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Abstract

In this paper we propose that formal modelling tech-
niques are necessary in establishing the trustworthiness of
e-voting systems and the software within. We illustrate how
a distributed e-voting system architecture can be analysed
against quality of service requirements, through simulation
of formal models. A concrete example of a novel e-voting
system prototype (for use in French elections) is used to jus-
tify the utility of our approach. The quality of service that
we consider is the total time it takes for a voter to record
their vote (including waiting time). The innovative aspects
of the e-voting system that required further research were
new requirements for voting anywhere and re-voting; and
the potential for undesirable interactions between them.

1. Background and Motivation

1.1 The E-voting Problem

Computer technology has the potential to modernise the
voting process and to improve upon existing systems; but
it introduces concerns with respect to secrecy, accuracy,
trust and security [15]. Despite ever-increasing uncertainty
over the trustworthiness of these systems many countries
have recently chosen to adopt e-voting, and this has led
to their analysis from a number of different viewpoints:
usability [17], trustworthiness [22], transparency [24] and
risks [27].

Many of the problems in the domain of e-voting have
arisen because of poorly specified requirements and stan-
dards documents, and the inability to carry out meaningful
verification [23]. This is not a good reflection of best prac-
tice in the engineering of software. We propose that the use
of formal methods [5], following a model-driven develop-
ment process[29], is a good reflection of best practice in the
development of critical software. In this paper we analyse
the utility of such an approach in the critical step between
requirements and design, where we analyse whether alter-
native architectures, for an e-voting system, are able to sup-
port a critical quality of service.

1.2 Formal Modelling

Formal methods are a tool for achieving correct soft-
ware: that is, software that can be proven to fulfil its re-
quirements. Building a formal model improves understand-
ing. The modelling of nondeterminism, and its subsequent
removal in formal steps, allows design and implementation
decisions to be made when most suitable [8].

There are three important aspects to the use of formal
methods for requirements and design modelling: Firtly, the
method must be compositional so that incremental develop-
ment is supported. A formal object oriented approach illus-
trates the advantages of an incremental modelling process
when using simulation for validation and verification [10].
Secondly, the method must offer a means of specifying
operational requirements for animation during validation,
where it is important to be able to control execution of a
subset of system behaviour whilst a simulator controls the
other parts in a manner which corresponds to how the sys-
tem behaves, or should behave, in the real world [12]. Fi-
nally, the method must offer a means of specifying logical
requirements: both safety properties which state that bad
things can never happen and liveness properties which state
that something good will eventually happen [14].

Given the different roles played by the requirements and
design models, we believe that there is a need for a num-
ber of different modelling languages when verifying de-
signs against different types of requirements. Of course,
this poses the problem of how to ensure that the different
models are consistent and how to integrate them into a co-
herent whole [11]. This is beyond the scope of this paper,
where we focus on the animation and simulation aspects of
formal modelling and the verification of quality of service,
where only a single modelling language is required.

1.3 Meeting New Requirements: Practi-
cal Demonstration

The work presented in this paper is part of an applied
research project — “Sécurité et Audit du Vote Electron-
ique” (SAVE) — funded by the French Agence National



de la Recherche (ANR), in which the objective is to de-
velop a prototype for an innovative e-voting system for use
in France. In our chosen system, we have two clear voting
innovations (for France) that the system will be required to
support. Firstly, we wish to allow voters to be able to go
to any polling station in order to vote; currently they are
required to go to a particular station. We refer to this as
a VoteAnywhere feature. Secondly, we wish to allow vot-
ers to be able to re-vote so that a previously recorded vote
is overwritten by a new vote; currently voters have no way
of changing their vote in such a way. We refer to this as
a ReVote feature. We examine these new requirements in
more detail in section 3. In particular, in section 3.4, we
examine the quality of service that a voter expects from a
voting system in order for them to be able to record a vote
in a reasonable amount of time.

Our main research contribution is to demonstrate that
it is possible to formalise the functional requirements
(VoteAnywhere and ReVote) and to analyse, through sim-
ulation of formal models, the quality of service offered by
different architectures for distributed e-voting systems (that
meet these functional requirements).

2. Quality of service analysis: simulation with
Estelle

For simulation and analysis of quality of service require-
ments we have chosen to use Estelle [7], a Formal Descrip-
tion Technique standardised by ISO [18]. Although this
technique is not as popular as other better known formal
methods, it is well suited to the analysis task outlined in this
article. Its main application field is the formal specification
of distributed systems using communication protocols, and
it permits a clear split between the definition of the global
architecture of the system and the internal behaviour of its
components.

An Estelle specification describes a collection of hier-
achical communicating components. A component is an in-
stance of a generic module definition composed of a single
header definition and one or more associated body defini-
tions. These instances may be statically or dynamically cre-
ated.

The header definition describes the external communica-
tion part of the module and specifies a synchronous parallel
or a non-deterministic serial execution. The communication
interface of a module is defined by ports called interaction
points, each of which refers to a channel which refines two
sets of interactions (messages sent and received). Nested
modules can also communicate by sharing exported vari-
ables.

The body definition describes the behaviour of the com-
ponent. It uses the extended finite state machine (EFSM)
paradigm. It is composed of three parts: a declaration part,

an initialisation part and a transition part where the EFSM
is described.

An Estelle development can be divided into four main
phases: specification, static analysis, simulation and imple-
mentation(see figure 1). In this paper we focus on analysis
resulting from the simulation phase.

Figure 1. Phases of an Estelle Development

3. Our E-voting System Requirements

In this section we give an informal description of our in-
novative e-voting system requirements. Analysis of differ-
ent possible architectures (modelled using Estelle) for meet-
ing these requirements will be reviewed in section 4.

3.1 Vote Anywhere

Currently in France, each voter is assigned to a unique
polling station where their name is found on an electoral
list. In order to vote, their identity is authenticated and con-
sequently they may be authorised to place a ballot in the
urn (provided that they have not already done so). Check-
ing that someone has not already voted involves a simple
protocol: just after a voter is allowed to place a ballot in the
urn they are required to sign next to their name on the voter
list. If they have already signed then they are considered
to have already registered their suffrage and will not be al-
lowed to place the ballot in the urn. In the exceptional case



where a voter refuses to sign, an election official signs on
their behalf and a public announcement of this is made.

Our new requirement is that a voter should not be obliged
to go to a particular polling station in order to vote; they
should be able to go to any authorised voting station. There
are two main issues that need to be addressed when meeting
this requirement. Firstly, how do we know that the voter has
not already voted (at a different polling station)? Secondly,
how do we generate the correct ballot (list of vote options)
where this depends on the constituency in which the voter is
registered to vote and independent of the station where they
went to vote?

3.2 Re-vote

The notion of allowing a voter to change their mind and
to re-cast a suffrage is one which often arises when consid-
ering remote electronic voting. One could argue that allow-
ing re-votes could hinder vote coercion [20] in this situation.

This new required functionality would pose many prob-
lems for the traditional French voting system: after an elec-
tor drops a ballot into the urn then there is no way of access-
ing the contents of the urn until the voting process is closed.
This mechanism is used to ensure that no-one can surrepti-
tiously add or remove votes. We note that the urn is trans-
parent (which assists verification of the fact that no votes
are recorded before voting is open). Transparency means
that, in order to meet the additional requirement of secrecy,
French voters are required to place their ballots in envelopes
before they place them in the urn.

The current system could support re-voting provided
there was a means of finding the ballot of a particular voter
in the urn without disclosing the suffrage recorded on any
of the ballots. We refer to such a ballot as being signed.
Then we have two obvious choices of protocol for meeting
the requirement:

(1) When an elector wishes to place a ballot in
the urn, they are required to sign it. Then remove
all previous ballots in the urn that share this sig-
nature (there should be only one). Finally, place
the new ballot in the urn. We note that if voter
anonymity is required then the signature must be
done in such a way that one can find the vote of a
particular voter without disclosing the choice that
they have actually recorded.

(2) Timestamp the ballots and when the recording
of suffrages is terminated then remove all except
the most recent ballot of every voter. The notion
of timestamp is left as abstract, for the moment.
It is to facilitate the ordering of ballots of a single
elector based on the time they were deposited in
the urn.

3.3 Re-vote Anywhere

We must consider the interdependency between the
VoteAnywhere and Revote requirements, as both features
must be offered in our chosen system. The main issues
are whether being able to vote multiple times at different
polling stations is functionally possible and, if so, can we
continue to offer an acceptable quality of service to the vot-
ers?

The interdependency, in this case, is not bad in the clas-
sic sense of a requirements feature interaction[9]: analysis
will show that the Revote feature can help in the process
of designing a solution to the VoteAnywhere non-functional
requirement that a denial of service attack on the network
cannot compromise the voting system in meeting a mini-
mum quality of service.

3.4 Quality of Service Requirements

The media has recently reported quality of service is-
sues with many voting systems (both traditional and elec-
tronic) around the world. In France, for example, a signifi-
cant number of voters were required to queue for more than
an hour in order to have access to newly introduced elec-
tronic voting machines; and as a consequence some voters
left without recording a vote. The main problem was due
to a number of traditional voting booths being replaced by
a single voting machine. However, it appears that no-one
thought to analyse whether the new electronic system of-
fered the same quality of service as the traditional system.

The most significant threat to being able to meet qual-
ity of service requirements is a complete denial of service,
where users of the system are unable to execute core func-
tionality. In the case of e-voting machines, such a denial of
service would prohibit anyone from recording a vote. When
an e-voting system relies on components that are accessed
across a network then a significant denial of service threat
would arise if the network was not reliable (or if it was not
resistant to attacks). This is a well documented concern for
remote voting, including internet voting [19]. However, it
is also a concern in our chosen system where the network is
a key component.

The main advantage of our approach — reported in this
paper — is the ability to reason about e-voting quality of
service (including denial of service) early in the develop-
ment process. Analysis of such issues should be done as
soon as possible — which means verifying that any pro-
posed high-level design (architecture) is able to meet the
quality of service requirements. Making a choice between
alternative architectures should not be done without having
first completed a verification of such requirements. This is
the work that is reported in section 4.



4 Formal Modelling of Alternative Architec-
tural Solutions

4.1 Quality of Service Analysis Using Es-
telle

In order to reason about quality of service properties in
Estelle we are obliged to simulate behaviour of our pro-
posed architectures in different environments. The standard
approach is to identify key environmental parameters and
to analyse the system’s performance as these parameters
change. In our case, we have two key dynamic parame-
ters: the distribution over time of voters attempting to vote
and the distribution over time of network inoperability.

For voter distributions we had access to a large bank of
data from which we were able to generate a typical distri-
bution curve (see the top graph in figure 2). For network
operation, we had no data from which we could generate
typical distribution curves of network downtime for vot-
ing systems. Consequently, we were obliged to use more
generic information from our network providers about the
types of distribution curves that their networks would of-
fer under normal conditions (not associated with e-voting).
Then, in order to stress test the system, we chose to align
peak voting times with the peak network downtimes.

Figure 2. Key Simulation Distributions

The key role of the simulation is to show that certain ar-
chitectures will not be able to meet the quality of service
requirements. The architectures that are verified to meet the
requirements (through simulation) can progress for further
development, but need to be more thoroughly analysed dur-
ing later development steps.

In the simulation, we modelled other important static pa-
rameters whose values, mostly based on observation of real
polling stations, remain constant during execution:

• Time for the elector to identify themselves: chosen
randomly from a normal distribution of between 10
and 20 seconds.

• Time for the elector to select their option(s): cho-
sen randomly from a normal distribution of between
20 seconds and 2 minutes.

• Time for the elector to enter an empty voting booth:
chosen randomly from a normal distribution of be-
tween 10 seconds and 30 seconds.

• Transmission delay on network: 0 seconds, as we
consider that this delay time is insignificant when the
network is operational.

• Number of polling stations: 2, in order to simulate
electors going to vote at a station which is not in the
constituency where their vote will be counted.

• Number of polling booths per station: 3, which cor-
responds to a typical situation.

• Number of electors per polling station: 1000, which
corresponds to the French legal requirement.

• Percentage of abstentions: 33, which corresponds to
a typical French election.

• Percentage of non-local votes (VoteAnyWhere): 20,
chosen intuitively to be a realistic worse case scenario.

• Percentage of Revotes: 5, chosen intuitively to be a
realistic scenario.

The simulation had to model the location of the key data
within the architecture, so that inoperation of the network
would result in communication delays and have a possi-
bly negative impact on the quality of service. All simula-
tions meet the VoteAnywhere requirement and they all used
the same key parameter distributions and values (except the
fourth in which the network is considered to be totally reli-
able and so the inoperation time is set to the constant value
0.)

The first simulation (see figure 3) is used to demonstrate
that voting anywhere can lead to quality of service problems
if the re-vote option is not offered. We give further details
in section 4.2.

The second and third simulations (see figures 4 and 5,
respectively) combine voting anywhere with revoting: the
difference between them being that in the second case the
candidate lists for all other polling stations are stored cen-
trally (across the network) whilst in the third case the can-
didate lists for all polling stations are stored as local copies.
We give further details in sections 4.3 and 4.4.

The fourth and final simulation (not illustrated) is used
as a baseline for performance analysis — the network is



modelled as being completely reliable. It is unreasonable to
expect the network component to be perfect but this simula-
tion demonstrates that we can approach the performance of
such an ideal system. We give further details in section 4.5.

4.2 Simulation 1: Unreliable Network
with no ReVote, and networked electoral
lists and candidate lists

The key aspect of this architecture (in figure 3) is that
re-voting is not permitted and consequently we introduce
a centralised voter list, accessed across the network, which
records whether an elector has already voted in order to stop
them from voting multiple times. The local urn is used to
store the votes before they are transmitted across the net-
work for counting at a global urn. The local electoral list
(and vote options) are optimisations which allow authen-
tifcation of voters who go to their local polling station (and
generation of their ballot) to be done without having to ac-
cess information across the network.

Figure 3. Simulation 1

The formal Estelle specification is available on request.
We note the following properties that can be deduced
from the diagram: each polling station is composed from
five components, there are multiple polling booths in each
polling station (connected to a single router), there are mul-
tiple polling stations connected to a single network, there
are multiple electoral lists connected to a single network,
and there are multiple vote options connected to a single
network.

4.3 Simulation 2: Unreliable Network
with Revote, and local and networked
candidate lists

The key aspect of this architecture is that there is no need
for a networked voter list because re-voting is permitted. As
electors can vote multiple times, we introduce a timestamp

in each polling booth so that only the most recent votes are
counted when the votes are transferred to the global urn.

Figure 4. Simulation2

4.4 Simulation 3: Unreliable Network
with Revote, no voter list and all can-
didate lists local

The key aspect of this architecture is that the candidate
lists for all constituencies are stored locally and are not net-
worked. Thus, only the global urn is on the network and so
no voter is dependent on the network in order to vote. The
network is now used only to transfer votes from the polling
station to the global urn in order to be counted (at the ap-
propriate constituency).

Figure 5. Simulation3

4.5 Reliable Network: revote where all
architectures have equivalent perfor-
mance

As we have chosen to model no transmission delays in a
reliable network, there is no difference between access to a



database that is stored locally at a polling booth, or stored
at a central location remote from a polling booth. Thus,
we get the same quality of service results for each of our
three architectural choices when the network is never in-
operable. This simulation was executed by flattening the
network downtime distribution curve to zero at all times.

5. Quality of Service Simulation Analysis

In figure 6 we see the graph of the voter waiting time
distributions for each of our four simulations.

Figure 6. Simulation Waiting Time Graph

In simulation 4, with no network breakdowns, we see
that all voters get to vote within a reasonable time (less than
10 minutes). This is considered to be an acceptable quality
of service. In simulation 1, where revoting is not permitted,
we see that less than half the voters get to vote within this
reasonable time. This is not considered an acceptable qual-
ity of service. In simulation 2, where revoting is allowed
we see that a small but significant number of voters have to
wait much longer than 10 minutes. This is not acceptable
because there is a large risk that a number of these voters
will leave the voting station before recording a vote. In sim-
ulation 3, where the network is used only in the transfer of
votes, we approach the quality of service of simulation 1.

In the table in figure 7 we summarise the key statistics
for each of the simulations involving an unreliable network.
We conclude that architectures 1 and 2 should be rejected
as inappropriate for further development.

6. Related Work

In Verification and Validation Issues in Electronic Voting
[4], definitions for verifiability and validity, in the context of

Waiting Time Simulation 1 Simulation 2 Simulation 3
Minimum 23s 44s 45s
Maximum 71m45s 44m50s 8m11s

Mean 16m16s 3m3s 2m19s
Median 9m26s 2m15s 2m9s

Figure 7. Simulation Waiting Times

e-voting, are proposed. Most research on e-voting and ver-
ification using formal modelling has focussed on particular
voting protocols and the means of individual voters veri-
fying that a count was carried out without any malicious
manipulation of the votes[21].

Research on verification of the software in e-voting sys-
tems has, until quite recently, focussed on security proto-
cols. For example, in the paper by Groth [16] we see that
voting protocols are considered secure if they satisfy re-
quirements such as privacy, accuracy, robustness, etc. De-
laune et al. [6] formalise a subset of e-voting requirements
and verify whether the particular e-voting protocols meet
the requirements. They do not address quality of service.

There has been little published research on the use of
formal methods for verification of other components in the
voting system. Poppleton presents a formal specification
(in the Z language) for a simplified version of an algorithm
for counting using STV[28]. Research by Carew et al. [3]
presents an empirical study which compares the compre-
hensibility of two e-voting requirements specifications: a
formal specification and an informal specification. Cansell
et al. [1, 2] recommend application of formal methods
for guaranteeing tamper-evident storage of votes and secure
voting machine interface development.

Mercuri [25] examines the problems of verifying against
codes of laws. However, the use of formal methods for ver-
ification is not discussed in any detail. More recently, the
problems associated with the verification of COTS software
components in e-voting machines is discussed by Mercuri
[26]. However, emphasis is placed on testing for verifica-
tion rather than on the possibility of using formal methods.

7. Conclusions and Future Work

A major problem with e-voting systems is that they need
to be both trustworthy and trusted [13]. At each step in
the development process, there is a risk that bugs will be
introduced into the system. The move from requirements
specification to a high-level design is difficult to get right
and formal verification techniques should be used wherever
possible. Without formal techniques the systems being de-
veloped are less trustworthy and open to criticism.

We have shown that quality of service requirements can
be analysed through simulation of high-level architectural



models. This approach would certainly complement the for-
mal verification of logical properties using model checkers
and/or theorem provers.

Through our simulations, we have helped guide design
decisions made by the e-voting system developers. By
demonstrating, early in the design process, the inappropri-
atness of certain architectures (with respect to their inability
to meet quality of service requirements when the underlying
network is not perfect) we have significantly aided the de-
sign process. Furthermore, by providing formal models we
are more confident that the final system will meet the inno-
vative functional requirements of VoteAnywhere and Revote.
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