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Abstract

Teaching software engineering students about design is very challenging. In gen-
eral, students will learn about design through a module teaching a graphical mod-
elling language. Our experience shows that this can result in students learning how
to represent and comprehend designs but having very little understanding of design
as a process. When reviewing design artefacts, students often ask whether the de-
signs are good. This leads to the realisation that there is lack of understanding of the
fundamental question of whether a design can be said to be correct. Of course, the
notion of correctness will generally be covered by another module, typically called
“formal methods”. Unfortunately, our experience also shows that formal methods
courses can lead to students learning how to build formal models — much like they
would build programs — without achieving a good understanding of nondeterminism
and abstraction; and without seeing how formal methods can help in the process
of design. In this paper, we argue that the teaching of software design needs to
be better integrated with the teaching of formal methods. We give some concrete
examples of how this can be done.
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1 Introduction

One of the least well understood aspects of software development is the role of
design in bridging the gap between what (requirements) and how (implemen-
tation). Inexperienced software designers fail to treat design as a process, and
as a consequence become experts in representing the (static) artefacts using
models/languages but fail to master the evolution of design.
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During the transition from procedural to object-oriented programming lan-
guages, there was a realisation that the boundary between design and imple-
mentation was becoming even more blurred. In a controversial article in the
C+-+ Journal, Reeves|18], stated: “...about ten years ago I came to the con-
clusion that, as an industry, we do not understand what a software design
really is. T am even more convinced of this today.” Reeves goes on to argue
that considering the source code as being the design overcomes one of the
fundamental issues associated with software design: how can we be sure that
it will work correctly?

“...when real engineers get through with a design, no matter how complex,
they are pretty sure it will work. They are also pretty sure it can be built
using accepted construction techniques. In order for this to happen, hard-
ware engineers spend a considerable amount of time validating and refining
their designs.”

These ideas have much more resonance when we consider recent growth in
agile development|14].

In fact, the notion that the design is not finished until it has been coded
and tested is not, as it would seem at first sight, at odds to a formal approach
to software design. In a formal approach, designs are coded (using formal spec-
ification languages) and they are tested and refined. Unfortunately, teaching
formal methods to software engineers is no guarantee that they will use them
during design! Ken Robinson|20| identifies a clear problem with the teaching
of formal methods: “It is frequently the case that the other courses make no
reference to, or use of, the formal techniques studied in the Formal Methods
course.”

In this paper we argue that it is the responsibility of the teachers of formal
methods to incorporate aspects of all other software engineering courses in
their teaching (not just design). However, the focus of work in this paper is
in the integration of formal methods and design, with specific examples given
using UML[7]*.

2 UML approach: the strengths and weaknesses

The main strength of UML is that it is the standard OO modelling language;
with comprehensive tool support and plentiful educational resources. How-
ever, it has been openly criticised by a number of high-profile software en-
gineers. For example, we need look no further than Bertrand Meyer for a
satirical article that identifies the main weaknesses of UML[16]. In the same
spirit one should read the entertaining yet insightful article by Alex Bell|6|
which shows the dangers in expecting the adoption of UML to automatically
improve your software development process. The UML has been extended with

4 In our teaching, we use B[1] for formalising aspects of design. In this paper we do not give
B models, but make reference to the B-method, refinement and correctness by construction.
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a more formal notation in the guise of the OCL. Expressions written in OCL
offer a number of benefits: most importantly, they should make the graphical
model more precise and more detailed[19]. However, the shortcomings of OCL
have been well documented for a number of years|22].

We are not the first to identify the risks of replacing a general software
design course with a course on UML. Engels et al. make the point quite
simply|[11]: “The incorporation of UML in a curriculum can and should not
happen by adding a separate UML course. UML is nothing but a means to
reach an end (the end in this case being the expression of software models).”
We note that, in the above quotation, one can replace all instances of the
string “UML” with the string “formal methods” and the resulting sentence is
another which we believe to be true!

3 B approach: the strengths and weaknesses

B is a method [1] for specifying, designing and coding software systems. The
concept of refinement [5] is the key notion for developing B models of (software)
systems in an incremental way. B models are accompanied by mathematical
proofs that justify them. We start from an abstract model and each subsequent
model is a refinement of the previous one. Proofs of properties of B models
help to convince the user (designer or specifier) that the (software) system
is correct, since they demonstrate that the behaviour of the last, and most
concrete, system (software) respects the behaviour of the first, most abstract
model (which we assume has already been validated).

The main advantage of B is that it focuses attention on the core role of
design: moving from abstract to concrete, through a process of refinement that
guarantees the correctness of design decisions. The B method has evolved into
Event-B, with an associated methodology and industrial strength tools|2], all
of which have already been used for teaching formal software engineering|3|.

A weakness of teaching B is that students find it difficult to model the
system and its components abstractly. The B approach requires students
to think in terms of what is required and to start by building abstractions
of these high-level requirements. It also needs them to refine their abstract
specifications into concrete implementations. Students can manage to do this
for simple case studies but fail to appreciate how this can scale up to larger
design decisions. They also fail to see how formal proof could be useful to
them in their day-to-day design work. There is a mental block between the
type of designs they see when using UML and the type of designs they see
when working with B. They like the way UML facilitates their visualisation
of structural properties. In short, they feel more confortable and confident
working with pictures than working with mathematical formalism.

3



GIBSON, LALLET, RAFFY

4 Formal Design: integrated teaching

There are many potential benefits to integrating UML with formal methods;
the idea is not new[12]| but continues to be a challenging topic of research, for
example: [8,23,17]. From an educational viewpoint, this research is mature
enough to transfer back to our teaching. However, the question of how this
integration should be done is one that requires further research. We have
experimented with four types of integration:

» (Case-study-driven - continue to teach UML and formal methods as separate
modules but glue them together through common case studies;

o Formalising UML - Extend the UML module with material focussing on the
OCL and the integration of formal languages;

* UMLing your formal method - Extend your formal methods module to show
how the models can be specified in an object oriented fashion;

e Teach Formal (OO) Design - focus on design as a process and use a range
of notations to illustrate design activities.

It is beyond the scope of this paper to analyse these options. However, in
the next sections, we give an example of the type of design problem that can
be used in any of these teaching approaches.

5 An Educational Example: Queues From Stacks

A typical software engineering problem is to transform a high-level design so
that it can be directly implemented on a particular architecture. One aspect
of doing this is that one aims to re-use components that already exist in the
chosen target architecture.

During teaching of a data structures and algorithms course, students are
introduced to the abstract concepts of a queue and a stack. These two exam-
ples provide a good opportunity to introduce formal methods. We have used
the following problem with 2nd year students (as a Java programming exer-
cise), MSc students (as an OO design exercise), and with fourth-year students
(as a formal verification exercise). In this paper, the emphasis is on the design
process, whilst the actual modelling languages used by the students (UML,
B and Java) illustrate the need to reason about correctness as formally as
possible.

5.1 How can we implement a Queue using Stacks?

We specify the requirements as a Queue of integers® and state that the stu-
dents must implement the FIFO behaviour using only two integer Stacks

5 Note that this problem takes on a different nature if we allow the modelling of parametric
classes of behaviour.
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(LIFO behaviour) to store the queue contents. As a design exercise, students
typically adopt 1 of 2 options:

e Designl: The queue is specified as having two stack components — which we
will name as a pushstack and a popstack. When a push request is made of
the queue then this element is pushed directly onto the pushstack.When a
pop request is made of the queue then move all elements from the pushstack
on to the popstack then pop off the last element of the popstack and then
move all the elements back on to the pushstack.

* Design2: The queue is has two stack components — which we will name as
a mainstack and a tempstack — and a boolean representing whether or
not the mainstack is ready to push. (If it is not ready to push then we
say that it is ready to pop). When ready to push®: if a push request is
made of the queue then this element is pushed directly onto the mainstack,
if a pop is requested then all the elements are moved from the mainstack
to the tempstack, the mainstack and tempstack are swapped, the state is
changed to ready to pop and the element popped off the mainstack.

At this stage we ask the students to evaluate the quality of their designs.
Most students identify the following inter-related design quality criteria: sim-
plicity, understandability, implementability, extensibility, modularity, main-
tainability, re-usability, efficiency (time and memory), robustness and reliabil-
ity. In our experience students will ask about the correctness of their design
only if they have already studied formal methods. When asked if the design
will work, most students reply that they will test their implementation to
make sure that it does.

Analysis of Designl and Design2 usually leads to students identifying that
Design1 is easier to understand and implement, but that Design2 may be more
efficient. Representing the two designs in UML often leads to the students
realising that the two designs appear to be structurally the same, but quite
different in terms of their dynamic behaviour. The class diagram, in figure 1,
illustrates that using UML leads to further investigation of design alternatives
that are not so obvious from working only with a formal modelling language.

Most students choose to model the assocation between the Queue and its
class components as composition. The remaining students usually model this
using aggregation. We ask the question as to why a hybrid model (using both
composition and aggregation) is, in general, never considered.

5.2  Rigorous Analysis

We ask the students to argue (demonstrate) whether the designs are correct
before they implement them. Typically, they are not able to convince them-
selves that the designs are correct but they do identify unsafe states of the
designs that should not arise. We then show them how these can be modelled

6 The ready to pop case can be treated similarly.
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Fig. 1. Aggregation or Composition?

using invariants. For example, in Designl the Queue system is unsafe if the
popstack is not empty when an element is pushed on to the pushstack.

We have followed two different routes from this point. Firstly, students can
implement their designs (typically in Java). Secondly, students formalise their
designs in B and attempt to prove that the designs are correct. In the first
instance, student implementations often do not meet the queue requirements
(which can be found through testing): students then need to discuss whether
this signifies that their designs are incorrect. In the second instance, students
usually manage to model the abstract queue requirements, but fail to see how
they can refine their queue into two communicating stacks. The best students
manage to model the designs in B but fail to prove the refinement relation (and
hence the correctness). However, when asked to implement their B designs
(again, in Java) they usually do not make the same programming errors.

5.3 How can we implement a queue of integer pairs from stacks of integers?

This extension to the problem is stated as: we wish to store co-ordinates in a
queue with standard FIFO behaviour, and co-ordinates are specified as pairs
of integers (x,y) where the class methods allow reading and writing of x and
y. Our underlying implementation architecture allows us to store integers on
Stacks. Most students quickly realize that they can re-use their designs to the
queue of integers problem. Then, they typically propose 1 of these 3 designs:

e DesignA: propose some isomorphic function between integers and co-
ordinates. To push a co-ordinate onto a queue we need only transform
it into an integer (using our function); and then push this integer onto an
integer stack. To pop off a co-ordinate, we just pop off an integer and
transform it into a co-ordinate (using the inverse of the transform function)

* DesignB: To push on a co-ordinate (x,y) just push x onto the integer queue
and then push y onto the integer queue. To pop off a co-ordinate then pop
off an element a, pop off an element b and return the value (a,b).

* DesignC: Use 2 integer queues - one for the x co-ordinate, the second for the
y co-ordinate. To push on a co-ordinate (x,y) just push x onto the xqueue

6
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and then push y onto the yqueue; and similarly for popping.

Following their experience from the first simpler design exercise, the stu-
dents immediately identify unsafe aspects in each of the designs. DesignA
will certainly cause problems if we cannot prove the transform function to be
isomorphic. DesignB could give rise to unsafe system states if the number of
elements on the queue is odd. DesignC could give rise to unsafe system states
if the number of elements on each of the queues is not the same. They are then
asked to use B to model the designs and the appropriate invariant properties.

5.4 Interesting Design Aspects from the UML

In figure 2, we see an interesting design question: is it possible to combine
Design2 and DesignC in order to provide a single temporary stack (shared by
both Queue components) that is used for reversing the elements when moving
elements from one stack to another inside the queue components?

The advantages and disadvantages of such a design should lead the students
to identify that this may give rise to performance and synchronisation issues.
However, they still need to ask if such a design is correct. In fact, this question
is more subtle than it first seems as the question is really whether the high
level structure can provide a framework for the desired behaviour.
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Fig. 2. Can We Build A Correct Design From This High Level Structure?

5.5  Formal Methods and High-level structure

In figure 2, we have very clear high-level structure; but no clear underly-
ing model of how the components will co-ordinate in order to provide correct
Queue (of IntPair) behaviour. In the UML we could model this using sequence
diagrams or collaboration diagrams. However, without providing these dia-
grams with formal semantics, it is not possible to establish the correctness of
the design to a high degree of confidence. Note that we do not reject the use
of UML: the high level structural properties are much easier to represent (and
validate) using UML than with a more formal notation.
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5.6 Formal Methods Observation: Class invariants are fundamental

This use of invariants is key to integrating the formal with the informal. Every
class in the system needs to have an associated invariant which glues together
the class associations/components/attributes. For example, in our design in
figure 2, we need to specify that the number of elements in each of the compo-
nent queues must be the same. This is part of the invariant of the system that
specifies that if this is not true then the system is in an unsafe state. A formal
notation (like B) can then be used to verify that every event that changes the
system state (corresponding to a class method) respects the invariant. If this
proof cannot be established then the designers must make special note of the
fact that this property needs to be tested in the final implementation.

The best lesson that students can take from these types of design exercises
is that abstract models must specify (sub)system invariants. Concrete models
must guarantee that these invariants are respected. We have evidence that
students have (partially) learnt the lesson: in their subsequent software devel-
opment projects, we have seen invariant checking methods in their implemen-
tation models (code) and a structured approach to testing system component
invariants at runtime. However, we have yet to see any students formally state
and verify their invariants using B.

5.7 FExtending and refining the example

The design problem in this paper has been re-used in a number of other
different modules —

e Fault tolerance, robustness and reliability: if we know that the fundamen-
tal components can fail (following different failure patterns) then can the
designs be analyzed in order to reason about the reliability of the system?

e Performance: if we have very strong requirements concerning the speed at
which the system must operate then can we analyse the design options in
order to reason about system-wide performance in a compositional manner?

e Maintainability and extensibility: if we extend our co-ordinate system so
that we have more than 2 dimensions then do we have to change the design?

e Automated software engineering: how likely is it that such a design could
be automatically compiled into code?

We do not claim that this design example is without fault. For example,
it is slightly contrived and rather simplistic. However, we have found it to be
a good case study for teaching formal design concepts, and for showing that
the best approach is to try and integrate different modelling languages.

8
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6 Related Work and Conclusions

The (pedagogic) integration of design with testing is discussed in [10] but does
not address the role of formal methods. Formal methods and requirements
modelling is treated in [13]|, where the step from requirements to design is
identified as being difficult to teach. In [4] there is a discussion on teaching
design by contract using the OCL of UML. Recent work on teaching design by
contract|15] advocates a mixed semantic approach to teaching formal design.
The EU FrameWork6 project RODIN [3] acknowledges the need for research
and development into the teaching of formal design, and the Eclipse-based
platform provides specific plug-ins for integrating B and UML|21].

This paper reports on our view on the teaching of formal object oriented
design. In a new MSc programme (starting in the next academic year) for
software engineering (of smart devices) we have attempted to distribute formal
methods throughout the programme modules and not to fall into the trap of
teaching a stand-alone formal methods module that students fail to relate to
all other software engineering material. The future of software design is for
students to realize that formal methods are just another tool in their toolbox.
This message needs to be transmitted from lecturers to students and from
students to industry.

Formal methods lecturers should not just encourage their colleagues to talk
about formal methods; they should also make more of an effort to incorporate
other aspects of software engineering in their own formal methods modules.
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