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Abstract. We present a Problem-Based Learning (PBL) approach to
teaching formal methods, using Event-B and the Rodin development
environment. This approach has arisen out of a gradual adoption, over
a period of 3 years, of Rodin as the main teaching tool. Just as the
concept of refinement is fundamental to what we are trying to teach, we
demonstrate that it is also fundamental to the teaching process. Through
analysis of a small number of PBL case-studies we argue that the changes
to our teaching, supported by Rodin, have started to have a positive
impact on our students meeting the specified learning objectives (course
requirements). However, we also argue that much more work needs to
be done in order to improve our teaching of formal methods. Inspired
by the analogy between software design and sculpture, we conclude by
proposing that formality holds the key to mastering the harmony between
the “holes” and the “lumps” in our models.

Sculpture is the art of the hole and the lump.

[Auguste Rodin, 1840 – 1917]

1 Background: teaching Event-B with Rodin

The Event-B Rodin development environment[1] is central to our teaching of
formal methods. The openness of the platform, combined with our research ex-
perience, motivated us to adopt it as early as possible in our teaching. Before
Rodin, we had experience of teaching a variety of formal methods; with more
recent teaching using B[2] and the Atelier-B tools. Another motivating factor is
that our students are all familiar with the Eclipse[3] platform, on which Rodin is
built, and this helps them overcome initial feelings of unfamiliarity which often
arise from using formal methods tools for the first time.

In this paper we focus our discussion on the impact of our adoption of Rodin
within a single optional module called Langages formels et applications. (We note
that the problems have also been used with other student groups and in other
institutions.) Within this module, 21 hours of teaching (direct contact between
lecturer and students) is programmed specifically for teaching Event-B, and the



students are also required to carry out a similar amount of self-study in their
own time. The class is small — typically between 8 and 16 students. All students
have already studied at least 1 year of computer science/software engineering,
including foundational mathematics and programming.

In figure 1, we show how we have gradually adopted Rodin over a period of
three years. In the first year, we prepared lecture slides based on Event-B case
studies and tutorials that were available at the Rodin website. We also incor-
porated case studies inspired by formal methods research in different problem
domains, for example: E-voting systems[4, 5], Distributed reference counting al-
gorithms[6], Tree-structured File Systems[7] and the IEEE 1394 leader election
protocol[8].

Fig. 1. The Gradual Introduction of Rodin for teaching Event-B

We re-wrote previous practical work (moving from B to Event-B in the pro-
cess) so that our models could better demonstrate the facilities provided by
Rodin. We did not expect students to be able to use the Rodin tool: we were
just becoming familiar with it ourselves. However, we did present Event-B mod-
els, refinement sequences, and proofs that had been prepared using Rodin. We
followed a traditional teaching model where fundamental theory was presented
before practical case studies. As a final step towards preparing for our second
year of teaching with Rodin, a single lecture was presented in a more interactive
style. The students were much more responsive to the lecturer “struggling to
bend the tool to their way of thinking about the problems” (as they described
it), rather than the lecturer presenting a solution that had been “baked earlier”.
Consequently, we decided that in the following year we would try to work on all
the case study problems in a more interactive way.

In our second year, we continued to start the module with traditional lec-
tures on foundational theory. However, the second half of the module was used to
let the students interact with the Rodin tools (indirectly through the lecturer).
Rather than the lecturer presenting models and proofs that had already been de-
veloped, the lecturer presented the problems to the students and then attempted
to show the students how they could “test their solutions” by modelling them in



Event-B and analysing them using Rodin. At the end of the second year we ran
a single PBL session with the students. They were given a problem where they
had to design a solution in Event-B. They did not use the Rodin tool during the
design problem; but after they had submitted their designs the lecturer demon-
strated how the Rodin tool could have helped them to produce better (correct)
designs. The students enjoyed the PBL approach — rather than learning some
piece of theory from traditional lectures the students wrestled with a problem
and discovered that they lacked some fundamental understanding that would
help them to solve the problem. This approach is excellent for motivating the
students, when the problems are well suited to the students meeting the learning
objective. However, there is a great risk that the students do not learn simply
from being exposed to the problem. Based on our previous work with PBL, we
decided that the potential rewards of more fully adopting PBL outweighed the
risk.

In the third year we did not start with any traditional lectures. On the
first day the students installed Rodin and started to experiment with the tool.
Initially, they built very simple models following the directions of the lecturer.
However, quite quickly they stopped asking questions of the form “what would
happen if we did this instead” to trying to find out, using Rodin, the answers
themselves. At the end of each class (of duration 3 hours) the students would be
advised to read material that would explain how/why the tool was reacting to
their experimentation. They would also be given (optional) practical work that
forced them to reflect on what they had learned during the session.

As we write this paper, we are half-way through the 3rd year of teaching
Rodin. It is too early to analyse the global impact of our pedagogic changes: B
to Event-B, using Rodin and PBL. In fact, as the three changes are very much
interdependent — and there are many other more noisy parameters to take into
account — it will be difficult to draw specific conclusions as to what causes any
improvement (or deterioration) in our students’ learning.

2 The PBL Teaching Method

Although there are many different definitions of PBL, the common factor in ev-
ery one of them is that the problem acts as the catalyst that initiates the learning
process. It is said that this way of learning encourages a deeper understanding of
the material, rather than surface learning. As the problem is such a critical com-
ponent of the learning process it is imperative that one uses good problems. In
2001, Duch identified five characteristics of what makes a PBL problem good[9]:
(1) Effective problems should engage the students’ interest and motivate them to
probe for deeper understanding. (2) PBL problems should have multiple stages.
(3) Problems should be complex enough that group co-operation will be neces-
sary in order for them to effectively work towards a solution. (4) Problem should
be open-ended. (5) Learning objectives of the course should be incorporated into
the problems.

One of the major stumbling blocks to the implementation of PBL within any
discipline is the lack of a good set of problems[10]. However, the discipline of soft-



ware engineering and formal methods has many well-understood problems that
have arisen out of industrial and research projects. Lecturers must be encouraged
to use these problems (or parts of them) in their teaching. A recent proposal
for weaving formal methods, through a software engineering programme, using
problem-based learning (PBL)[11] provides good background and motivation for
such a teaching approach in a software engineering programme, based on obser-
vations on how students solve problems using foundational software engineering
techniques[12].

We note that the 5th of Duch’s characteristics for a good PBL problem is
defined in terms of learning objectives. Without explicit statement of learning
objectives it is difficult, if not impossible, to evaluate and analyse the effective-
ness of PBL, in general, and specific problems, in particular.

3 Learning Objectives

A main weakness when teaching design is that students fail to understand that
design is a dynamic process and not just a sequence of models. This is particularly
important when teaching formal methods through design problems.

Fig. 2. Design as A Dynamic Process: The Learning Objectives

Figure 2 provides a graphical view of our main learning objectives when
treating design as a process: (1) to be able to build models at different levels of
abstraction, (2) to be able to prove that models at all stages of development are
well defined, (3) to be able to validate that models capture precisely the needs
of the client, (4) to be able to verify that each design step (from abstract to
concrete) is correct, and (5) to be able to manage the process of rolling back a
design decision.

We note that these objectives are generic in the sense that the modelling
language and modelling tools are unspecified. Our secondary learning objectives
are that the students are able to meet the main objectives when modelling with
Event-B, and that they are able to use the Rodin tool for (automated) support.



3.1 Model at different levels of abstraction

Students are expected to already know about nondeterminism. We expect them
to be able to build requirements models that use nondeterminism to facilitate
implementation freedom. Our main objective is for them to be able to remove
such nondeterminism through refinement. Further, they should learn how to
reverse engineer a concrete model to something more abstract.

3.2 Well-defined Models

Students are expected to already know, in general, how theorem provers work.
They are also expected to be able to carry out simple mathematical proofs by
hand. Our learning objective is for them to be able to apply this knowledge when
using the automated theorem proving support provided by Rodin. Our goal is
to provide a problem through which the students learn about well-definedness
and also learn, through experimentation, how Rodin can be used to prove that
Event-B models (and parts of the models) are well-defined.

3.3 Validation — testing understanding of requirements (formally)

Students are expected to already understand that many problems occur in soft-
ware engineering because of poorly understood requirements[13]. They are also
expected to know that most common validation techniques involve testing an
executable system (often a prototype) with the client; and that there are weak-
nesses to this approach. Our goal is to show that formal models offer an approach
to validation that is complementary to executing code. We aim to provide them
with a problem where the students quite naturally test their understanding of
requirements through the formulation of theorems to be proved.

3.4 Correct Design

Students are expected to already have studied design (usually with a modelling
language like the UML1). They must understand the role of design in bridging
the gap between the problem (requirements) and the solution (implementation).
Our goal is that students learn what it means for a design to be correct[14], and
that they can use RODIN to prove three fundamental properties of a machine:
(1) Invariants are respected. (2) Termination (where required). (3) Deadlock
freeness (for interactive systems).

3.5 Design As A Process

A key objective is that students understand that design is a dynamic process,
represented by a tree of decisions and compromises. (We also hope that the

1 It is pleasing to note, for potential future exploitation in our teaching, the research
and development of a Rodin plug-in for integrating Event-B and the UML[1]



students see that this tree representation is an abstraction of what happens
in real software development.) The design documentation should not just be a
record of the sequential final path in this tree that links the problem to the
particular chosen solution: it should be a record of every design decision that
was taken and why (including the decisions that were changed, i.e. rolled back).
Further, the students must learn that there is as much value in the links in the
design tree (which represent the correctness of the design steps) as there is in
the nodes (the models).

4 Problems Presented

In this section we review a subset of the problems that have been presented to the
students in order to meet specific learning objectives. We comment on students’
behaviour whilst interacting with the problems, with particular emphasis on
their use of the Rodin tools.

4.1 Well-defined Models: The Purse Problem

In our search for interesting problems, it was noted that the notion of a wallet
(of money) had proven to be a good pedagogic case study[15]. This inspired us to
consider a purse as the basis for our PBL case study. The following requirements
were presented to the students:

1. A purse contains coins.
2. Coins are positive integers, but not all integers have a corresponding coin.
3. We wish to start with an empty purse, containing no coins.
4. We allow 3 operations: (a) initialise a purse to being empty (containing no

coins), (b) add a coin, and (c) pay a certain (integer) sum by removing an
appropriate number of coins from the purse.

Figure 3 shows a graphical representation of the problem that was presented to
the students to complement the textual requirements.

It is interesting to note how the students tried to model the Purse using
Event-B. Firstly, we witnessed the problem of confusing sets with bags as dis-
cussed by Habrias[15]. Once students realised that the problem required more
than a set of coins (represented as integers) most of them they quickly defined
a Purse to be a total function from coins to integers. (Some students also chose
to specify Purse as a partial function from coins to integers, arguing that if a
coin was not in the domain then there were no coins of that value in the Purse.)
The students struggled to specify a generic Purse, parameterised by any set of
coins. They knew that this type of specification should be possible but had to be
shown how to specify this using an abstract COIN set. It was pleasing to see that
many of the students then specified the notion of an empty purse in a similar,
generic fashion, as shown in figure 4.

Most students then thought about the operation for paying a certain sum
and decided that it was too difficult to specify directly. They were encouraged to



Fig. 3. The Purse pay sum Behaviour

Fig. 4. A generic specification of an empty purse

think about it in an abstract, nondeterministic, fashion. However, most of them
thought that this meant decomposing the payment into component parts. One
of the most common ways of doing this was for students to specify the notions
of “total” and “remove” (two key terms found in the textual requirements). An
example of how a student specified total is shown in figure 5.

Fig. 5. The introduction of a function to calculate the total

At this stage, the lecturer pointed out that the Rodin tool was generating
proof obligations with regard to the well-definedness of their total specifications,
as shown in figure 6.

The students experimented with the Rodin tool in order to see which proofs
were discharged automatically and which required interaction. Although they did
not know how the prover worked (and had received no lectures on the subject)



Fig. 6. The proof obligation generated for the specification of total

they were able to carry out some proofs simply by “randomly” clicking and
instantiating.

By encouraging students to examine different specifications of total it often
arises that students ask how they can test that their specifications “really work”.
In essence, they are asking how they can validate that the meaning of total
corresponds to the requirements. At this stage the lecturer suggests that they
formulate simple use cases. The students are able to express the fact that they
want to test, for example: (1) the total of any empty purse must be 0, and (2)
the total of a purse containing two 1c coins should be 2. It was surprising (to
us) that, in general, students manage to express these as theorems only after
receiving help from the lecturer, as in figure 7. The main problem was due to
us not having yet covered the foundational material explaining fundamental
concepts such as axiom, theorem, proof, completeness, consistency, etc . . .

Fig. 7. Using theorems to validate understanding and specification

In the next example, of the family tree, we expect the students to follow a
similar validation process.

4.2 Validation: The Family Tree Problem

The problem of specifying relations between people in order to identify families
has been used by a large number of lecturers. Our goal is to use the same
example but to force the students to work within a particular view that needs
to be validated: we consider only relations between humans that are alive, and



we wish to enforce that each person can have 0,1 or 2 parents that are still alive.
We present the problem by the tree shown in figure 8.

Fig. 8. Graphical representation of the required Parent behaviour

The students, having learned from their experience of the Purse problem
validate their parent specifications — an example is given in figure 9 — with
simple theorems.

Fig. 9. Formal Specification of Parent Requirements

It was interesting to note that the students went on to specify relations like
brother, cousin, aunt, etc . . . . However, none of them validated (or attempted
to validate) that their family tree did not contain any cycles!

4.3 Correct Design: The Purse Revisited

In the process of specifying the Purse behaviour we noted that the first design
step — of pairing a machine with a context — led to some interesting design
decisions. For example, we saw two different specification styles — see figure 10
— for events that update the state of the purse, by adding and removing coins.
Some students used a style where the state updates of the machine were specified



axiomatically in the context, for example: the add coin event uses an add func-
tion that has been specified in the context Purse ctx0 (see figure 11). Whilst
others used a more operational style (as for event remove).

Fig. 10. Adding and Removing a coin from a Purse

Fig. 11. The add function defined in the Purse context

Without going into details, this approach requires additional work when prov-
ing the correctness of the context, but leads to a simple proof that the invari-
ant is respected by the add coin event (in the machine). Contrastingly, the
remove coin event’s action is specified directly (without an additional “worker”
function from the context). This approach means that the proof that remove coin

respects the invariant cannot re-use any properties of remove that could have
been specified in the context.

4.4 Design As A Process: The OddEven Problem

We present the students with the problem of specifying Odd and Even numbers.
We tell them that these specifications will be required in a later machine, but do
not tell them precisely how. Even for such a simple problem, students typically
produce different specifications. For example, see figures 12, 13 and 14.

We observed that the students, whilst in the process of proving properties
of the subsequent machine, chose to change the way in which they specified Odd

and Even. When asked about this, one of the more interesting replies was: “We



Fig. 12. A first specification of Odd and Even

Fig. 13. A second specification of Odd and Even

have learned the importance of structuring our code to make it easier to test; so
why not restructure our specifications to make them easier to verify?”.

4.5 Refinement and Design: The “Centralised Leader Election”
Problem

The very last problem that we presented to the students had the objective of
testing whether they were able to reason about the correctness of different de-
signs through refinement of an abstract machine. The problem presented to them
was a simplification of leader election:

Given a team of players, there must be a single unique captain. There
is a single event which corresponds to changing the captain. Propose
alternative designs to implementing this simple system. Use the Rodin
toolset to reason about the correctness of the designs.

We have observed four different types of “solution” to the problem: (i) Initial
Machine too concrete and no refinement, (ii) Initial Machine too concrete and a
correct refinement, (iii) Initial Machine at appropriate level of abstraction but
unable to specify design as a refinement, and (iv) Initial Machine at appropriate
level of abstraction and alternative correct designs specified as refinements.



Fig. 14. A third specification of Odd and Even

Approximately half the class started with machines that were too concrete in
the sense that they precluded some reasonable implementations. In all but one
of these cases, the students who started with a concrete design were unable to
refine it. Consequently, they reasoned about the design correctness informally.
None attempted to reverse engineer a more abstract machine.

In a single case, the students started with a team of players where each player
had an integer counting the number of times they had been selected as captain.
They specified the (invariant) requirement that no player could have a count

more than 1 larger than any other player’s count. Then, in the abstract machine
they specified that the change captain event never picked a captain whose count
was already bigger than any other player’s count. They then refined this event by
introducing a captain queue where selecting a new captain popped the current
captain from the front of the queue and pushed this player onto the back of
the queue — so that the sequence in which captains were chosen would follow
a repetitive cycle. This machine is a refinement of the first as it removes the
nondeterminism in the event which chooses the captain (after the first cycle).

The remainder of the class specified the initial abstract machine at an appro-
priate level of abstraction. Two groups chose to specify simple solutions where
the position of captain always alternated between the same 2 team members.
Although this is, perhaps, the simplest design, neither of these groups were able
to demonstrate that this design is correct. They attempted to prove the more
concrete machine to be a refinement of the abstract machine, but failed.

The best solutions offered alternative designs and demonstrated their cor-
rectness. None of these offered a sequence of refinement steps (but this was not
explicitly asked of the students). It was disappointing that only about one third
of the students were able to address the problem in this way.

5 Refining our Teaching: what needs to be changed?

In order to improve our teaching formal methods2 it is important that we learn
from the students[16]. With PBL, in particular, one must take great care when

2 More generally, student feedback is crucial in improving the teaching in any disci-
pline.



using quantitative and qualitative analysis to evaluate the effectiveness of the
problems[17].

Much like software engineers who refine their models for implementation,
formal methods lecturers need to refine their teaching models. When there is a
mismatch between what is required and a proposed solution then there are three
possibilities: (1) the solution is correct with respect to the requirements specifica-
tion yet the specification misrepresents the requirements, or (2) the specification
correctly represents the requirements but the solution is not correct with re-
spect to the specification, or (3) a combination of the two previous possibilities.
In general, when a solution is acceptable it is because the initial requirements
were correctly specified and the implementation was correct with respect to these
requirements. (In theory, it may be possible that the solution meets the require-
ments despite the fact that the specification is incorrect. However, this situation
is not desirable even though the client may be happy in the short term!)

There are several options when a problem is not meeting a specific learning
objective: (1) Replace the problem with something completely different. (2) Fix
the problem by making minor changes. (3) Change the learning objective.

This feedback into our teaching is critical in PBL but it is problematic be-
cause: (1) The frequency of change is usually tied to the academic calendar. (2)
The mapping relation between learning objectives and problems is not (usually)
a bijection, though it should be a total surjection. (3) Analysis of the effectiveness
of problems should be done using more than 1 class of students. (4) Developing
new problems is time-consuming. The simplest way to overcome these issues is
to share and re-use problems between different lecturers and programmes.

Once a problem has been developed that is deemed to be effective, it is
very important that one does not break its effectiveness through making change.
Lecturers would greatly appreciate a formal notion of refinement with respect to
their teaching material. Thus, they could make (verifiable) changes to existing
problems knowing that such changes do not compromise their effectiveness (at
meeting the learning objectives). Of course, this is currently beyond the state-of-
the-art in educational research! However, as teachers we must aspire to achieving
such refinements of our problem designs: it will improve our teaching and reduce
our workload.

6 Holes and Lumps in our Event-B Models

Event-B models can be judged on a number of different criteria: (1) Well-
definedness, which can be checked without knowing the intended purpose of the
model. (2) Fitness for purpose, which can be checked against required behaviour.
(3) Level of abstraction, which reflects whether design decisions are being taken
too early/late in the development process. (4) Maintainability/Reusability, which
represents how much of the modelling work (including the proofs) can be re-used
if requirements change.

Design is not a prescriptive process. Students need to learn that building
good designs (in Event-B) requires experience, good judgement and good for-
tune. Many of the students produce poor designs because their models are too



rich in detail. They miss the importance of keeping things simple. A key insight is
that the best students are quite comfortable with leaving details to later stages
in the development process. These “holes” correspond to abstraction. Subse-
quent refinements may (partially) fill in the holes. The most valuable Event-B
designs are those that bridge the gap between the requirements specifications
that are relatively easy to model, using lots of nondeterminism, and the deter-
minisitic models that are directly implementable, using traditional programming
languages. Our experience shows that students can quite easily produce Event-B
models at these extremes of the abstraction continuum but find it very difficult
to produce the intermediate design steps (that are necessary in establishing cor-
rectness).

A second issue that needs to be addressed is one of composition. Event-B, due
to its refinement mechanism, has proven to be successful in teaching correctness-
by-construction. However, we have fears that it is not so well-suited to reasoning
about composition of systems. In fact, our students often commented on having
difficulties in adding functionality (features) to already developed (and verified)
machines. Further, they observed that they would like to be able to synchro-
nise machines3 through some form of shared events. They also claimed to miss
the high level composition mechanisms that they were used to having in their
favourite OO programming languages.

Design is also about knowing what needs to be added and where. Modelling
and managing these “lumps” is a learning objective that we have yet to try and
meet (when teaching Event-B with Rodin). There has been research in extending
Event-B with richer composition mechanisms, but we are not yet ready to use
them in the classroom.

7 Conclusions

We believe that our PBL case-studies, using Rodin, are improving the way in
which we teach formal methods: (1) Students are happy to experiment with their
models and proofs. (2) Students are more motivated by working on problems —
and often spend much more time than required on self-study. (3) The students
were able to better understand the foundational material presented to them (in
traditional lecture format) as they could relate the theoretical concepts to the
operation of the Rodin tools — with particular interest in how the provers work
when discharging obligations automatically, and how to best carry out proofs
interactively.

However, we need to build a more extensive problem set, and improve our
feedback mechanisms for evaluating and improving problems. A major issue is
the specification of our learning objectives: if we want to share problems then
we need to be able to find common agreement on learning objectives. Such
agreement would be complementary to the development of a formal methods
body of knowledge[19]. Inspired by the analogy between software design and
sculpture, we conclude by proposing that formality holds the key to mastering
the harmony between the “holes” and the “lumps” in our models.

3 This is similar to the integration of CSP and B[18].
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9. Duch, B. In: Writing Problems for Deeper Understanding. Stylus Publishing, Ster-
ling, Virginia (2001) 47–53

10. Tien, C., Chu, S., Lin, Y.: Four phases to construct problem-based learning in-
struction materials. In: PBL In Context: Bridging work and Education, Tampere
University Press (2005) 117–133

11. Gibson, J.P.: Weaving a formal methods education with problem-based learning.
In: 3rd Int. Symposium on Leveraging Applications of Formal Methods, Verification
& Validation. Volume 17., Springer-Verlag, Berlin Heidelberg (2008) 460–472

12. Gibson, J.P., O’Kelly, J.: Software engineering as a model of understanding for
learning and problem solving. In: ICER’05: Proceedings of the 2005 international
workshop on Computing Education Research, ACM (2005) 87–97

13. Gibson, J.P.: Formal requirements engineering: Learning from the students. In:
Australian Software Engineering Conference, IEEE Comp. Soc. (2000) 171–180

14. Gibson, J.P., Lallet, E., Raffy, J.L.: How do I know if my design is correct? In:
Formal Methods in Computer Science Education (FORMED). (March 2008) 59–69

15. Habrias, H.: Teaching specifications, hands on. In: Formal Methods in Computer
Science Education (FORMED). (March 2008) 5–15
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