
Engineering a Distributed e-Voting System

Architecture:
Meeting Critical Requirements

J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy

Département Logiciels-Réseaux (LOR),
Telecom & Management SudParis,

9 rue Charles Fourier, 91011
Évry cedex, France

Abstract. Voting is a critical component of any democratic process; and
electronic voting systems should be developed following best practices
for critical system development. E-voting has illustrated the importance
of formal software engineering in the development of complex systems:
poorly engineered and poorly documented voting systems have had se-
rious negative consequences for all system stakeholders. It is clear that
the formal verification of e-voting system models would help to address
problems associated with certification against standards, and would im-
prove the trustworthiness of the final systems. However, it is not yet
clear how best to carry out such formal modelling and verification in
order to leverage the compositional nature of the problem, and manage
the complexity of the task.

The choice of modelling language - for expressing the high level design
and architecture of an e-voting system - poses many problems due to the
complex mix of requirements that such a system is required to meet.
Different modelling languages are more-or-less suited to the verification
of different critical requirements. Thus, we report on a mixed model
approach: where we address 3 different types of critical requirements
using 3 different modelling languages and development strategies. Firstly,
we report on network quality-of-service issues that are analyzed through
simulation models. Secondly, we report on functional correctness of a
counting process that can be validated through algebraic techniques.
Finally, we report on the use of formal refinement to reason about the
correctness of design steps when adding detail to an architecture model.
To conclude, we acknowledge the main problem that arises from such a
mixed-model approach to architecture verification: how can we be sure
that the different models are coherent when we integrate them in a final
implementation?

1 Introduction

1.1 Overview

The work presented in this paper is part of an applied research project in which
the objective is to develop a prototype for an innovative e-voting system for use

H. Giese (Ed.): ISARCS 2010, LNCS 6150, pp. 89–108, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

90 J.P. Gibson, E. Lallet, and J.-L. Raffy

in France1. The project is constrained by existing rules, regulations, laws and
standards that the specific elections are supposed to meet, including European
recommendations[25]. A main goal is that the prototype demonstrates that such
a system can be manufactured at reasonable cost, and that it meets the needs of
the electorate. A secondary objective is to demonstrate the application of formal
methods — as in [5,6] — in the engineering of the software in the e-voting system,
which we consider to be critical[24].

The software process that we followed was that of rapid-prototyping, as dic-
tated by the limited time frame of the project. However, we applied formal
modelling techniques where we felt they would add rigour to the development
process without compromising the time limits. The development was intended
as a learning process where we would use different formal techniques as the need
arose. Thus, as well as developing a prototype e-voting system that would help
us to build a final version in the future, we would also develop a better under-
standing of the role of the different formal methods that would help us to follow
a more formal development process in future development.

The main innovation in the system is concerned with allowing the voter to
choose to vote at any official voting location (and not to be restricted to a single
voting station). The challenge with this innovation is to design a distributed
architecture which is robust against denial of service attacks during the voting
process. Currently, in France, in order to meet the requirement that no person
can have more than one vote counted during an election, a person can vote at
most one time. This is enforced by having a list of all people who have voted
stored locally at each voting station. By allowing voters to VoteAnywhere, we
chose not to enforce the restriction on voting only one time; as this would require
either use of a network during voting in order to allow sharing of information
between voting locations, or use of some complex protocol involving physical
tokens that voters would “pay” in order to vote. Rather, we chose to allow re-
voting and to guarantee that only a single vote for each voter is counted after the
voting process is terminated.Revoting is not strictly necessary to permit a voter
to VoteAnywhere, but — as we demonstrate later in this paper — it simplifies
the development of the system, as well as offering some advantages to the voter.

The solution that we propose does not completely remove the need for some
sort of global functionality during the voting process: we require the use of
clocks that are synchronized between election locations; but demonstrate that
this solution is much more robust against a denial of service attack.

1.2 Structure of Paper

In section 2 we review the specific innovative features of our chosen system and
comment on the main architectural concerns. In section 3 we provide a brief
summary of previous research on distributed and remote e-voting system ar-
chitectures. Section 4 focuses on the key requirement that the e-voting system
1 The system documentation is in French and we have translated the main concepts

and components into English. Where multiple translations are equally reasnaoble,
we have noted this in the text.

Engineering a Distributed e-Voting System Architecture 91

should be — as far as possible — robust against denial-of-service attacks. In par-
ticular, section 4 shows that support for simulation is a major advantage when
choosing a modelling language with operational semantics; in our study we used
Estelle[17]. In section 5, we report on the formal specification of the fundamen-
tal data (and data transformations) that are used in the counting (tabulation)
process. In particular, we illustrate how the simple algebraic specification of in-
variant properties can aid validation[12,7] and help developers avoid types of
tabulation error that are common to e-voting systems. Section 6 illustrates the
use of refinement (with Event-B and the RODIN toolset[1]) for the specification
and verification of a design transformation step. Section 7 reviews the develop-
ment of a prototype implementation where the main difficulty was a coherent
integration of multiple views as specified by our different modelling languages.
We conclude the paper in section 8.

2 Revote Anywhere (By Procuration): Our Specific
Requirements and Architecture Concerns

We consider the requirements for secrecy and accuracy[8] to be fundamental
to all voting systems of interest to the research community. In all discussions
that follow with regards to voting systems, it is implicit that no additional
requirement should compromise the need for secrecy and accuracy.

We also consider quality-of-service to be a critical property in any voting
system - the effort required to vote must not discourage electors from engaging
in the voting process. In particular, the time that is required to vote must not
be unreasonable.

In the following, we introduce 2 voting innovations (for France) — permitting
voters to vote at numerous different locations and at numerous different times
— and illustrate some of the problems that may arise when these innovations
have to be integrated with existing features, such as allowing a third party to
vote on behalf of an elector.

2.1 VoteAnywhere: A First Innovation

Restricting each elector to vote at a single specific location can have a significant
negative impact on voter turnout. Providing flexibility in where electors can go
to vote should improve voter turnout, and this is the major high-level objective
of the VoteAnywhere innovation.

This paper is not proposing remote electronic voting where electors are able
to vote over the internet — in the next section we review many of the problems
that can arise if such unconstrained remote voting is allowed. We agree with the
conclusions in a review paper — The Development of Remote E-Voting Around
the World: A Review of Roads and Directions[21] — that: “Overall remote elec-
tronic voting has not reached the maturity to be applied in large-scale elections of
major importance.” Rather, we are proposing that electors be allowed to vote at
any authorised polling station. This VoteAnywhere requirement provides many

92 J.P. Gibson, E. Lallet, and J.-L. Raffy

of the advantages of remote voting whilst not being vulnerable to most of the
weaknesses[13,30]. We note that a less general variation on VoteAnywhere func-
tionality is the use of remote voting centers[30], for “voters far from their home
precincts”. This approach does not meet our objective of allowing all electors
to vote at any authorised voting center (but it does illustrate that the need for
remote voting is well acknowledged.)

Two other requirements are key to the development of our prototype sys-
tem: Revote and Procuration. In the subsections that follow we summarise the
potential interactions between each of these features[14].

2.2 VoteAnywhere with ReVote

Revote facilitates the implementation of a system that meets our VoteAnywhere
requirement without risk of denial of service attacks. However, it also provides
additional benefits to the voter when we consider elections run over a long time
period. Restricting electors to vote during a narrow time frame can reduce
turnout. However, widening the times when electors can vote (as with early
voting in the USA) introduces the problem that electors may be discouraged
from voting early because they do not have an opportunity to change their vote
at a later time (while the voting process is still open.) The main objective of
the ReVote innovation is to encourage early voting (and consequently improve
turnout) by permitting an elector to revote if they wish to change a previous
recorded ballot. A fundamental requirement is that only a single vote is counted
for each elector. In our chosen system we refine this fundamental requirement
into a rule that states that if an elector votes multiple times then only the last
vote recorded by this elector will be counted.

Provided that an elector has to vote at the same polling station then there
should be no problem in identifying which vote was the last recorded when a
ReVote occurs. Some obvious options are:

1. Use a local clock to stamp each signature.
2. Use a local counter to stamp each signature.
3. Use a “destructive-write” so that a signed bulletin2 added to the local urn

automatically results in the destruction of any bulletin that shares the same
signature already in the urn3.

However, integrating VoteAnywhere with ReVote poses problems in all three of
the optional designs above:

1. Local clocks would need to be synchronised or replaced by a global clock.
2.&3. Require a reliable non-local network for communication of data between

distributed polling booths.

In section 4 we show that option 1 is the only acceptable (and feasible) solution
to meeting all our requirements.
2 A bulletin is also know as a ballot.
3 An urn is also known as a ballot box.

Engineering a Distributed e-Voting System Architecture 93

2.3 Procuration, ReVote and VoteAnywhere: A Feature Interaction

Procuration4 is the feature that permits one elector (the elector-by-procuration5)
to vote on behalf of another elector. In many elections, procuration does not
necessarily prohibit an elector from voting. In France, for example, the elector
may be able to go to a polling station and vote, provided that the elector-by-
procuration has not already done so. Given a reliable non-local communication
network then there are no undesirable interactions between Procuration and
VoteAnywhere as a central voter list could guarantee that the elector and the
elector-by-procuration cannot record two suffrages “at the same time” at differ-
ent polling stations; in the same way that this is currently guaranteed by local
voter lists at each polling station.

There is a clear undesirable interaction between Procuration and ReVote dur-
ing the election process. In the first instance, an elector may be denied the right
to record a suffrage whilst in the second instance an elector must never be denied
the right to record a suffrage. Consequently, to provide the ReVote feature it may
be necessary to change the existing regulations with respect to Procuration.

Using local clocks to implement ReVote Anywhere can lead to additional re-
quirements when combined with Procuration. Without procuration, a design
which uses global clocks to time-stamp ballots can safely make the assump-
tion that a “single elector” cannot be in two places at once. As a consequence,
the accuracy of the clocks is not critical and inexpensive solutions should be
considered. However, with Procuration and VoteAnywhere it is possible that an
elector is in two different polling stations at the same time6. This scenario may
require much more accurate (and much more expensive) global clocks.

In our chosen system, we address these potential problems by adhering to the
spirit of procuration - a vote from the original (non-procured) elector should
take priority over a procured vote, irrespective of the time at which they are
recorded.

2.4 Audits and Recounts

A main weakness of our proposed system is that the votes cannot be recounted
by hand. The voter does have a paper record of their vote but it is impossible for
them to be decrypted and hand counted — the encrypted votes must be counted
as a whole before the result is decrypted.

The paper record of the vote allows a limited type of verifiability (or audit)
— a voter can verify that their vote was counted after the election, but they
cannot verify that it was correctly counted. The voter can also verify that the
encryption process correctly records votes (during the voting process).

4 Procuration is also known as proxy voting or vote delegation.
5 The elector-by-procuration is also known as the proxy voter.
6 This arises if the elector goes to one polling station and the elector-by-procuration

goes to another.

94 J.P. Gibson, E. Lallet, and J.-L. Raffy

3 Distributed/Remote E-Voting Systems: Architecture
and Design Issues

In all distributed voting systems, denial-of-service of the underlying communi-
cation architecture is a major threat. In remote voting there are also increased
threats of voter coercion and/or the voting machine being untrustworthy. In
the VoteAnywhere system, because electors vote in a controlled polling station,
voter coercion should be no greater an issue than with traditional voting. Trust-
ing e-voting machines is a major concern for all voting systems, but one which
is much more serious for remote voting where the machines are not under the
direct control of the voting authorities.

The design of remote electonic voting machines — requiring a network for
communication between machines — is clearly a much more complex problem
than the design of standalone machines. In the remainder of this section we
review some of the most relevant previous research in these areas.

3.1 Denial-of-Service

In 1998, Susan King Roth identified voter disenfranchisement as a main risk of
poorly designed e-voting systems[28]. Her analysis raised interesting questions
with respect to poorly designed machines discouraging voter participation. This
is particularly relevant when we consider the requirement that voting takes a
reasonable amount of time.

In2000,Hoffmanasked InternetVoting:Will it SpurorCorruptDemocracy?[16],
and commented on the perceived risk of denial-of-service attacks: “Imagine what a
concerted denial of service attack might do to an election with Internet/Web-based
voting . . . ”.

In 2003 the design of an internet voting system is proposed in REVS — A Ro-
bust Electronic Voting System[19]. The authors write that they have designed: “a
robust electronic voting system . . . that tolerates failures in communications and
servers while maintaining all desired properties of a voting system.” However,
the key issue of anonymity is mentioned only briefly in the conclusions, where the
authors state that “REVS can beneficiate from a more sophisticated anonymity
mechanism”. In 2004, further analysis of the REVS architecture identified weak-
nesses inherent in the design due to voter information being centralised[33],
which introduces additional dependency on the underlying communication net-
work.

In the same year, Chen et al. proposed the Design of a secure anonymous In-
ternet voting system[9] and claim that their “scheme does not require a special
voting channel and communications can occur entirely over the current Inter-
net”. They do consider the robustness of their system with respect to election
disruption (through voter behaviour): “Even if a voter intends to disrupt the
election, there is no way to do it. The only way to disrupt the elections is for the
voter to keep sending ballots to the TC and SC.” They then continue by explic-
itly forbidding re-voting: “ However, the TC and SC will verify the validity of
the voter-pseudonym signature and will not allow the same voter-pseudonym to

Engineering a Distributed e-Voting System Architecture 95

vote twice.” This approach — which ignores potential denial of service attacks
on the network (independent of voter behaviour) and which forbids revoting —
is very different to our proposal.

In Verifiable AnonymousVote Submission[36] theREVS architecture is adapted
to better deal with anonymity and verifiability. This work is based on two previ-
ous anonymization architectures — Mix Nets and Mix Rings — which were not
originally intended for e-voting systems but which now form the central design
feature of many proposals for remote electronic voting. In general, the design of
such systems focuses on security aspects rather than on denial-of-service issues.

We note that relying on the internet provides opportunities for attack from
foreign agents. Jefferson et al. write in Analyzing Internet Security[18]: “Because
the internet is independent of national boundaries, an election held over the
internet is vulnerable to attacks from anywhere in the world.”

In 2004, Selker and Goler report on The SAVE system — secure architecture
for voting electronically[31]: “ This voting architecture provides a means to vote
over open networks in a way that is reliable, secure, and private. ” Their proposal
is based on demonstrating that — through n-version redundancy techniques
— there is no single point of failure in their system. However, their proposed
architecture is not robust against denial-of-service attacks.

Two years later, in 2006, another article — E-voting in Estonia 2005. The first
Practice of Country-wide binding Internet Voting in the World[23] — reports
on the co-ordination activities that are necessary when relying on the internet
during e-voting: “System and network monitoring was performed by different
parties on different levels during the e-voting period on a 24h basis. All major e-
service providers (e.g. banks) and Internet operators were involved in the process
with monitoring the overall “health” of Internet network traffic loads, analysis of
possible Trojans/viruses etc.” They do not detail the contingency plans if their
network fails during an election; but it is likely that the election would have to
be aborted and re-run. Thus, one could say that their design is not dependable.
The notion of “Design for dependability” appears in an article by Bryans et al.
in 2006[4], where they consider the importance of robustness and fault-tolerance.
They conclude that: “. . . aborted elections are still failures.”

Qadah and Taha propose an alternative remote e-voting architecture and il-
lustrate how mobile devices can be used as voting client machines[27]. However,
they do note that their implementation — using public wireless networks —
is not suitable for secure elections: “. . . for highly secure elections, such as po-
litical ones, voters need to access the e-voting system through secure channels
including the use of secure client devices located at secure polling locations and
connected to the e-voting system through secure Intranets/private networks”. It
is interesting to note that they focus on the security of channels and networks
without explicitly mentioning reliability.

3.2 Coercion and Anonymity

Coercion is a major issue in any voting system where voters are able to demon-
strate how they have voted. In most traditional systems, specific procedures have

96 J.P. Gibson, E. Lallet, and J.-L. Raffy

evolved in order to minimize the risk of coercion. Anonymous voting is the most
widely applied technique for mitigating coercion — if all ballots are anonymous
then there is no way for an elector to demonstrate (to a coercer) how they have
voted. Thus, even if an elector is coerced there is no risk that the coercer can
verify if the coercion has worked.

Remote e-voting would appear to increase the risk of coercion. Maaten, in
Towards Remote E-Voting: Estonian case[22] provides evidence of coercion in
remote e-voting: “During the last elections in Estonia some vote-buying incidents
became public.”

The design of a secure (coercion-free) remote e-voting system is proposed in
Civitas: A Secure Remote Voting System[10]. The paper addresses one of the
major problems with remote voting: how can one ensure that voters cannot
be coerced when the voting location is unsupervised? In particular they use
the requirement that “voters cannot prove whether or how they voted, even if
they can interact with the adversary while voting.” It should be noted that the
architecture may be susceptible to denial-of-service attacks: “Civitas does not
guarantee availability of either election authorities or the results of an election.

Our proposed system introduces no significant risks — over the paper system
— with respect to anonymous voting. However, there is a coercion attack which
could be used to force a voter to make a random vote: as a voter has a printed
record of their vote against a random permutation of candidates it is possible
that they would be obliged to vote randomly if an attacker forces them to record
a particular sequence of preferences. This attack could not force a voter to record
a particular vote because the attacker has no way of knowing how the preferences
have been permutated but it does introduce an additional risk.

3.3 Other Related Issues

In 2002, Rubin analyses the Security Considerations for Remote Electronic Vot-
ing over the Internet[29] and concludes that: “ . . . the technology does not yet
exist to enable remote electronic voting in public elections.” We argue that, 8
years later, there have been no major technological advances that would require
one to change this conclusion.

In Swiss E-Voting Pilot Projects: Evaluation, Situation Analysis and How to
Proceed[3], the authors note that: “Parliament demanded of e-voting a similar
level of security to that of postal voting.” As postal voting is the most problem-
atic with respect to meeting requirements, it should not be a surprise that they
conclude: “ The required benchmark was exceeded in the pilot trials.” We argue
that the benchmark for comparison must be set to a level equivalent to the best
paper systems.

In e-VotingRequirements and Implementation[2], “the complexity of the deploy-
ment of e-voting systems and the inherent security issues that arise from the un-
derlying distributed system” is considered. An architecture that focuses on “the
security of the election servers and the channels between client machines and the
servers” is proposed. Unfortunately, the authors identify a major weakness in their

Engineering a Distributed e-Voting System Architecture 97

architecture (and with remote voting, in general) — they cannot guarantee the se-
curity of the client machine from which a vote is cast.

4 Denial-of-Service: Our Specific Requirements

4.1 Our Specific Requirements

Elections that depend on distributed communicating (sub)systems are open to
denial-of-service attacks on the underlying communication architecture. The con-
sequences of such attacks are likely to be critical during the voting process — if
electors are unable to vote for long periods of time then the election will almost
certainly have to be re-run. Contrastingly, such attacks occuring before or after
voting should not, if properly managed, have such serious consequences.

We propose that distributed voting systems must not depend on a reliable
internet connection during the voting process in order to meet functional and
non-functional requirements. In particular, no part of the voting process should
depend on the sending or receiving of information on the internet (during the
vote). This is the only way to guarantee that successful denial-of-service attacks
cannot prevent electors from voting in a reasonable amount of time.

4.2 Simulation of Estelle Architecture Models

In previously reported research [13,14], through simulations of the formal mod-
els (written in Estelle[17]), we established that certain architectures could not
provide an acceptable quality of service (to the voter) when the underlying com-
munication network was open to denial-of-service attacks during voting. How-
ever, one particular architecture — using clocks for timestamping, but no other
network communications during voting — appeared (through analysis of the
simulation data) to be a possible solution to our problem.

In figure 1 we show the three alternative architectures that we modelled, in
Estelle, for simulation. The first uses global lists for recording which electors
(who are entitled to vote) have already voted and for the choice of candidates
(vote options) offered to them. The second uses local lists to record information
of/for electors who have gone to their local voting station; whilst using global
lists for those who have chosen to vote elsewhere. The third has local copies of all
electoral and candidate lists. The diagrams are generated from the semantics of
the formal Estelle specifications. The key difference between the architectures is
concerned with when the network is un use. Architecture one requires a network
connection for every elector. Architecture two requires a network connection for
electors who have chosen to vote at their non-default polling station. Architecture
three never depends on a network connection during the voting process.

It is important to note that our simulation models — including the archi-
tecture of our chosen system — abstracted away from key aspects of e-voting
systems that require the use of security protocols. As we evolved our design to
incorporate these aspects, it was critical that we ensured the soundness of the
abstraction: no new behaviour should introduce a need for communication across
an unreliable network during the vote process.

98 J.P. Gibson, E. Lallet, and J.-L. Raffy

Fig. 1. Abstract Architecture Alternatives

4.3 Final Design: When Do We Need a Network?

Our design went through a number of stages. In figure 2 we show that consistency
with our abstract architecture — with respect to network dependency — was
maintained as further requirements for security, authentication, encryption and
voter verifiability were added to the system. The key is that communication
between these additional components (and the polling stations) is not necessary
during the voting process. All new components are connected to local urns in
each of the polling stations;

Fig. 2. Additional requirements do not require network during voting

Engineering a Distributed e-Voting System Architecture 99

In the top left of the figure we represent bulletin generation before the voting
process starts:

1. The system uses generic bulletins which are permutations of the ordered list
of candidates.

2. The bulletins are generated by mix-nets. The permutations are duplicated
and each part is encrypted with a different algorithm:
(a) One in ElGamal with a public key for each booth (booth PuK).
(b) A second in BGN with the public key of the global urn.

3. After encryption, the bulletins are signed by a trusted authority.

During the voting process all communications between components are local:

1. The booth verifies the signature of the bulletin.
2. The booth decrypts the permutation encrypted in ElGamal.
3. The elector makes his/her choice and the decrypted permutation is

destroyed.
4. The bulletin (the choice and the permutation encrypted in BGN) is then

signed by the voter and put in the local urn.

Thus, the voting process does not depend on network communications.
We chose to use 2 different encryption schemes to meet 2 different require-

ments. BGN is required in order to provide a homomorphic mechanism for
counting encrypted votes (as a whole) and decrypting the final result. This is a
computationally complex algorithm and so we do not wish to use it to implement
all our cryptolographic functionality. Thus, we chose to use El Gamal where we
optimize the computation by not requiring a homomorphic technique.

A final aspect that should be noted is that voter authentication, in our cho-
sen system, is carried out (indirectly) after the voting process has terminated.
No person is refused permission to record a vote in an urn — but during the
counting process (in the global urn) all non-authentic votes are rejected in a
first step. This approach can be complemented by additional checks at voting
stations that permit only people entitled to vote (over-18s, for example) access
the voting booths. However, our approach is robust to any failures in this intitial
filtering that would allow unauthorised voters access to the booth or urn. Our
system would also be robust against someone authorised to vote being refused
permission to vote at a particular station because this voter could try voting
elsewhere.

5 Algebraic Specification

5.1 Specification and Validation of Count Rules

In previous work[12] algebraic techniques were used to model and validate the
complex counting rules of the Irish parliamentary elections. A snippet of the
algebraic specification of a Vote — a list of preferences for candidates — is
given below:

100 J.P. Gibson, E. Lallet, and J.-L. Raffy

--> **************************

--> defining the Vote module

--> **************************

mod! Vote {

[Vote]

protecting(NAT)

protecting(ListNats)

--> some ops hidden

op empty : Nat -> Vote

op isempty : Vote -> Bool

op addP : Vote Nat -> Vote

op numCandidates : Vote -> Nat

op invariant : Vote -> Bool

op hasPref : Vote Nat -> Bool

--> some variables hidden

--> some equations hidden

eq invariant(empty(numCs)) = false .

ceq invariant(addP(v,n)) = true if (n <= numCandidates(v)) and

(not(hasPref(v,n))) .

ceq invariant(addP(v,n)) = false if (n <= numCandidates(v)) and

(hasPref(v,n)) .

ceq invariant(addP(v,n)) = false if n > numCandidates(v) .

}

A separate study[7] has shown the advantages of such formal models, over
natural language descriptions, for the specification and validation of such al-
gorithmic requirements. Motivated by their conclusions — and by the fact that
requirements validation has been a major problem in voting systems — we chose
to follow an algebraic approach to the specification of the data and data trans-
formations in our e-voting system architecture. Further, in order to demonstrate
that our approach is generally applicable, we chose not to develop a system that
was appropriate only for the simplest type of counting algorithm (as with Pres-
idential elections in France): our architecture has been designed to support the
most complicated PRSTV voting schemes.

We note that these algebraic specifications in CafeObj were re-used because
they provide a formal model that had already been validated to correctly rep-
resent the count algorithm. The transformation of the CafeObj models to an
object oriented implementation language (like Java) follows well established
methods[11]. The count implementation that results from the CafeObj speci-
fications has an important role to play in later verification of the final prototype
where rhe count operates on encrypted votes and involves a single decryption of
the result.

This encrypted-count mechanism has not been formally verified and so we
need some means of checking that it is correct. Our approach uses the

Engineering a Distributed e-Voting System Architecture 101

un-encrypted count (whose development was rigorously driven by the CafeObj
models) as an oracle for testing the encrypted-count. In other words, we apply a
form of regression testing to show that the results produced by the secure system
are in agreement with the insecure system.

5.2 Verification of Data Transformations (Using Event-B Contexts)

A recurring reported problem with e-voting systems is the loss of votes arising
from transport between system components; for example, from interface to urn,
and from urn to count module. This problem is excacerbated by changing the way
in which votes are represented as they move through the system. For example,
with preferential voting, votes are typically recorded at the interface as an array
of preferences.

In figure 3 we see how the way in which vote information is stored can change
as votes move through the system.

In the interface, the voter conceptualises their vote as an array of candidates,
some of whom are accorded preferences. However, in the ballot module the count
algorithm “sees” each vote as an ordered sequence of preferences. As votes are
transformed from one representation to another it is possible that a bug could
transform a valid vote into an invalid vote[6]. Thus, we chose to specify such func-
tions using Event-B contexts. In this way we formally verify (with the RODIN

Fig. 3. Votes represented in different ways in the same system

Fig. 4. Proving theorems about the data in the e-voting context

102 J.P. Gibson, E. Lallet, and J.-L. Raffy

tool) that such transformations are correct. A simplified context specification,
in figure 4 illustrates how the RODIN tool is used to prove theorems about the
election data, as specified in an Event-B context.

The main property that we wish to prove is that the move transformation is
a bijection. We note that the algebraic specification (in Event-B) of the module
corresponds to that which is used in the CafeObj specification of the Vote. The
advantage of re-formulating the model in Event-B is that the invariant properties
can be proven when we specify the dynamic properties of the system as a machine
which executes events.

6 Refinement for Formal Verification of Design Steps
(Using Event-B)

As a first step towards verifying our system to be correct, we abstract away
from multiple voting locations. Our goal is to prove certain properties about
this simple architecture and then to refine the architecture in order to add fur-
ther details/components. If we can prove this refinement to be correct then all
properties that we have proven for the initial simple architecture will be guar-
anteed to be correct for the more detailed architecture.

Our first refinement step is to offer 2 voting locations. (This will then be
refined to an arbitrary number of voting stations). A simplified part of the ma-
chine specification, in figure 5 illustrates how a new event — for adding a new
voting station – can be added to the architecture in such a way that the RODIN
tool verifies the correctness of the design step as a refinement. Here, the Event-
B is used to model refinement between abstract machines, where behaviour is
partially specified by the shared context in which the machines operate.

Fig. 5. Modelling an architectural step as a refinement

7 The Prototype Implementation

As a proof of concept, we wished to implement this architecture as quickly
as possible (following a rapid-prototyping development process). This imple-
mentation would replace the abstract network in our formal specifications with
concrete communication protocols across the internet. Thus, we would be able to

Engineering a Distributed e-Voting System Architecture 103

demonstrate the feasibility of an implementation and validate the analysis from
simulation of our formal models.

The underlying technology used to implement the distributed voting system
prototypes — without any security mechanisms — was: Windows XP, Apache
2.2.9, MySQL 5.0.51, and PHP 5.2.6. On top of this, we built — using the
httpunit tool that is popular in agile development of web sites[34] — an election
simulation which simulated the behaviour of voters during the voting period
(instantiating the same parameters as used in simulating our formal models).

We note that our final prototype — including the security mechanisms —
is built on Java technology. The architecture of the final prototpye is consistent
with that used in our initial simulation. This increases confidence that the quality
of service requirements will continue to be met; but we have not yet been able
to execute the same simulations on the final prototype.

7.1 Simulation: Validation of Formal Requirements Model

Although not a primary goal of the prototype development, it was clear that
we could build a generic implementation that could be instantiated to all of our
main architectural options (including the only one which we felt was feasible).
Thus, we were able to simulate VoteAnywhere elections — using the internet
as our underlying communication network — for all the options. In figure 6 we
see that — for the purposes of simulation — we instantiated only two different
polling stations, each with three polling booths. This was sufficient for simulating
all different scenarios of interest.

It was no surprise that the architectures that failed to meet quality-of-service
requirements when we simulated the formal models also failed to meet the re-
quirements when implemented using a real network: it is necessary but not suf-
ficient that the abstract models meet the requirements in order for the concrete
implementations to meet them. (For more details of the simulation results see
[13].)

Fig. 6. Generic Architecture With 2 Polling Stations

104 J.P. Gibson, E. Lallet, and J.-L. Raffy

We note that our formal models also abstracted away from communication
time between system components, whether connected on a local or non-local
network. We argued that such delays would be insignificant compared with the
time taken for the elector to record a vote. Our election simulations validated
the correctness of our abstraction — the speed of the internet connection (pro-
vided the service was available) had no effect, for all architectures tested, on the
quality-of-service offered to the voter.

To conclude, our election simulation prototype demonstrated the feasibility
of our architecture for meeting its requirements. The main outstanding concern
was the implementation of the global clocks (see next section).

7.2 Trustworthy Global Clocks: Implementation Choices

In our simulations we made the assumption that the clocks on our different
machines were synchronised; but we made no effort to guarantee that the as-
sumption was met. We considered three implementation choices for ensuring
that our clocks are synchronised in any further development of our distributed
system:

1. Network Time Protocol (NTP)[26]: is a protocol for synchronizing the
clocks of computer systems over packet-switched, variable-latency data net-
works. It would be the most appropriate solution to providing synchronised
clocks between polling booths if we had a reliable network connection.

2. Atomic Radio Clocks[35]: the IEEE 1588 standard is designed for local sys-
tems requiring better accuracy than that provided by NTP. It is also designed
for use where the cost of a GPS receiver in each communicating component is
too high, or for where GPS signals are not reliable (or accessible)

3. GPS Clocks[32]: have already proven themselves in distributed real-time
systems. We note that such a component could also facilitate automated ver-
ification of the location of voters (at particular polling stations). The poten-
tial impact (both positive and negative) of such information being available
requires further analysis.

As none of these options is costly (with respect to the total cost of each voting
booth and polling station) we propose that each booth have access to time
generated by all three options (which may be controlled by a central machine in
each polling station). Thus, the system would be robust against denial-of-service
for any two of these three options during voting. Furthermore, the redundancy
would introduce an extra level of security against some attacker attempting to
manipulate the timestamp information on recorded votes (through manipulation
of the local clocks).

7.3 Model Integration

The first prototype — without the security mechanisms — was developed by a
software engineer with 4 years experience. The engineer was presented with all
the different formal models that we had produced. The Estelle model was used

Engineering a Distributed e-Voting System Architecture 105

to construct the communication architecture. The algebraic specification (of a
simplified count process) was used to develop the tabulation algorithm. The
Event-B specifications of the design steps (refinements) played no role in the
coding process — other than convincing us that the design was correct before it
was implemented. The Event-B context specifications guided the implementation
of Java code for specifying and verifying invariant properties. The engineer chose
not to use extensions to the Java language that directly supported design by
contract. Rather, they simply specified boolean invariant methods and threw
runtime exceptions when such invariant properties were broken. These invariant
properties helped identify coding errors (in the initial stages of implementation)
but played little role in the verification of the design. Through documentation
of the implementation code, we identified minor inconsistencies between the
different models — these were mostly syntactic in nature.

The final prototype — with the security mechanisms — is in the process of
being tested (against functional requirements). Through these tests (which were
independently developed from the requirements models) we can verify that the
count is correct, and that the three main features — VoteAnywhere, Revote and
Procuration interact as required. We have no formal verification that the encryp-
tion algorithms central to the security mechanisms are correctly implemented —
but the developers are experienced in using these same algorithms in a large
number of security-critical systems.

It is clear from analysis of our development approach that the integration of
our formal models is ad-hoc. We believe that are advantages from using different
formal models at different stages of the development. However, establishing a
re-usable method that coherently integrates such a mix of approaches is future
research.

8 Conclusions

We have developed a prototype of an innovative voting system and addressed
the major problem of denial-of-service attacks in a distributed architecture.

We have demonstrated that the development of an e-voting system can be
done more rigorously through the use of formal methods, and that different
modelling languages offer different advantages and disadvantages. The case study
has not formally modelled all aspects and components of our voting system; a
more complete model is work in progress. An important issue is a more formal
integration of the different models that we have developed.

In current and future work we model our specific chosen system as a single mem-
ber of a family of voting systems, where family members offer a unique subset of
voting features[14]. We are also analysing the role of formality in maintaining these
systems as requirements evolve (often due to changes in standards [15]).

Acknowledgements

Thanks to the anonymous reviewers for their comments and suggestions.

106 J.P. Gibson, E. Lallet, and J.-L. Raffy

References

1. Abrial, J.-R., Butler, M.J., Hallerstede, S., Voisin, L.: An open extensible tool
environment for event-b. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260,
pp. 588–605. Springer, Heidelberg (2006)

2. Anane, R., Freeland, R., Theodoropoulos, G.: E-voting requirements and imple-
mentation. In: The 9th IEEE International Conference on E-Commerce Tech-
nology and the 4th IEEE International Conference on Enterprise Computing,
E-Commerce, and E-Services. CEC/EEE, Tokyo, Japan, July 2007, pp. 382–392
(2007)

3. Braun, N., Brändli, D.: Swiss e-voting pilot projects: Evaluation, situation analysis
and how to proceed. In: Krimmer [20], pp. 27–36

4. Bryans, J.W., Littlewood, B., Ryan, P.Y.A., Strigini, L.: E-voting: Dependability
requirements and design for dependability. In: ARES 2006: Proceedings of the First
International Conference on Availability, Reliability and Security, Washington, DC,
USA, pp. 988–995. IEEE Computer Society Press, Los Alamitos (2006)

5. Cansell, D., Gibson, J.P., Méry, D.: Formal verification of tamper-evident stor-
age for e-voting. In: Hinchey, M., Margaria, T. (eds.) Fifth IEEE International
Conference on Software Engineering and Formal Methods (SEFM 2007), London,
England, UK, pp. 329–338. IEEE Computer Society Press, Los Alamitos (2007)

6. Cansell, D., Gibson, J.P., Méry, D.: Refinement: A constructive approach to formal
software design for a secure e-voting interface. Electronic Notes in Theoretical
Computer Science 183, 39–55 (2007)

7. Carew, D., Exton, C., Buckley, J., McGaley, M., Gibson, J.P.: Preliminary study
to empirically investigate the comprehensibility of requirements specifications. In:
Romero, P., Good, J., Acosta Chaparro, E., Bryant, S. (eds.) Psychology of Pro-
gramming Interest Group 17th annual workshop (PPIG 2005), pp. 182–202. Uni-
versity of Sussex, Brighton (2005)

8. Chaum, D., van der Graaf, J., Ryan, P.Y.A., Vora, P.: Secret ballot elections with
unconditional integrity. Report CS-TR-1058, Department of Computing Science,
University of Newcastle upon Tyne (2007)

9. Chen, Y.-Y., Jan, J.k., Chen, C.-L.: The design of a secure anonymous internet
voting system. Computers & Security 23(4), 330–337 (2004)

10. Clarkson, M.E., Chong, S., Myers, A.C.: Civitas: A secure remote voting system. In:
Chaum, D., Kutylowski, M., Rivest, R.L., Ryan, P.Y.A. (eds.) Frontiers of Elec-
tronic Voting. Dagstuhl Seminar Proceedings, Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), vol. 07311, Schloss Dagstuhl, Germany
(2007)

11. Gibson, J.P.: Formal Object Oriented Development of Software Systems Using
LOTOS. Thesis CSM-114, Stirling University (August 1993)

12. Gibson, J.P.: E-voting requirements modelling: An algebraic specification approach
(with cafeobj). Report NUIM-CS-TR-2005-14, Department of Computer Science,
National University of Ireland, Maynooth (2005)

13. Gibson, J.P., Lallet, E., Raffy, J.-L.: Analysis of a distributed e-voting system
architecture against quality of service requirements. In: The Third International
Conference on Software Engineering Advances (ICSEA 2008), pp. 58–64. IEEE
Computer Society Press, Los Alamitos (2008)

14. Gibson, J.P., Lallet, E., Raffy, J.-L.: Feature interactions in a software product line
for e-voting. In: Nakamura, Reiff-Marganiec (eds.) Feature Interactions in Software
and Communication Systems X, Lisbon, Portugal, June 2009, pp. 91–106. IOS
Press, Amsterdam (2009)

Engineering a Distributed e-Voting System Architecture 107

15. Gibson, J.P., McGaley, M.: Verification and maintenance of e-voting systems and
standards. In: Remenyi, D. (ed.) 8th European Conference on e-Government, Lau-
sanne, Switzerland, July 2008, pp. 283–289. Academic Publishing International
(2008)

16. Hoffman, L.J.: Internet voting: will it spur or corrupt democracy? In: CFP 2000: Pro-
ceedings of the tenth conference on Computers, freedom and privacy, pp. 219–223.
ACM, New York (2000)

17. ISO/IEC. Estelle: A formal description technique based on an extended state tran-
sition model. Technical Report ISO 9074, Information technology - Open Systems
Interconnection (1997)

18. Jefferson, D., Rubin, A.D., Simons, B., Wagner, D.: Analyzing internet voting
security. ACM Commun. 47(10), 59–64 (2004)

19. Joaquim, R., Zuquete, A., Ferreira, P.: REVS — A Robust Electronic Voting Sys-
tem. In: Proceedings of the IADIS International Conference on e-Society, Lisbon,
Portugal, June 2003, pp. 95–103 (2003)

20. Krimmer, R. (ed.): Electronic Voting 2006: 2nd International Workshop, Co-
organized by Council of Europe, ESF TED, IFIP WG 8.6 and E-Voting.CC, Castle
Hofen, Bregenz, Austria, August 2-4. LNI, vol. 86. GI (2006)

21. Krimmer, R., Triessnig, S., Volkamer, M.: The development of remote e-voting
around the world: A review of roads and directions. In: Alkassar, A., Volkamer, M.
(eds.) VOTE-ID 2007. LNCS, vol. 4896, pp. 1–15. Springer, Heidelberg (2007)

22. Maaten, E.: Towards remote e-voting: Estonian case. In: Prosser, A., Krimmer, R.
(eds.) Electronic Voting in Europe. LNI, vol. 47, pp. 83–100. GI (2004)

23. Madise, Ü., Martens, T.: E-voting in estonia 2005. the first practice of country-wide
binding internet voting in the world. In: Krimmer [20], pp. 15–26 (2005)

24. McGaley, M., Gibson, J.P.: E-voting: a safety critical system. Report NUIM-
CS-TR-2003-2, Department of Computer Science, National University of Ireland,
Maynooth (2003)

25. McGaley, M., Gibson, J.P.: A critical analysis of the council of europe recommenda-
tions on e-voting. In: EVT 2006: Proceedings of the USENIX/Accurate Electronic
Voting Technology Workshop 2006 on Electronic Voting Technology Workshop, pp.
9–22. USENIX Association (2006)

26. Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Trans-
actions on Communications 39(10), 1482–1493 (1991)

27. Qadah, G.Z., Taha, R.: Electronic voting systems: Requirements, design, and im-
plementation. Comput. Stand. Interfaces 29(3), 376–386 (2007)

28. Roth, S.K.: Disenfranchised by design: voting systems and the election process.
Information Design Journal 9(1), 1–8 (1998)

29. Rubin, A.D.: Security considerations for remote electronic voting. ACM Com-
mun. 45(12), 39–44 (2002)

30. Sandler, D.R., Wallach, D.S.: The case for networked remote voting precincts. In:
EVT 2008: Proceedings of the USENIX/Accurate Electronic Voting Technology
Workshop 2008 on Electronic Voting Technology Workshop, Berkeley, CA, USA,
July 2008. USENIX Association (2008)

31. Selker, T., Goler, J.: The save system — secure architecture for voting electroni-
cally. BT Technology Journal 22(4), 89–95 (2004)

32. Sterzbach, B.: Gps-based clock synchronization in a mobile, distributed real-time
system. Real-Time Syst. 12(1), 63–75 (1997)

33. Storer, T., Duncan, I.: Practical remote electronic elections for the uk. In: PST,
pp. 41–45 (2004)

108 J.P. Gibson, E. Lallet, and J.-L. Raffy

34. Tappenden, A., Beatty, P., Miller, J.: Agile security testing of web-based systems
via httpunit. In: ADC 2005: Proceedings of the Agile Development Conference,
Washington, DC, USA, pp. 29–38. IEEE Computer Society Press, Los Alamitos
(2005)

35. Weibel, H., Béchaz, D.: IEEE1588 Implementation and Performance of Time
Stamping Techniques. In: Conference on IEEE 1588, Gaithersburg (september
2004)

36. Zúquete, A., Almeida, F.: Verifiable anonymous vote submission. In: SAC 2008:
Proceedings of the 2008 ACM symposium on Applied computing, pp. 2159–2166.
ACM, New York (2008)

	Engineering a Distributed e-Voting System Architecture: Meeting Critical Requirements
	Introduction
	Overview
	Structure of Paper

	Revote Anywhere (By Procuration): Our Specific Requirements and Architecture Concerns
	VoteAnywhere: A First Innovation
	VoteAnywhere with ReVote
	Procuration, ReVote and VoteAnywhere: A Feature Interaction
	Audits and Recounts

	Distributed/Remote E-Voting Systems: Architecture and Design Issues
	Denial-of-Service
	Coercion and Anonymity
	Other Related Issues

	Denial-of-Service: Our Specific Requirements
	Our Specific Requirements
	Simulation of Estelle Architecture Models
	Final Design: When Do We Need a Network?

	Algebraic Specification
	Specification and Validation of Count Rules
	Verification of Data Transformations (Using Event-B Contexts)

	Refinement for Formal Verification of Design Steps (Using Event-B)
	The Prototype Implementation
	Simulation: Validation of Formal Requirements Model
	Trustworthy Global Clocks: Implementation Choices
	Model Integration

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

