their message protocols and object visibilities. An
object is a complex combination of these things; it
is a behaviour’ [1].

Therefore, behaviour is probably a good basis from
which to build an intutitive relationship between the two
languages. Objects can be treated as communicating
processes [5,11].

4.1 Features

When trying to capture a common property in any two
languages it is useful to begin by finding any similarities
between constructs in those languages. Table 1 below
shows the parts of Smalltalk and CSP that appear to take
similar roles. Details are given in Annex 2; of course the
relations are informal and based only on observation.

Table I  Comparison of Smalltalk and CSP.

CSP Smalltalk

Process - Object
Event - Message send and reply returned
Alphabet  « Message Interface

4.2 Communication

. At the level where objects co-exist to form a system
language similarities are more tenuous. Both CSP and
Smalltalk provide communication ‘mechanisms as
fundamental constructs. CSP communication occurs
between processes and is used for event synchronisation
(i.e. the occurrence of an event common to all processes
participating in the communication). Smalltalk com-

L During implementation of a non-deterministic specification decisions
must inevitably be made that restrict the system to a precise behaviour.
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munication is used for message passing between two
objects. Annex 3 makes some analogies between the
communication mechansims and highlights the dis-
tinctions. o

5. Object Replacement
5.1  Intuitive definition

he CSP concept of refinement [5] has an

intuitive analogy in programming. This corresponding
idea will be called replacement. The informal notion of
replacement is as follows. An object is needed with some
specified behaviour. There is an object available whose
specified behaviour is a refinement of the behaviour
required. This object can be used as a replacement.

This situation may be common if object-oriented
programming is used to greatest effect. Building new
applications should involve ‘ordering components from
catalogues and combining them, rather than re-inventing
the wheel every time’ [12]. Systems would be built from
library components that are valid replacements of the
actual components needed. However, it is dependent on
components being paired with specifications from which
refinements can be found.

Example — A Stack

A programmer requires an object that has the
behaviour of a stack. This stack should have methods
push and pop with last-in-first-out behaviour.

A different object is available from a library — a
counting stack. This object has methods push, pop
and count. The additional count operation returns
the number of elements on the stack.

CSP specifications for these behaviours are given in
Appendix A followed by Smalltalk implementations.
Proof that the CSP specification of the counting
stack is a refinement of the stack is given. Intuitively,
the counting stack implementation should be a valid
replacement of the stack.

This example relies on its simplicity to give the feel that
a replacement is possible (i.e. the counting stack can
always be used in place of the stack). In general it will
not be obvious that a replacement relationship exists. The
complex problem of deciding when two programs given
the same behaviour needs to be avoided. A simple example
of the possible difficulties follows.

Example — Complex Numbers

An object that has the behaviour of a complex
number is required. It should have methods for
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addition, subtraction and multiplication. Different
representations are available:

e cartesian co-ordinates (x, »)
e polar co-ordinates (r, 6).

Smalltalk implementations of these are given in
Appendix B.

In this case the implementations should be valid
replacements for each other but this is difficult to
verify from the code alone. It is only mathematical
knowledge that reassures the user that one can replace
the other.

Guidelines are needed to help decide if a replacement
is valid. Inheritance can be used to check differences in
objects and show if one replaces the other (see section
5.3). Normally a subclass can be found such that it has
an instance that is a replacement of an instance of its
superclass.

5.2 Rules for refinement

This section states the rules for refinement [5] and
deduces some preliminary guidelines for replacement in
Smalltalk. Some requirements specific to programming
languages are addressed in later sections.

The rules for refinement as defined in Cusack [5] are
as follqws.

Process Q is said to refine process P precisely when
the following hold:

o aPSaQ,
e r(Q)yyaPctr(P),
e failure condition,

e divergence condition.

The first rule states that the set of names of events
relevant to the description of P (i.e. «P) is a subset of the
corresponding set for Q. A trace of a CSP process is a
sequence of event names recording the events a process
has engaged in up to some moment in time [8]. The
second rule states that the set of all possible traces of Q,
with those event names irrelevant to the description of P
omitted, is a subset of all possible traces of P. The third
and fourth rules are not detailed because rule 3 is only
relevant for non-deterministic processes (Smalltalk
programs are fully determined) and rule 4 relates to

diverging CSP processes which are of little use for

implementation.
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Suppose Smalltalk object A is a valid replacement for
object B. The following suggest issues corresponding to
the above rules.

e Correspondence between alphabet and message
interface was explained earlier. Object A must have
methods for all the messages object B has methods
for.

e Consider the trace of an object to be a recording of
the messages that the object has received. Now there
is nothing to check because A is always capable of
receiving any message that is part of its interface.

e There is no correspondence for a CSP failure
in Smalltalk; the step between specification
and implementation involves removing non-
determinism.

e Diverging processes are not considered because of
their limited use.

One problem is that in CSP an event is uniquely
identified by its name. Two events with the same name
denote the occurrence of identical events or a single event
occurring in two processes at the same time?. However
when treating a Smalltalk message pass as an ‘event’ it
cannot be assumed that because two methods have the
same name they provide the same behaviour. The actual
code inside the methods has to be considered. This is a
fundamental problem which inheritance can be used to
solve.

5.3  Inheritance and replacement

Class-subclass inheritance can be used to implement
replacement:

‘The new class should have the same properties as the
old class, together with a few additional ones. Thus,
an instance of the new class should be allowed at every
place where an instance of the old class is allowed’.
P America [13].

Smalltalk is a very flexible programming language. It
permits a subclass to override any, or all, methods that
are inherited from its superclass. So subclasses can be very
different to their superclasses. Here, instances of a subclass
should be able to replace an instance of its superclass so
this is an undesirable property of the language. When
method overriding is forbidden all facilities in a class are
unchanged in its subclasses. This is known as strict
inheritance.

When strict inheritance is enforced all objects may be
valid replacements for instances of their superclasses (see
Annex 4). But enforcing strict inheritance in a language
may be too severe a control; programmers prefer more
freedom. It is obvious that a common ground must be
found between the extremes of total flexibility and strict
inheritance. Ideally inheritance should be as strict as
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possible, allowing replacement with minimum modi-
fications made to existing code.

The following shows how the class-subclass
replacement relation is compromised when strict
inheritance is not enforced. In each case controls are
suggested to preserve replacement whilst using a more
flexible inheritance model.

First consider how a Smalltalk subclass may differ
from its superclass. In general subclasses are used for:

e horizontal extension — altering existing behaviour,
e vertical extension — adding new behaviour,
e specialisation — a combination of the above.

Horizontal extension involves altering the methods
inherited from the superclass. It is used purely for code
sharing. Although it is commonly found there is some
agreement that this is bad programming practice which
can lead to complex code. Annex 5 gives more detail. It
is suggested that objects with similar behaviour should
be made subclasses of the same (abstract) superclass.

Vertical extension involves adding new methods and
possibly new state (variables). The first counting stack in
Appendix C is a good example. In the same appendix a
second example is used to illustrate method overriding.
The replacement property is still valid but this is clear only
because of the simplicity of the example.

Adding new variables can create other problems since
behaviour of most objects is state dependent (state is
viewed as the value of all instance variables). It is
important that new variables are not used in deciding how
the object reacts to any message that was part of the
original method set. When methods have to be over-
ridden to take into account the new state variables it is
recommended that this is done only to alter the values
of these variables and not for testing purposes. The
method overriding in Appendix C is of this type. It is
beyond the scope of this paper to examine more complex
cases.

The final problem to be considered is how new
behaviour may affect the state of some other object. This_
is an important consideration when dealing with systems.
In Smalltalk it is possible for the state of an object to
be altered indirectly using shared variables, this is
undesirable. Recommended practice is to use shared
variables to contain only constant information [14]. This
may be overkill but it does ensure no problems can arise
from their use.

2 From Hoare [8] processes are just different components of a system
and events are occurrences that a designer wishes to record. Naturally,
some occurrences are important to several components and should be
recorded in more than one place. However, when the components are
viewed together each single event must only be recorded once.
Synchronisation is therefore the recording of one event in more than
one process.




Annex 6 examines the message passing construct in
detail to show how the state of an object may be changed.
simple controls on the use of shared variables are given
to ensure that the state of an object can only ever be
changed by one other object. Therefore, any new
behaviour that is added cannot affect other objects in the
system.

This section showed that instances of a Smalltalk class
can be replaced by instances of its subclass provided
certain conditions are satisfied. The conditions are
summarised in section 7.

Note that if object A is a valid replacement for object
B then some change of symbol may be necessary before
the replacement can occur. For example, a stack with
operations add and remove may be valid replacement for
a stack with operations push and pop. However, before
the replacement can take place the obvious change of
method name has to occur. This simple syntactic change
is taken for granted in these discussions.

6. Class replacement

Programming systems in Smalltalk involves the
creation of classes and class hierarchies. Often, when
systems are built they are being used and adapted at the
same time. The ability to change behaviour or add new
behaviour without disrupting the overall system is
important. By using the class structure it is hoped that
change can be controlled through replacement of classes.

Again class replacement tackles only the problem of
adding new behaviour. In a class system it might be
necessary for the old behaviour to be available even
though the new behaviour has been added. In this case,
any instance of the old class must have an object
replacement as a possible instance of the new class.
However, this is not the only requirement for valid class
replacement.

In Smalltalk classes are themselves objects. It was
hoped that class replacement would be the same as object
replacement but this is not the case. Smalltalk inheritance
produces dependencies between classes that prevent true
encapsulation [15].

Behaviour can be added to the system by replacing
class B with class C say (Fig 2). However, existing
behaviour is not to be altered, only new behaviour added.

"It is necessary to consider effects on:
e instances of B,

e superclasses of B,

B .subclasses of B.

FORMAL OBJECT-ORIENTED DESIGN

class A
" 1
class B <—i class C l
L J
class X class Y
(
class Z

Fig 2 A typical branch of the Smalltalk class hierarchy tree.

Conditions to ensure these are only changed in the
correct, controlled way are given below.

6.1 Instance condition

The first requirement is that instances of B must have
a corresponding valid object replacement as a possible
instance of C. Additional behaviour of an instance of C
is not important because reference to those internal details
will not be made.

Problems arise from the way variables and methods
are inherited from the superclasses. If class C introduces
new variables or methods then it should not conflict with
names in classes A, X, Y and Z. However, with some
simple syntactic constraints a valid replacement should
be possible provided the instance condition holds.

6.2  Syntactic constraints

Earlier it was mentioned that a change of symbol for
method names may be required in making an object
replacement. This is also the case for class replacement.
New methods introduced can be ignored provided they
do not conflict with method names in the old class. This
is because: ’ ’

e in the superclass (A) there is no reference to the
methods in C,

e in the subclasses (X,Y,Z) new methods introduced by
C will either be overridden or never used’.
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Subclasses inherit state as well as methods so syntactic
checks are necessary on new variables introduced by class
C.

e Class C should not introduce new class, instance or
temporary variables that conflict with those inherited
from class A.

e Class C should not introduce new class or instance
variables which conflict with class, instance or
temporary variables in subclasses X, Y, Z.

In a large class sytem all these syntactic constraints
may be difficult to check. It is unfortunate that Smalltalk
cannot cope with these problems at source rather than
simply producing errors. There has been work done on
a language, Common Objects [16], that combines
inheritance with true encapsulation. In this language none
of these syntactic constraints would be necessary.

The OOCSP work with refinement also had to
introduce similar constraints for the configuration
problem. In this case all the processes in the system had
to be checked for conflicts. The Smalltalk problem is not
as restricting as this; only classes in the branch of the
inheritance tree containing the replacement class need to
be checked.

7. Summary of replacement

ections 5 and 6 described how object and class replace-

ments can be produced in Smalltalk using pro-
gramming controls, By analogy with refinements from
Cusack [5], replacements preserve:original behaviour and
add new functionality without side-effects. Class
replacement reduces to object replacement with a few
syntactic constraints. The following is a summary of the
controls.

Methods in object replacement

Using the inheritance mechanism all methods can be
taken from a superclass into a subclass. Unless they are
overridden they work in exactly the same way. Thus an
instance of a subclass may replace an instance of its
superclass provided:

e new methods that are added do not affect the original
state variables (instance and temporary),

e when methods are over-ridden original behaviour is
preserved, (e.g. only add lines that manipulate new
state variables, etc).

Variables in object replacement

State is viewed as the value of all instance and
temporary variables. Notice that using new methods that
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manipulate only new state variables does not guarantee
no side-effects:

e shared variables should be used only to represent
constant information,

@ new variables should not be used to decide how the
replacement reacts to messages in the original message
interface.

Class replacement

Possible syntactic conflicts are limited to classes in the
same branch of the hierarchy:

e cach instance of the original class should have an
object replacement of itself as a possible instance of
the replacing class,

® new class, instance or temporary variables should not
conflict with any from the superclass,

e new class or instance variables should not conflict
with any in subclasses.

8. Conclusions and limitatibns

t has been shown that when certain simple constraints
hold, a Smalltalk-80 object can replace another whilst
preserving original behaviour, adding extra behaviour and
avoiding undesirable side effects. Possible implications of
this for system development and maintenance were
discussed in section 3. ’

The concept of ‘replacement’ applies one definition
of refinement for CSP processes [5]) to Smalltalk objects
at an intuitive level. It depends on a number
of programming controls (summarised in section 7).
Replacements can be found for classes and instances; class
replacement being subject to syntactic contraints
unnecessary for object (instance) replacement. This is in
keeping with Cusack [5] where configuration involves
syntactic constraints on refinement. An object’s
replacement can always be used in its place. Conversely,
extra behaviour can be incorporated by producing a
replacement from that object.

3 Smalltalk does provide a means for marking methods ‘private’. This
is not enforced and these ‘internal’ methods can be accessed from outside
the object. If the private methods were fully protected in the inheritance
mechanism then private methods could be ignored when considering
possible syntactic conflicts.




It would be possible for the controls and syntactic
constraints to be enforced as part of a programming
language. Programming would then only be concerned
with behavioural dependencies when considering
refinement of objects. It is important to remember that
Smalltalk is not a formal language in the sense that CSP
is and cannot be subject to mathematical proofs.
Replacement can only be demonstrated to hold in certain
circumstances, not proven for all cases.

Some correspondence has been found between the
fundamental constructs of Smalltalk and CSP. This was
restricted to sequential systems although both CSP and
Smalltalk can model concurrency. It is not clear how
concurrency would affect encapsulation and inheritance
properties of implementations. This needs investigation
before replacement can be generalised for other languages.

Refinement controls addition of behaviour in one
particular branch of the class hierarchy. Further work will
be necessary to address changes to behaviour of different
branches. For example, at the moment it is still possible
to duplicate extra behaviour in classes from different parts
of the system. This is part of the distinction between
adding only extra behaviour in a single place and changing
the system as a whole.

Another limitation arises when the joint behaviour of
several Smalltalk objects is considered. In CSP several
parallel processes can be viewed as one process so
refinement applies directly. This is not the case for several
interacting Smalltalk objects and replacement. Further
investigation may be related to multiple inheritance.

Annexes

Annex 1 — Properties of objects and object-oriented
languages

Al object is a well-defined data structure coupled with
_ a set of operations that describe how that data can

be manipulated. It is a ‘behaviour’ protected from external
manipulation by forcing all interaction with an object to
be controlled by the object itself.

For a language to be considered object-oriented it must
provide ways to create new objects and allow these objects
to communicate with each other. Pure object-oriented
programming languages usually contain the following (in
some form):

e Modularity — No object should depend on the
internal details of another object. In its purest form
this is known as encapsulation — all access to the
internal code/data of an object must be through the
external interface of that object. Data abstraction and
information hiding are forms of modularity.
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e Inheritance — This is the ability to create an object
with a new behaviour that is an extension of the
behaviour of an already existing object. The class
structure in Smalltalk provides this behaviour
extension characteristic.

e Dynamic binding — allows the extension mentioned
earlier without the need to modify existing code.

Other facilities are often associated with object-
oriented languages (e.g. graphical workstation and
interface) but are not pre-requisites. They usually derive
from the culture that founded object-oriented pro-
gramming and provide a user interface but are not basic
and could be used with other paradigms.

Annex 2 — Basic correspondences between CSP and
Smalltalk

Both CSP processes and Smalltalk objects are
dynamic entities which may be history dependent (have
state). CSP processes are constructed as ordered sequences
of events. A CSP event is ‘an action of interest’, an
occurrence of which should be regarded as ‘an
instantaneous or atomic action without duration’ [8].

- In Smalltalk all computations are achieved through
message passing so a message send is obviously an action
of interest. When one object sends another a message,
flow of control passes to the receiver. The receiver then
performs some internal computations (unseen by the
sender) and passes an object back to the sender along with
control. By ignoring the internal computations the
message-send/object-returned pair can be treated as an
atomic event. As explained earlier, this is not a rigorous
translation exercise. However, provided a message-
send/object-returned pair does not overlap with external
messages it is a reasonable analogy.

Another fundamental in CSP isvthe alphabet of a
process. ‘The set of events which are considered relevant

for a particular description of an object is called its

alphabet. It is a permanent predefined property of an
object’ [8]. Alphabets in CSP are best reflected in
Smalltalk by the message interface of an object.

Annex 3 — Comparison of communication
mechanisms '

In CSP communication between processes occurs
when they synchronise and participate in the same event.
Any number of processes may be involved. Smalltalk
communication occurs when one object sends another a

message. This communication is between the sender and -

the receiver. Therefore, in Smalltalk an ‘event’ occurs
between exactly two objects with one of these in control
— the sender. However, a CSP process can engage in
events independently from any other process and when
processes run in parallel there is no concept of one being
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‘in control. These properties are different from those seen
in the programming language. However.a process is always
running in parallel with its environment which itself is a
process and may be thought of as being in control.

Annex 4 — Strict inheritance

It should be obvious that the use of strict inheritance
will force an instance of a subclass to- be a valid
replacement for an instance of its superclass since:

e all methods in the superclass are in the subclass,

e the methods are unchanged because method
overriding is forbidden.

The stack/counting stack example has been re-written
in appendix C to illustrate strict inheritance. In this case
the counting stack is implemented as a subclass of the
stack. There is no method overriding so the counting stack
is a valid replacement for a stack.

Annex 5 — Horizontal extension

Horizontal extension will involve altering the methods
inherited from the superclass. An example of this is an
object that counts. It can be intialised to zero and will
add 1 to its count state when it receives the message
increment. An extension to this may be to have a similar
object which gets initialised when the count reaches a
predefined limit.

This new class could be a subclass of the original
counter. However, no new methods or state have to be
added. In this case inheritance is used for code sharing
rather than behaviour sharing. It should be obvious that
the limited counter is not a valid replacement for the
normal counter.

The following are sketched CSP specifications of the
above behaviours.

(A) counter(x)

increment— (count!x+1
- counter(x +1))
if x< 10—~1ncrement
- (count'x+l o
—count-to-ten (x + 1))
else —count!0

— count-to-ten(O)

(B) count-to-ten(x)

When the alphabets of each process are only those
events that can occur (B) is not a refinement of (A) since
the alphabet of the counter is not a subset of the alphabet
of the count-to-ten. The Smalltalk implementations of
these specifications are given in appendix D. As expected
the second implementation is not a valid replacement for
the first.
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Annex 6 — Smalltalk message passing

The object in Fig 3 has three instance variables X, Y,
Z (themselves objects). It also has four methods in its
method set, one of which has a temporary variable
associated with it.

Constraints are required to enEach object in Smalltalk
has a number of"operations (methods) which it can
perform. When an object receives a message it either has
a corresponding method and performs a task or it returns
a ‘message not understood’ signal. The message interface
of an object is the set of messages for which that object
has a corresponding method.

In CSP a process can only participate in an event
which is in its alphabet. Similarly, in Smalltalk an object
can receive a message and return an object in reply only
if that message is ‘accepted’ by the external interface.
Notice that an event can occur simultaneously in two or
more CSP processes but messages are sent by a Smalltalk
object before they can be ‘not understood’. Thus this is
not a strong analogy.

sure a message send will affect only the state of the
receiving object (i.e. any instance variables changed are
only part of the stdte of the receiver). It can then be
assumed that the state of an object in a system can be
altered by only one other object.

Object A can send messages only from inside one of
its methods. This message can be to:

e an instance variable (XY or Z),

® a temporary variable (if the method has one),

® a parameter object that was passed in with the
Inessage that invoked this method,

a shared variable (global, class or pool).

It is undesirable for A to be able to change the state
of any objects other than itself. It is able to change the
state of its instance variables (X,Y,Z) but these are part
of its own state. Changing the state of a temporary
variable does not matter because the variable ceases to
exist after the method is executed.

The following controls on the use of parameters and
shared variables are required.

e Parameters should be used to carry information into
a method. The state of a parameter should not be
changed inside a method.
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Fig 3 Representation of a typical Smalltalk object.

e Shared variables should be used to contain constant
b information for access by many classes. This
information could be data or methods (classes are
global variables used to provide methods for creation
of instances).

By following these controls a message send can be seen
as analogous to an event occurring in a single CSP process
because the state of any other object in the system is not
affected.

Appendix A
1 CSP stack

NewStack = in?x:data— (Stack(x);NewStack)
Stack(x) in?y:data— (Stack(y);Stack(x) )
| out!x—SKIP

o Newstack = (in, out}. Stack(x) is a specification of
LIFO behaviour and all access to the internal details is
controlled through in and out.

2 CSP counting stack

CountingStack = Counter(0) | | NewStack
Counter(n) = size!n—counter(n)

| in?d:data—counter(n+1)

| out!d:data— counter(n—1)

« CountingStack = fin, out, size]. CountingStack is a
refinement of NewStack since

e « Newstack €« CountingStack. _

e Without the size events the behaviours are identical.
e There are no refusals.

e There are no divergences

FORMAL OBJECT-ORIENTED DESIGN

Note: Synbhronisation between the counter and the

newstack ensures that the ‘counter state’ (n) is -

always updated before another item is pushed on
or popped off. Also, any number of ‘size events’
can occur between stack operations in the counting
stack.

3 Smalltalk stack

class : Stack
superclass OrderedCollection

instance methods
pop
t super removeLast
push: newObject
t super addLast: newObject

class methods
new: anlnteger
“An initial value for the size of the stack must be given.
The stack will grow if this value is exceeded. »”

t (super new: énInteger ) setIndices
4 Smalltalk counting stack

Counting Stack Implementation

class :  CountingStack
superclass : OrderedCollection
instance variables : count

instance methods
count
tcount ;
push: newObject
count+—count+1.
tsuper addLast: newObject
pop
count—count—1.
tsuper removeLast

private methods
initialise
count—0

class methods
new: anlnteger
|temp|
temp — (super new: anInteger) setIndices.
ttemp initialise

Noté: The methods which are inherited from the class
Ordered Collection are not of interest here. The
class methods are given only for completeness.
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Appendix B
Complex numbers

1  Cartesian co-ordinates

class: Complex
superclass: _ Number
instance variables: real, imag

instance methods

real: realVal imag: imagVal
real—realVal.
imag+—imagVal

real
treal

imag
timag

+ aComplex

! Complex new
real: real + aComplex real
imag: imag + aComplex imag

— aComplex
tComplex new
real: real — aComplex real
imag: imag — aComplex imag

* aComplex
t Complex new
real: (real * aComplex real)
— (imag * aComplex imag)
imag: (real- * aComplex imag)
— (imag * aComplex real)

class methods
““These are not important in the example’’
2 Polar co-ordinates

class Complex
superclass Number

~ instance variables 1, theta

instance methods

real: realVal imag: imagVal
self ' .

r: (rFromReal: realVal imag: imagVal)
theta: (theta FromReal: realVal imag: imagVal)

real
t r*(theta cos)
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imag
t r*(theta sin)

+ aComplex
|realsum imagsum)|
realsum « self real + aComplex real.
imagsum « self imag + aComplex imag.
t Complex new
real: realsum
imag: imagsum

— aComplex
|realsum imagsum|
realsum « self real — aComplex real.
imagsum - self imag — aComplex imag.
t Complex new :
real: realsum
imag: imagsum

* aComplex
t Complex new
rir*¥ aComplex r
theta: theta + aComplex theta

private methods

rFromReal: realVal imag: imagVal
1 ((realVal ~ 2) + (imagVal ~ 2)) sqrt

thetaFromReal: realVal imag: imagVal
t (imagVal/realVal) arctan

r: rval theta: thetaVal
r — rval.
theta — thetaVal

Appendix C  Inheritance

1 Strict inheritance

class: CountingStack
superclass:  Stack

instance methods

count
tsuper size

2 . Non-strict inheritance

class: CountingStack
superclass: Stack

instance variables: count

instance methods

count
t count




push: newObject
count— count + 1.
super push: newObject

pop
count«— count —1.
super pop

private methods

initialise
count— 0

class methods

new: anlnteger

|temp|

temp~— (super new: anlnteger) setIndices.
t temp initialise

Appendix D Counter (code sharing)
1 Unlimited éoum‘er

class Counter
superclass Object
instance variables x

instance methods

increment
self output.
X—x+1

private methods

output
«“some method to output the count value’ -
initialise
x+—0
class methods

new
(super new) initialise

2 Counter up to ten

class CounterTolen
superclass Counter

instance methods

increment
x<10 IfTrue: [super increment]
IfFalse: [x+—0. self output].

“All other methods are inherited from the superclass
counter’’
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