
Feature Interactions in a Software

Product Line for E-voting

J Paul GIBSON a, Eric LALLET a, Jean-Luc RAFFY a,
a Telecom & Management SudParis (TMSP),

(UMR 5157 INT-CNRS SAMOVAR),
9 rue Charles Fourier,

91011 Évry cedex, FRANCE

Abstract. A significant number of failures in e-voting systems have arisen
because of poorly specified requirements, combined with an ad-hoc

approach to engineering multiple variations of similar machines. We
demonstrate that e-voting is a suitable domain for leveraging state-of-
the-art in software product line (SPL) engineering techniques and tools.

We propose, based on examples of typical requirements, that a feature-
oriented approach to e-voting domain analysis is a good foundation upon
which to carry out commonality and variablity analysis. Simple anal-
ysis of our core and optional features (and their variants) leads us to

believe that feature interactions are a major problem in voting systems.
We conclude that a formal software product line would help to man-
age the composition of features in such a way as to eliminate interac-

tions in the requirements models, before particular e-voting systems are
instantiated.

Keywords. E-voting, Feature Interactions, Software Product Line,

Requirements, Domain Modelling

1. Introduction

The software in e-voting machines has not, in general, been well-engineered[1].
Many governments have chosen to adopt e-voting as a show-case for innovative
technology[2]. It is a poor reflection on the profession of software engineering that
the software in these systems is, in general, neither trusted nor trustworthy[3].
We propose that the software engineering community should look upon this as
an opportunity to demonstrate just how much software engineering methods,
techniques and tools have evolved since the turn of the century[4]; and that the
software industry is now mature enough to develop e-voting machines that are
highly dependent on software and that are highly dependable.

Software Product Lines (SPLs) [5] are attracting attention in the area of
applied software engineering research. The challenge, which this article addresses,
is to demonstrate how and why an e-voting SPL could be built. E-voting systems
correspond in terms of size and complexity to those reported in a number of SPL
case studies [6]. The number of variations across systems[7] is large enough to



merit an SPL approach, but not so large as to be unmanageable. Furthermore,
these systems exhibit a large amount of common functionality and so the potential
for re-use is high. The aspect of e-voting that may be more challenging is that
the software may be considered (safety or mission) critical [8]. However, recent
research suggests that SPLs can be used to develop safety critical systems [9].

Many of the problems that have arisen in the domain of e-voting have arisen
because of poorly specified requirements and standards documents [10]. It has
been proposed that a comprehensive domain analysis be carried out before stan-
dards are re-engineered [1]. The resulting domain models should provide the foun-
dations upon which standards could be built; and they would also play a major
role in the development of an e-voting SPL.

We note that analyses of existing systems — such as the state of Ohios
EVEREST report[11] — have identified verification issues directly related to foun-
dational concepts in software product lines: “parameterized families of compo-
nents” [12], a “family of related programs” [13,14], and “structuring commonality
and variability according to features”[15].

2. Background and Motivation

The work presented in this paper is part of an applied research project in which
the objective is to develop a prototype for an innovative e-voting system for use
in France. A main goal is that the prototype demonstrates that such a system can
be manufactured at reasonable cost, and that it meets the needs of the French
electorate. More importantly, through the development of the prototype, we wish
to establish best practice in the engineering of e-voting systems, with emphasis
on software quality. This paper proposes that such best practice corresponds to
the synthesis and analysis of a generic framework for the development of e-voting
systems that can meet a range of different, yet well-understood, requirements; in
other words, a product line.

Figure 1. The Re-use Knot

In figure 1, we see a graphical representation of our main problem, that of re-
use: we know that requirements modelling is critical in the production of quality
systems, we understand that our system must meet certain standards and we
wish to re-use particular components in order to provide innovative functionality.



In effect, there is a complex knot of lines of re-use that must be managed during
design. In the next section we report on our initial efforts to untangle this re-use
knot through domain modelling.

3. Domain Modelling

Through initial analysis of the standards — both French[16] and European[17] —
we identified that some of the chosen system requirements were not addressed,
some were partially addressed, and some were completely addressed. Also, many
of the standards were not applicable to the chosen system. This can be seen in
the top left of figure 2.

Figure 2. Domain Modelling and Standards

In order to move from generic standards to specific requirements we need
a complex process of choosing the standards that are applicable, instantiating
them to the parameters of our chosen system and then composing them with the
requirements that are specific to our chosen system. This is represented in the
left hand side of figure 2. We understand certain of our requirements well-enough
that we can start to map them to particular re-usable components. This can be
seen in the top right of figure 2.

Our research project has yet to develop a prototype, but we show how such
a machine would fit into our framework (in the bottom right of figure 2). This
framework has helped us to improve on our initial situation: the reuse knot has
been untangled. However, we have identified two key problems that motivate us
to try and improve the framework. Firstly, the mapping between the domain
model and the re-usable components is not clear. Secondly, we know what we
should re-use and what we could re-use but we do not have good understanding of
how to re-use: in other words, selection and instantiation would be well-managed
(perhaps with automated tool support) but composition would be ad-hoc.

3.1. Problems With Terminology

In our first project meeting, project members were using different words to mean
the same thing, and using the same word to mean different things. A main prob-



lem was that the definition and usage of terms was not consistent within and

between standards documents. Furthermore, the European standards were writ-

ten in English, whilst the French regulations were not. In order to address this

issue, we examined whether domain engineering (for software product lines) had

specific approaches to help with the problem of terminology. We identified two

candidates: a generic approach based on ontologies [18], and specific re-use of the

Election Markup Language (EML) of the Organization for the Advancement of

Structured Information Standards[19]. Finally, we chose to formulate our own key

terminology, which is used consistently throughout the remainder of this paper.

The following list is intended as a guide to the reader.

Authentication: legal means by which an elector identifies themselves in order

to be allowed to record their individual vote.

Ballot: legal means by which an elector records their individual vote at an

election.

Candidate: a person (or list of persons) for whom an elector can make a choice

at a specific type of election

Candidate List: a list of candidates making up the option list

Count: process by which individual votes of voters give rise to a global result.

Elector: an individual member of the electorate

Electoral List: the legal means of recording the electorate.

Electorate: the electors entitled to an individual vote at an election.

Election: process by which an electorate collectively make a choice of one or

more options from an option list.

Election Type: categorises the information that an elector is expected to pro-

vide on a ballot in order to record an individual vote.

Individual vote: expression of choice from option list on a ballot.

Option List: the possibilities presented to each elector at an election — most

commonly a candidate list.

Polling Booth: area in polling station where an elector can record their indi-

vidual vote on a ballot (usually in secret).

Polling Station: location where an elector can go to record their individual

vote, perhaps using a particular Polling Booth:

Record an individual vote: when a voter places their individual vote in the

urn.

Result: the collective wish of the electorate as decided by the count of their

individual vote.

Urn: where individual votes are stored before the count; also known as the

ballot box.

Vote: the collection of individual votes from voters.

Voter: an elector who has recorded (or is in the process of recording) their

individual votes, using a ballot.

Voter List: the offical means of recording the voters (a subset of the electoral

list).

Voting System: the means by which the election is implemented.



3.2. Variability in Mandatory Features: the Example of Election Type

The core functionality of any e-voting system must include four mandatory fea-
tures: election set up, recording individual votes, the count and returning a vali-
dated result. (These can be seen in figure 3, when we consider an example of the
requirements of a specific e-voting system).

The main variability between all e-voting systems is the election type[20]:

I. A single option from 2 possible options.
II. A single option from n possible options (setting n to 2 gives type I).
III. A minimum number of options, m, from n possible options, where m ≤ n

(setting m = 1 gives type II).

For type III we may also distinguish by types of ordering (for preferential voting):

i. All options must be ordered.
ii. No ordering exists betwen options.
iii. Options may be (partially) ordered.

The variability over what information can be recorded on a ballot will have
impact over the variability of core functionality. In particular, the election set
up must finalise the option list and specify which of the particular election types
is being used. This will have a consequence on how an elector interacts with
the voting system in order to record their individual vote. The ballot must be
consistent with the option list and election type. The urn must be consistent with
the storage of ballots. The count process must be consistent with the ballots.
Finally, the result of the election must be consistent with the counting of the
ballots.

3.3. Adding Optional Features

In this section we introduce some of the most common optional features of existing
e-voting systems.

Voter Registration: a person can apply to be placed on the electoral list.
Voter Anonymity: the individual vote of a voter is not made public.
Voter Authentication: to be given a ballot, a person is identified as an elector
on the electoral list.
Voter Authorisation: a person with a ballot must be permitted to record their
individual vote.
Voter Verification: a voter can verify that their individual votes was correctly
recorded and counted.
Procuration: an elector may allow another person to record a individual vote
on their behalf.
Obligation to vote: non-voters may be prosecuted.
Re-count: under certain well-defined circumstances, the count process has to
be re-executed.

Adding such optional features to the existing core architecture is a non-trivial
problem and gives rise to the type of interactions that typically occur when com-



posing requirements[21]. In figure 3, we illustrate how a high-level object-oriented
view of the requirements of a particular voting system, including optional fea-
tures, can aid the process of identifying how features can be implemented using
re-usable components, and how these features can be composed in order for a vot-
ing system to meet its requirements. The model in figure 3 is not intended to be
generic; it is an example of how a requirements model for a specific voting system
can be engineered re-using a core architecture, together with feature increments.

Figure 3. Adding Features To Architecture

In the diagram we see that we have introduced elector authentication and
authorisation features. We do not categorise these as core features because a
minority of elections do not have these requirements. In the figure we show the
feature composition for authentication, authorisation and registration as simple
aggregation relationships with a single core feature. In the model we also see
features that are introduced as specialisations of existing features: procuration
and obligation are specialisations of the registration process, whilst we chose to
model recounting as a specialisation of the count feature. Of course, each of these
optional features are open to specialisation themselves.

Two other optional features of interest are voter anonymity and verifiability.
It is not clear, due perhaps to our lack of domain understanding, how such features
could be cleanly plugged into a core architecture. In our model in figure 3 we have
represented these features as being interdependent with the whole voting system.
In the next subsection we show how anonymity is a much more complex feature,
with many variants, than one would initially suspect. We believe that aspects
may hold the key to modelling e-voting features, like anonymity, that cut across
multiple components of the architectural core.

3.4. Variability in Optional Features: the Example of Anonymity

We report on our analysis of the anonymity feature, as it is a good example of
the levels of variability that exist in all the optional features:

1. All individual votes are anonymous and anonymity is enforced (thus the
system is coercion free).



2. All individual votes are transparent (not anonymous) and transparency is
enforced.

3. A mix of anonymity and transparency is permitted.

Within types 2 and 3, we must consider degrees of transparency, for example:

i. Anyone can request and be permitted to see the individual vote of any
elector.

ii. Only specified election officials may request and be permitted to see the
individual vote of any elector.

iii. An elector can choose to permit (or not) some other person. to see their
individual vote.

Within type 3, we must also consider whether the anonymity type of an individual
elector is:

a. A choice open to all electors.
b. A choice open to some electors.
c. Enforced by the status of elector.

Finally, we can classify the fact that an elector has registered an individual vote
(without revealing the individual vote) as information that is:

I. Open to the public.
II. Available to authorised officials.

Let us now consider a specific anonymity requirement — all individual votes
are anonymous (type 1) and whether an elector has voted is public (type I). We
note that these requirements are common to the Irish and French systems of
voting, yet their implementations are different in rather subtle ways. We examine
this in more detail in section 5, when new voting features are introduced.

4. An SPL for e-voting

We have decided that our domain model should not be structured around the
poorly engineered standards documents. We will — where possible — try to
validate our domain model against current standards, but the domain model now
plays a more important new role: as a requirements specification for our software
product line. The goal is to have a direct mapping between components in the
SPL and the features (requirements increments) in the domain model. This is
illustrated in figure 4.

There are obvious advantages with this framework when compared with that
in figure 2. Firstly, verification of the correctness of refinements — a good ex-
ample is the refinement of the voter interface[22] — can be done at the generic
level (facilitating re-use). Secondly, new components and features can be soundly
integrated into the framework through the process of abstraction into the do-
main model. Thirdly, we should be able to formalise different composition mech-
anisms in order to automate the configuration process. In the sections that follow
we continue with our feature oriented approach to modelling commonality and
variability, similar to that outlined in [23].



Figure 4. The E-voting Feature-oriented SPL

5. New Requirements as Features

In our chosen system, we introduce two clear voting innovations (for France) that
the system will be required to support.

Firstly, we wish to allow voters to be able to go to any polling station in order
to record an individual vote: currently they are required to go to a particular
station. We refer to this as a VoteAnywhere feature. This feature is aimed at
addressing the problem of electors who wish to register an individual vote not
doing so because the polling station at which they are registered to vote is not
easily accessible to them whilst the election is open.

Secondly, we wish to allow electors to be able to re-vote so that a previously
recorded individual vote is overwritten by a new individual vote: currently electors
have no way of changing their individual vote whilst the election is open. We refer
to this as a ReVote feature. Such a feature is more important when electors can
vote over a long period of time, as with “early voting” in many American states.
Furthermore, the notion of allowing an elector to re-record an individual vote is
one which often arises when considering remote electronic voting: one could argue
that allowing a ReVote could hinder the buying/selling of votes in this situation.

5.1. Vote Anywhere

The fundamental requirement of VoteAnywhere is that any location (and/or mech-
anism) for recording an individual vote which is usable by one elector must by
usable by all electors. Variants on this feature will include voting at any polling
booth, internet voting, telephone voting, postal voting etc. We note that all such
variants will require rigorous definitions of “usable”, “location” and “mechanism”.
Further, it is likely that any VoteAnywhere feature will incorporate well-defined
exceptions in practice.

Before we analyse the new feature in detail, we should fully understand how
the current system functions in the context in which our chosen system is expected
to be used. Currently in France, each voter is assigned to a unique polling station
where their name is found on an electoral list. In order to vote, their identity is
authenticated and consequently they may be authorised to place a ballot in the
urn. Checking that someone has not already voted involves a simple protocol:



just after a voter is allowed to place a ballot in the urn they are required to sign
next to their name on the voter list. If they have already signed then they are
considered to have already registered their individual vote and will not be allowed
to place the ballot in the urn. In the exceptional case where a voter refuses to
sign, an election official signs on their behalf and a public announcement of this
is made.

The VoteAnywhere feature introduces two potential problems. Firstly, the
system must ensure that each elector records their individual vote using the cor-
rect ballot. In French local elections there are thousands of different candidate
lists and this new requirement cannot be easily fulfilled using traditional paper
ballots. However, an e-voting system offers the possibility of dynamically gener-
ating a specific ballot for each elector. Secondly, the system must ensure that
an elector cannot record multiple individual votes (by going to different polling
stations) and have their individual vote counted multiple times. Currently, this
is managed by a single voter list at each polling station. This implementation
guarantees the fundamental “1-person, 1-vote” requirement by ensuring that an
elector cannot place more than one completed ballot in the urn.

5.2. Re-vote

The fundamental requirement of the ReVote feature is that an elector is permit-
ted to record multiple individual votes, and if they chose to do so then only the
last one is counted. This new feature poses many problems for the current French
voting system: after an elector drops a ballot into the urn then there is no way of
accessing the contents of the urn until the election process is closed. This mech-
anism is used to ensure that no-one can surreptitiously add or remove bulletins.
We note that the urn is transparent. Transparency means that, in order to meet
the additional requirement of secrecy, French voters are required to place their
ballots in envelopes before they place them in the urn.

The current system could support re-voting provided there was a means of
finding the ballot of a particular voter in the urn without disclosing the individual
vote recorded on any of the ballots. We refer to such a ballot as being signed (in
confidence). We note that this requires the elector to trust this signature process
not to compromise the level of anonymity expected.

With trusted and trustworthy signatures, we have two obvious choices of
protocol for meeting the ReVote requirement:

1. Before an elector is permitted to place a ballot in the urn, they are required
to sign it so that it can uniquely identify them as the voter. Then all
previous ballots in the urn that share this signature (there should be only
one) must be destroyed. Finally, the new (signed) ballot must be placed in
the urn.

2. Timestamp the ballots and when the recording of individual votes is ter-
minated one must destroy all ballots except the most recent ballot of every
voter.

Option (1) would not be feasible with traditional systems, except where the num-
ber of electors was small. Option (2) is more feasible but would require a signif-



icant additional resource for filtering re-votes before counting takes place, with
increased possibility of human error. Furthermore, it would add much complexity
to any auditing process.

5.3. ReVote and Anonymity: some design lessons

In the current French voting system, anonymity is achieved by placing ballots into
sealed envelopes before they are placed in a transparent urn. The ReVote feature
is easy to implement by adding another envelope for recording signatures, and
into which the original sealed votes can be placed. Thus, we could put in place a
process that guarantees that finding and destroying (or counting) ballots can be
done without compromising anonymity.

Now, consider the Irish voting system whose design for ensuring anonymity
does not use envelopes but does use an opaque urn. Imagine the situation where
the Irish electorate request a ReVote feature, as it has proven so popular with
their imaginary French neighbours. The temptation could be to directly re-use
the ReVote component that has proven to work so well in the French system —
i.e. just put the Irish bulletins inside signed envelopes. However, more rigorous
analysis would show that this could introduce problems when it comes to the
count process. In order to count a ballot, in this imaginary Irish election, it must
be removed from the single signed envelope. If this is done by a human being then
anonymity is compromised unless we can trust the person concerned not to link
the signature with the individual vote on the bulletin. We acknowledge that there
are ways around this potential interaction, but the example should illustrate the
problems that we face in developing an e-voting SPL for component re-use.

6. SPL: Feature Interactions

An e-voting system has a myriad of layers of inter-related legal requirements
to meet. Further, each voting system has to meet specific needs which are not
directly addressed by the laws and standards. The requirements of the system
must somehow integrate these specific needs with multiple layers of laws and
standards. As changes are made to requirements within different layers, in parallel,
then who is responsible for ensuring that the requirements can be re-integrated
in a coherent manner?

In the following, we have selected examples of interactions that illustrate
the need for more formal modelling and analysis. First we consider the most
challenging requirements integration problem in e-voting: how to ensure both
anonymity and verifiability? Secondly, we analyse potential interactions between
the two innovative features of our chosen system: re-voting anywhere. Finally,
we discuss the interactions that arise when the innovative features of our chosen
system have to integrate with an existing non-core feature common to French
elections: procuration.

In all instances we consider quality of service (QoS) to be a core require-
ment, so that the time required to record an individual vote should never be
“unreasonable”[24]. In practice, as we cannot guarantee the reliability of any non-



local communication network, we currently reject any voting process where an
elector depends on a non-local communication in order to be able to register their
individual vote. This issue is critical in many of the feature interactions that we
have considered.

6.1. Anonymity and Verifiability

This the classic example of requirements that appear to be contradictory — how
can an elector’s ballot be kept secret when we wish the elector to be able to verify
that it has been correctly counted? It would appear that verifiability requires a
voter to be able to follow their ballot through the count process (at the very least)
but how can they do that without signing it, and if they sign it then how can it be
kept anonymous? Recent research in cryptographic e-voting protocols[25,26,27]
suggests that these two requirements can be met, provided we refine the notion
of verifiability and we require the electors to follow specific verification proce-
dures. However, it is clear that there are a number of subtle interactions between
anonymity and verifiability when they integrate with other voting features, which
results in different protocols making different compromises between competing
criteria[28]. Another major problem is that many of these schemes depend on
a reliable non-local network during the time in which an elector records their
individual vote and so the QoS feature is compromised.

6.2. VoteAnywhere and ReVote

Recall that VoteAnywhere (in our chosen system) permits an elector to vote at
any polling station and so the main issue is meeting the core requirement that
an elector can only have a single individual vote counted. If an elector is to be
precluded from re-voting then the only way to implement this is to have a voter
list shared between polling stations. Consequently, this would require a network
with a reliable quality of service.

Recall that a fundamental requirement of ReVote is that only the last indi-
vidual vote recorded on a ballot will be counted. Now, provided that an elector
has to record an individual vote at the same polling station then there should
be no problem in identifying which individual vote was the last recorded when a
ReVote occurs. Some obvious options are:

(a) Use a local clock to stamp each signature and ensure that the clock’s time
advances at a reasonable rate (so that two ballots from the same elector
are guaranteed never to have the same timestamp). This would require a
single clock for each polling station.

(b) Use a local counter to stamp each signature. This would require a counter
for each elector.

(c) Use a “destructive-write” so that a signed bulletin added to the local urn
automatically results in the destruction of any bulletin that shares the same
signature already in the urn. This would require a special type of urn that
facilitates such a “destructive-write”. Further, with paper ballots the core
QoS requirement may be difficult to guarantee as a ReVote would require
searching the urn for a signed ballot.



Integrating VoteAnywhere with ReVote poses problems in all three of the optional

designs above:

(a) If we continue to use local clocks at each polling station then these clocks

would need to be synchronised to ensure that the correct ordering is main-

tained when an elector re-votes at different polling stations. In reality,

polling stations are far enough apart that this would not require the use of

expensive high-precision clocks. As an alternative, we could replace local

clocks with a central global clock. However, local polling stations would

need to be able to communicate with this global clock using some sort of

network. Consequently, this would require a reliable non-local network in

order to meet our core QoS requirement for each elector.

(b) When an elector can VoteAnywhere then counting the number of times

an elector has already voted requires this data to be shared amongst voting

stations. Consequently, this would also require a reliable non-local commu-

nication network.

(c) Using a “destructive-write” would require a shared global urn. Again, this

would require a reliable non-local communication network.

We note that option (a), with local clocks, permits electors to ReVote Anywhere

without requiring a reliable non-local network. This insight arose from analysis

of simulations of different voting architectures for quality of service[24].

6.3. Procuration and ReVote

Procuration is the feature that permits one elector (known as the elector-by-

procuration) to record an individual vote on behalf of another elector. In France,

procuration does not necessarily prohibit an elector from recording an individual

vote. In such a case, the elector can go to a polling station and record an individual

vote, provided that the elector-by-procuration has not already done so. The main

requirement for the Procuration feature is that an elector will be prohibited from

recording an individual vote if this has already been done on their behalf.

There is a clear undesirable interaction between Procuration and ReVote dur-

ing the election process. In the first instance, an elector may be denied the right

to record an individual vote whilst in the second instance an elector must never

be denied the right to record an individual vote. Consequently, to provide the

ReVote feature in French elections it would be necessary to change the existing

regulations with respect to Procuration. Further analysis reveals that Procuration

currently does not allow a second vote the possibility of taking priority over the

first simply because the paper system does not facilitate it. Given an individual

vote recorded by Procuration this could be overwritten by a second individual

vote through using a constrained instance of the ReVote feature. However, this

would mean that the last individual vote would always have priority. This may

not match our intuition of how ReVote and Procuration should work together: do

we really want an individual vote by Procuration to take priority over one already

recorded by the original elector?



6.4. Procuration and VoteAnywhere

Given a reliable non-local communication network then there are no undesirable
interactions between Procuration and VoteAnywhere: an elector will be refused
the right to record an individual vote if the elector-by-procuration has already
done so on their behalf. Similarly, the elector-by-procuration will be refused the
right to record an individual vote if the elector has already done so. The central
voter list used to VoteAnywhere will guarantee that the elector and the elector-
by-procuration cannot record two individual votes “at the same time” at different
polling stations; in the same way that this is currently guaranteed by local voter
lists at each polling station.

6.5. Procuration, ReVote and VoteAnywhere

Using local clocks to implement ReVote Anywhere can lead to timing interactions
when combined with Procuration. Firstly, we now require much more precise
clocks to ensure that the correct vote order is recorded when individual votes are
submitted for the “same elector” (but, possibly two different people!) at different
polling stations: the distance between polling stations is no longer a factor as an
elector can now be considered to be in “two places at once”. Another issue is
that when an elector records an individual vote, for a final time, they have no
guarantee that the individual vote will be counted. No centralised voter list (or
urn) means that they must trust that an elector-by-procuration does not vote
after them at a different polling station.

7. Conclusions and Future Work

The next generation of electronic voting systems should be better engineered
than the current generation. A first step towards this is a more thorough and
precise analysis of the voting domain. Then, procurement offices can leverage
the understanding in such a model in order to better specify their requirements.
Consequently, manufacturers should be encouraged to develop a SPL for e-voting
machines, in order to best manage the obvious commonalities and variations.

In this paper, we have shown that a feature-oriented approach can be applied
to the design of an e-voting SPL architecture. We believe that refinement has a
key role to play in the development and application of such a SPL, particularly in
the re-use of verified feature components. Integrating SPL techniques with formal
methods is a promising approach: refinement for re-use of trustworthy components
has already been addressed with respect to e-voting machine interfaces [22] and
storage [29].

A major problem with e-voting systems is that they need to be trustworthy
and trusted [30]. There are two key properties of SPLs that this paper has not
directly addressed, but which must be examined if e-voting machines developed
using SPLs are to be trusted: late binding and openness. Expecting electors to
trust a voting machine has, until now, required them to trust that they have
been properly verified to do what they are supposed to do. Thus, they trust the



machines indirectly through their trust of the agents who have verified them.
This trust is dependent on the electors knowing that the machines they use to
record their individual vote are precisley the machines that have been verified.
In a SPL, late binding of components opens up the question of whether the
precise system in front of the users has ever been verified. Furthermore, leaving
a variant open to later specialisation begs the question of whether trust can
be compositional: if the delivered system is trusted and the specialised variant
is trusted then can the new system that binds the new variant to a specific
feature be trusted without having to reverify the whole system? Expecting users
to trust the system in this way is unreasonable if we cannot guarantee that our
verification mechanisms are compositional. This returns us to developing an SPL
specific to voting systems that uses composition mechanisms that can guarantee
absence of unwanted feature interactions (before the system is delivered). Current
research — based on the notion of a feature interaction algebra[31] — suggests
that a correct-by-construction approach to guaranteeing the functionality of e-
voting systems[22,29] merits further investigation.

Building an e-voting system has a high risk of failure due to unstable stan-
dards [1] and lack of understanding of the problem domain. Requirements creep
has been a major problem in e-voting systems. A good example is of the require-
ment for a voter verifiable audit trail (VVAT) for increased security[32]. Many
current e-voting machines do not meet this requirement, and were not designed
to do so. However, the election administrators and manufacturers seem to believe
that this additional functionality can be somehow bolted on to already procured
machines without risk. An e-voting SPL should be developed in order to man-
age the risk of evolving requirements: current research on maintaining SPLs [33]
suggests that developing an e-voting SPL that can evolve as standards change
is feasible using current techniques, but that it is a non-trivial problem. This is
current and future research.

References

[1] J. Paul Gibson and Margaret McGaley. Verification and maintenance of e-voting systems

and standards. In Dan Remenyi, editor, 8th European Conference on e-Government, pages
283–289. Academic Publishing International, July 2008.

[2] Jrgen Svensson and Ronald Leenes. E-voting in Europe: Divergent democratic practice.
Information Polity, 8(1):3–15, 2003.

[3] Brian Randell and Peter Y. A. Ryan. Voting technologies and trust. IEEE Security and
Privacy, 4(5):50–56, 2006.

[4] Gilda Pour, Martin L. Griss, and Michael J. Lutz. The push to make software engineering
respectable. IEEE Computer, 33(5):35–43, 2000.

[5] P. Clements and L. Northrop. Software product lines. Addison-Wesley Boston, 2002.
[6] Jan Bosch. Product-line architectures in industry: a case study. In ICSE ’99: Proceedings

of the 21st international conference on Software engineering, pages 544–554, Los Alamitos,

CA, USA, 1999. IEEE Computer Society Press.
[7] Krishna Sampigethaya and Radha Poovendran. A framework and taxonomy for compar-

ison of electronic voting schemes. Computers & Security, 25(2):137–153, 2006.
[8] Margaret McGaley and J. Paul Gibson. E-Voting: A Safety Critical System. Technical

Report NUIM-CS-TR-2003-02, NUI Maynooth, Computer Science Department, 2003.
[9] Jing Liu. Handling safety-related feature interaction in safety-critical product lines. In

ICSE Companion, pages 85–86. IEEE Computer Society, 2007.



[10] Margaret McGaley and J. Paul Gibson. A critical analysis of the Council of Europe rec-
ommendations on e-voting. In EVT’06: Proceedings of the USENIX/Accurate Electronic

Voting Technology Workshop, pages 1–13, Berkeley, CA, USA, 2006. USENIX Association.
[11] Kevin Butler, William Enck, Harri Hursti, Stephen McLaughlin, Patrick Traynor, and

Patrick McDaniel. Systemic Issues in the Hart InterCivic and Premier Voting Systems:

Reflections on Project EVEREST. In EVT’08: Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop, Berkeley, CA, USA, July 2008. USENIX Asso-
ciation.

[12] D. McIlroy. Mass-produced software components. In Proceedings of the 1st International

Conference on Software Engineering, Garmisch Pattenkirchen, Germany, pages 88–98,
1968.

[13] Edsger W. Dijkstra. Structured programming, chapter Notes on structured programming,

pages 1–82. Academic Press Ltd., London, UK, 1972.
[14] David Lorge Parnas. On the design and development of program families. IEEE Trans.

Software Eng., 2(1):1–9, 1976.
[15] K.C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented

domain analysis (FODA) feasibility study. Technical Report CMU-SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, 1990.

[16] Ministère de L’Intérieur. Règlement technique fixant les conditions d’agrément des ma-
chines à voter. NOR : INTX0306924A, November 2003.

[17] Council of Europe. Recommendation on legal, operational and technical standards for
e-voting. Rec(2004)11, September 2004. Adopted by the Committee of Ministers on 30
September 2004 at the 898th meeting of the Ministers’ Deputies.

[18] Ricardo de Almeida Falbo, Giancarlo Guizzardi, and Katia Cristina Duarte. An ontological
approach to domain engineering. In SEKE ’02: Proceedings of the 14th international
conference on Software engineering and knowledge engineering, pages 351–358, New York,
NY, USA, 2002. ACM.

[19] Government Technology. E-Vote: Election Markup Language 5.0 Approved as OASIS
Standard, January 2009.

[20] Jonathan Levin and Barry Nalebuff. An introduction to vote-counting schemes. Journal

of Economic Perspectives, 9(1):3–26, Winter 1995.
[21] J. Paul Gibson. Feature requirements models: Understanding interactions. In Petre Dini,

Raouf Boutaba, and Luigi Logrippo, editors, Feature Interactions in Telecommunications
Networks IV, (FIW 1997), pages 46–60. IOS Press, June 1997.

[22] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Refinement: A constructive
approach to formal software design for a secure e-voting interface. Electr. Notes Theor.
Comput. Sci., 183:39–55, 2007.

[23] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of variability in software
product lines. In WICSA, pages 45–54. IEEE Computer Society, 2001.

[24] J. Paul Gibson, Eric Lallet, and Jean-Luc Raffy. Analysis of a distributed e-voting system
architecture against quality of service requirements. In Herwig Mannaert, Tadashi Ohta,

Cosmin Dini, and Robert Pellerin, editors, The Third International Conference on Soft-
ware Engineering Advances (ICSEA 2008), pages 58–64, Sliema, Malta, October 2008.
IEEE Computer Society.

[25] Ronald L. Rivest and Warren D. Smith. Three voting protocols: ThreeBallot, VAV, and

Twin. In EVT’07: Proceedings of the USENIX/Accurate Electronic Voting Technology
Workshop, Berkeley, CA, USA, August 2007. USENIX Association.

[26] André Zúquete and Filipe Almeida. Verifiable anonymous vote submission. In SAC ’08:
Proceedings of the 2008 ACM symposium on Applied computing, pages 2159–2166, New

York, NY, USA, 2008. ACM.
[27] Zhe Xia, Steve A. Schneider, James Heather, and Jacques Traoré. Analysis, improvement,

and simplification of prêt à voter with paillier encryption. In EVT’08: Proceedings of

the USENIX/Accurate Electronic Voting Technology Workshop, Berkeley, CA, USA, July
2008. USENIX Association.

[28] Yu-Yi Chen, Jinn ke Jan, and Chin-Ling Chen. The design of a secure anonymous internet
voting system. Computers & Security, 23(4):330–337, 2004.



[29] Dominique Cansell, J. Paul Gibson, and Dominique Méry. Formal verification of tamper-
evident storage for e-voting. In Mike Hinchey and Tiziana Margaria, editors, Fifth IEEE

International Conference on Software Engineering and Formal Methods (SEFM 2007),
pages 329–338, London, England, UK, 2007. IEEE Computer Society.

[30] J. Paul Gibson. E-voting and the need for rigorous software engineering — the past,

present and future. In Jacques Julliand and Olga Kouchnarenko, editors, B 2007: Formal
Specification and Development in B, 7th International Conference of B Users, volume
4355 of Lecture Notes in Computer Science, page 1, Besançon, France, 2007. Springer.

[31] J. Paul Gibson. Towards a feature interaction algebra. In Kristofer Kimbler and Wiet

Bouma, editors, FIW, pages 217–231. IOS Press, 1998.
[32] Jonathan Bannet, David W. Price, Algis Rudys, Justin Singer, and Dan S. Wallach. Hack-

a-vote: Security issues with electronic voting systems. IEEE Security & Privacy, 2(1):32–

37, 2004.
[33] Klaus Schmid and Holger Eichelberger. A requirements-based taxonomy of software prod-

uct line evolution. Electronic Communications of the EASST, 8:2–13, 2008. Software
Evolution 2007.


