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Abstract. The design of e-voting systems requires the use of techniques
which guarantee that the resulting system is safe, secure and preserves
privacy. We develop Event-B models of a voting system, by applying
a decomposition pattern and a technique of contextualisation, using a
dependency mechanism. Through refinement, we take into account the AQ1

precise regulation and structure of a specific voting process, and reason
formally about the system’s resistence to common attacks and threats. AQ2

1 Introduction

In general, elections are critical processes concerned with the collection, recording
and counting of votes [9]. All election processes use protocols satisfying security,
safety and privacy properties, which are difficult to express and to validate. We
have applied a correct-by-construction refinement technique to formally model
and reason about a voting process. The formal approach helps us to validate the
coherency of different types of interacting assumptions and requirements [10].

1.1 Diffferent Points of View

There are many different points of view concerning elections. Firstly, citizens
are mostly not overly-concerned with the interacting tasks used in reaching the
decision. They refer to abstract processes such as voting and counting, without
fully understanding the subtle details. Secondly, e-voting domain experts are
concerened with the complexity of modelling the election process at different
levels of abstraction. From our, third, point of view, as system engineers, a vot-
ing process is managed by a system which facilitates voting, whilst satisfying
the requirements of the vote with respect to the current legal position. When
the system is electronic, it may also have to meet legal requirements which are
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2 J.P. Gibson et al.

not relevant for the traditional manual systems. A final point of view is one of
security: voting systems make use of information and communication technolo-
gies (ICT), and their dependability relies on security analysis for identification
of threats in order to select countermeasures.

1.2 Contextual Reasoning

We [12] have previously shown the importance of context in proofs, where it
captures the system designer’s intention, as well as giving the system model
a precise and unambiguous semantics. Our study demonstrates that context is
always related to an activity, a focus or a situation. More precisely, the context is
a “moment universals” that depends on an intentional concept i.e. “action”. By
reasoning over the structure of the Event-B, the context of proof is decomposed
into — (i) Constraints: conditions having their own existence and concerned
with the theory defined for Event-B, corresponding to the sets, constants and
axioms defined in the Event-B contexts; (ii) Hypotheses: that are assumed to
be true, but not always verified, and which are expressed by restrictions on
the constraints, and suppositions on the corrupt behaviours in the system. (iii)
Dependencies: this knowledge is deduced, and expressed as a combination of
situations and constraints over time. The use of dependencies was inspired by
the work of [2,8,17], and led us to formalize a dependency mechanism in Event-B
as a proof of the coherency of the contexts in Event-B.

1.3 Refinement and Decomposition Patterns

The correct-by-construction approach [16] can be applied for integrating pro-
gressively properties and details of the voting process. In the case of the voting
system, we decompose it into three dependent and sequential phases: the prepara-
tion phase, the recording phase and the tallying phase. These phases are sequen-
tial and linked in a pipeline, where the activation of the next phase depends on
the termination of the previous one. One phase may use data computed during
the previous phase; this data is dynamically generated in one phase but is then
used to statically instantiate the configuration parameters of the next phase. We
have defined this approach as a domain-independent re-usable template, using
a formal dependency pattern, defined in a separate work [12]. Patterns [11] are
applied to refinement-based processes; they help to increase productivity and
improve quality by providing guarantees with respect to avoidance of security
risks and attacks [14]. We use the sequential decomposition pattern and identify
the three phases characterized by three main liveness properties: (1) prepara-
tion collects information for defining the persons authorized to vote and candi-
dates/options authorized to be presented as choices in the election; (2) recording
permits authorized voters to choose their preferred candidate(s) or option(s); and
(3) tallying counts the votes for each candidate, or given option. Thus, our three
stage pipeline is a composition of two instances of the sequential decomposition
pattern.
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Applying a Dependency Mechanism for Voting Protocol Models 3

1.4 Formal Reasoning About E-voting

Many properties and requirements are expressed in the literature of e-voting sys-
tems. We follow the reasoning of [7] which argues that, in the ideal case, a secure
voting system should guarantee eligibility, confidentiality, anonymity and verifia-
bility. Verifiability ensures that all voters can trust the proclaimed result without
having to trust a particular authority or actor in the system. Furthermore, it
ensures the existence of an algorithm that can exhibit the proof of the result
of tallying and integrity of the authorities. In our case, the proof obligations
generated show that the system has behaved correctly. Confidentiality guaran-
tees knowledge of each voter is limited only to his/her vote. The Anonymity of
a vote is guaranteed by breaking the link between the voter and theirr vote.
Eligibility of voters determines whether or not a voter is entitled to vote. Our
model expresses this property as a condition concerning the authentication and
authorization of each voter before recording their vote. Authentication identifies
voters using credentials and passwords previously provided for this purpose.

2 The Modelling Framework

Event-B is a formal language well-suited to the modelling of reactive systems
that respond to external stimuli over time. In this set-theoretic language in first-
order logic (FOL), guarded events provide state transition behaviour. The two
syntactic units of structuring are the static context and the dynamic machine.
The context comprises sets, constants, axioms, and any theorems that must be
derived from those axioms. The machine comprises dynamic variables and the
events that update them. Safety properties are expressed as either invariants or
theorems. Every machine sees at least one context.

An event is observed in a model with constants c and sets s subject to axioms
P (s, c) and an invariant I(s, c, v). Consistency proof obligations (POs) require
that events are well-defined, feasible and maintain invariants. The term refine-
ment is overloaded, referring both to the process of transforming models, and
to the more concrete model which refines the abstract one. When model N(w)
refines M(v), it contains a refinement relation, or “gluing invariant” J(s, c, v, w).
New events may be introduced in refinement to act on new variables, effectively
refining stuttering steps (called “skip” in Event-B). The refinement POs enforce
the standard forward simulation refinement rule [1] that every concrete step of a
refining event re-establishes the gluing invariant subject to some corresponding
step of the abstract refined event, or skip.

Figure 1 summarizes the two kinds of models that are used in the formal
development. In this work the modelling process deals with various languages, as
seen by considering the triptych of Bjoerner [5]: D,S −→ R. Here, the domain D
deals with properties, axioms, sets, constants, functions, relations, and theories.
The system model S expresses a model or a refinement-based chain of models of
the system. Finally, R expresses requirements for the design of the system. One
must note that the Event-B modelling language is not expressing liveness prop-
erties and we follow the methodology introduced by Méry and Poppleton [18] for
managing such properties. We will use a notation from TLA to express liveness
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Fig. 1. Context and machine

properties under fairness assumptions. We have to interpret our Event-B models
over traces generated from the Event-B machines and we extend the scope of
the Event-B machines by using TLA as follows. Let M be an Event B machine
and D a context seen by M . Let x be the list of variables of M , let E be
the set of events of M , and let Init(x) be the initialisation event in M . The
temporal framework of M over D is defined by the TLA specification denoted:
Spec(M) =̂ BA(Init)(x) ∧ ✷[Next ]x ∧ FAIR, where Next ≡ ∃e ∈ E.BA(e)(x, x′)
and FAIR defines the fairness assumptions.

Following Lamport [15] the specification spec(M) is valid for the set of infinite
traces simulating M with respect to the events of M . Spec(M) is thus defined
by the initial conditions, the next relation and fairness constraints. In practice
we have to discover the weakest fairness assumptions, denoted FAIR(M), that
allow us to derive the required liveness properties. These fairness assumptions
emerge from the proof rules applied, and are expressed in terms of the temporal
operators of TLA, namely WF and SF . FAIR(M) is thus a combination of
fairness operators over events of M . Liveness properties for M are, de facto,
defined in TLA as follows: M satisfies P ❀ Q, when Γ (M) ⊢ Spec(M) =⇒
(P ❀ Q). When deriving the proof of Spec(M) =⇒ (P ❀ Q), we apply the
right introduction rule of the implication and then we eliminate the conjunctive
connective in the left part of the ⊢ symbol. Thus Γ (M) will be increased by
fairness assumptions and we can use an alternative form for expressing the initial
sequent: Γ (M) is the proof context of M . In review, the refinement of Event-B
models preserves the safety properties; and for preserving the liveness properties
we follow the technique proposed by Mery and Poppleton [18] (see Fig. 2).

abstract spec

concrete spec

Fig. 2. Summary of the integrated formal methods refinement methodology
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Applying a Dependency Mechanism for Voting Protocol Models 5

3 Modelling the Voting System

The 3 phases of our voting process are each developed, and verfified, in a sep-
arate refinement chain. In this paper, we present only the final 2 stages of the
pipeline: the vote recording and the tally (count) phases. The system description
also includes the conditions over the environment that express voter behaviour
and possible attacks on the system. In particular, our development disregards
different roles and/or actors in the system: the only actor represented is the
voter who interacts with the system interface. In particular, our refinement-based
approach takes into account intruders with the following capabilities: (1) estab-
lishing a connection; (2) closing an already established session; (3) making
choices; (4) adding signatures; (5) adding ballots: ballot stuffing ; (6) adding
signatures and ballots simultaneously ; (7) removing signatures; (8) removing
ballots; and (9) accessing signatures, credentials, passwords. These different AQ3

assumptions concerning corrupt behavior correspond to the part of the world
in which the system is immersed. They situate the developed system and we
qualify them as “context of assumptions”.

3.1 Combining Refinement and Composition, Using
the Dependency Pattern

Figure 3 illustrates the refinement-based approach followed in our development,
and shows the use of the dependency pattern mechanism (depends) to compose
the machines associated with sequential phases of the voting process.

3.2 Refining the Voting Phase in Seven Steps

The first phase is described by an Event-B context C0 Recording which defines
the constraints and static elements that are seen by the 9 machines in our devel-
opment. The first Event-B context introduces the necessary elements to start a
recording phase of votes i.e.: sets, constants and static properties such as Electors,
Choices, Envelopes, PollStation, Representatives, Bulletins, Sig, electoral roll ,
voters hosting , start time, end time etc. . . .

Abstract model - In this first model the state of the system is characterized
by two variables that represent the registered votes and the elapsed time in the
system. The votes are modelled as a relationship between all signatures (Sig) and
the electors’ choices (Choices). The invariant in this machine simply provides a
means to type these variables. The precondition for this phase, as expressed by
the initialization event, is that the time is equal to the opening time of the offices
fixed in the context C0 Recording and that no vote has been recorded. A vote
modifies the variable rec votes which is performed by the event register votes.
In this model, we distinguish only the values of variables rec votes which take
their values in Sig ↔ Choices without precising the undertaken actions. The
event forwarding time changes the value of the variable timer introduced in
this machine to express the progression of time in the system. The variable
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6 J.P. Gibson et al.

extends
sees

extends

refines

refines

sees refines sees

refines refines

depends depends

sees
refines refines

sees

refines refines

Fig. 3. Structure of the refinement-based formal development of the voting system

value is incremented by the action of thes event forwarding time until the
closing time of the offices end time is reached. We note that this event has a
convergent status under which a weak fairness assumption is made. Thus, this
event (forwarding time) will not be observable when the value of the timer
variable has reached end time. Note that the vote event can be observed only
when the voting has begun and that the closing time has not yet been reached
(see grd1 ). The convergence of these events is proved using a simple variant.
Then, at the end of voting, no one can cast a vote or record a signature: the only
event that will be observable is finish.

VARIABLES rec votes, timer
INVARIANTS

inv1 : rec votes ∈ Sig ↔ Choices
inv2 : timer ∈ start time .. end time

VARIANT end time − timer
INITIALISATION

act1 :rec votes := ∅
act2 :timer := start time

EVENT register votes
WHEN

grd1 :timer ≥ start time ∧ timer < end time
grd2 :∀i, j · i )→ j ∈ interrupt sequences ⇒ timer /∈ i .. j

THEN
act1 :rec votes : |rec votes′ ∈ (Sig ↔ Choices)

END

EVENT forwarding time
STATUS convergent
WHEN

grd :timer < end time
THEN

act :timer := timer + 1
END

EVENT finish
WHEN

grd1 :timer = end time
THEN
act :skip
END

In the following seven refinements, termination proofs are the same as those
for this initial abstract machine. Since all events that will be introduced in
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Applying a Dependency Mechanism for Voting Protocol Models 7

the following will also be guarded by the guards grd1 and grd2 of the event
register votes, no event changes the time and forwarding time and finish
remain unchanged. We also recall that all variables introduced in the followed
refinements are initialized with the empty set, with the exception of intruder
knowledge variables.

Refinement 1 - distinguishes the votes that are either registred or deleted.
The recording of votes is done by the event register votes refined by itself, while
tdeleting votes is done by the event remove votes. Both events refine the former
introduced in the abstract model register votes.

Refinement 2 - introduces intrusion scenarios, where people present them-
selves to vote on behalf of someone else, without having permission to do so.
Such a scenario is a single example of one among many forbidden scenarios that
may exist. We distinguish at this level of refinement, the votes recorded cor-
rectly and those that are corrupted. Four new variables (valid sig , valid choices,
valid votes, corrupt votes sig) are introduced:

INVARIANTS
inv1 : valid sig ⊆ Sig
inv2 : valid choices ⊆ Choices
inv3 : valid votes ∈ valid sig !" vote
inv4 : corrupt votes sig ∈ Sig ↔ Choices
inv5 : valid votes ⊆ rec votes
inv6 : corrupt votes sig ⊆ rec votes
inv7 : corrupt votes sig ∩ valid votes = ∅

The votes or choices are identified in
the set of choices (inv2), while the
signatures are a subset of the set Sig
(inv1) defined in the Event-B con-
text C0 Recording.

The property inv3 associates each correct choice with one and only one
signature, and each signature with one and only one correct choice. Thus, at
any time the number of votes at the polls equals the number of signatures
honestly recorded. Votes can be corrupt, but these are detected. The invari-
ant property inv7 indicates that the correct votes and the corrupt votes par-
tition the set of all votes cast. Others variables are also introduced separately
in order to identify corrupt signatures and invalid choices. The event to reg-
ister the votes introduced in the first model is refined into two events that
allow the storage of both types of vote. This corruption scenario is one in
which corrupt choices and corrupted signatures are introduced simultaneously
via the event corrupt choices sig simultaneously . This refinement also intro-
duces two other scenarios of corruption consisting of stuffing ballot boxes, or
recording votes, without valid signatures. Two new events are introduced at this
level. The event stuffing choices consists of adding a corrupt choice by chang-
ing the variable alone corrupt choices , while the event corrupt sig only adds
a corrupted signature by changing the variable alone corrupt sig . The variable
alone corrupt choices is a subset of all choices, while the corrupted signatures
are a subset of Sig.

Refinement 3 - introduces the main actor in the system i.e.: the voter (elec-
tor). Voters having voted correctly become registered voters in the variable
honest voters. Dishonest voters are registered in the variable dishonest voters.
Voters who voted correctly can impersonate other voters in order to vote for
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8 J.P. Gibson et al.

them (or steal their vote). The honest voters are linked to their correct signa-
tures via the variable honest voters sig , and an honest voter can have only one
signature at a time, and vice versa; thus, a correct signature is assigned to one
and only one voter at a time (inv3). The corrupted signatures of the voters are
defined in the relation between electors and the set of signatures (Sig) (inv4).
Note that the domain and co-domain of these two variables have no common
element (inv5 et inv6).

inv5 : dom(corrupt sig voters) ∩ dom(honest voters sig) = ∅
inv6 : ran(corrupt sig voters) ∩ ran(honest voters sig) = ∅
inv7 : honest know ∈ honest voters → P(valid choices)

inv8 : ∀v, elec, sig ·
(

v ∈ valid choices ∧ elec ∈ honest voters ∧ sig ∈ valid sig
∧elec )→ sig ∈ honest voters sig ∧ sig )→ v /∈ rec votes

)

⇒ elec )→ {v} /∈ honest know)

inv12 : ∀elec1, elec2, v1, v2 ·

⎛

⎝
elec1 ∈ dom(honest know) ∧ honest know(elec1) = v1
∧elec2 ∈ dom(honest know)
∧honest know(elec2) = v2 ∧ elec1 ̸= elec2

⎞

⎠

⇒(∀vx · (vx ∈ v1 ⇒ vx /∈ v2)))

Removing correct choices already made implies knowledge of the choices made by
the honest voter. To ensure the secrecy of the vote, we add a variable representing
voter knowledge (inv7). This variable is a total function of the voters who voted
towards all subsets of choices. Secrecy is expressed by the invariant inv12 which
states that the knowledge of how each known voter has voted is restricted to the
voter themselves. Deleting a choice correctly implies that only the voter knows
his/her choice and how they have voted. In contrast, an intrusion deletion does
not require any knowledge of choices or how a voter has voted.

Refinement 4 - introduces authentication, which requires that the system has
some guaranteed means of identification of voters. In our model, this is ensured
by the following two constants introduced in the Event-B context C0 Recording
i.e.: Credentials assign and Passwords assign that are defined as:

Credentials assign ∈ Electors!"Credentials, and Passwords assign ∈ Electors!"
Passwords. The model consists of an assignment of credentials and passwords
to eligible voters. Thus, each voter has his own identification that gives permis-
sion for access to his account that is by definition, unique to each voter. The
authentication in our system consists of verification by introducing two events
for this purpose. The first event allows electors who wish to establish a con-
nection to access to their voting account (login), while the second allows the
disconnection of a voter having already established a connection. An authen-
tication modifies the variable electors session introduced for this purpose. We
note that this authentication allows access to the account for voting purposes,
recording voting, etc. . . . . The identification is expressed as follows:

inv6 : ∀s, v ·
(

s )→ v ∈ valid votes
)

⇒∃elec, mdp, cred ·
(

(elec )→ s) ∈ dom(voters hosting) ∧ elec )→ mdp ∈ Passwords assign
∧elec )→ cred ∈ Credentials assign)

)

Authorization to vote requires that the elector entitled to vote has not yet
voted. This check is performed by refinements 5 and 6. This stage distinguishs
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Applying a Dependency Mechanism for Voting Protocol Models 9

also intruders that try to establish a connection with stolen credentials and pass-
words. We thus introduce all variables that correspond to intruders’ knowledge,
and events for misused identity credentials, passwords, signatures and possibly
removing choices already made by honest voters. Introducing these details means
that the invariants inv8 and inv12 introduced in the previous refinement are not
sufficient. We need to express the requirement that knowledge of honest valid
voters is not known by intruders. The following property expresses for instance
the fact that honest choices are not known by the dishonest intruders.

inv14 : ∀elec1, v1 ·
(

elec1 ∈ dom(honest know) ∧ honest know(elec1) = v1
)

⇒∀elec2 · elec2 ∈ dom(dishonest know choice)
⇒∀vx ·

(
vx ∈ v1 ⇒ elec2 )→ {vx} /∈ dishonest know choice

)

Refinement 5 - considers location. In traditional systems, voting is done in a
physical location or polling station, whilst in e-voting we replace the concrete
locations with an abstract/virtual concept. Thus, we introduce in this refinement
a new variable regis votes offices, which assigns each vote cast correctly to one
and only one polling station.

inv1 : regis votes offices ∈ PollStation ↔ (rec votes)
inv2 : ∀ve · (ve ∈ rec votes ⇒ (∃h · (h )→ ve ∈ regis votes offices))
inv3 : ∀v1, b1, b2 · (b1 )→ v1 ∈ regis votes offices ∧ b2 )→ v1 ∈ regis votes offices ⇒ b1 = b2)

The recording of the vote is thus restricted by location; in other words, a restric-
tion of authorizations for voters to cast a vote in the offices to which they
were assigned. A list is established beforehand to assign eligible offices to vot-
ers; this being defined by the constant voters hosting in the Event-B context
C0 Recording (voters hosting ∈ electoral roll → PollStation). Thus, the events
to record votes are reinforced by the guards:

grd8 : ∃sig · (sig ∈ Sig ∧ heberg ∈PollStation ∧ ((votant x )→ sig) )→ heberg)∈voters hosting)
grd9 : heberg )→ (s )→ v) /∈ regis votes offices ∧ (s )→ v) /∈ ran(regis votes offices)

and the next action is added to update the variable regis votes offices: act7 :
regis votes offices := regis votes offices ∪ {heberg +→ (s +→ v)}. Thus, eligibility
for honest voters is expressed as follows:

inv4 : (∀s, v, h · (s )→ v ∈ valid votes ∧ h )→ (s )→ v) ∈ regis votes offices
⇒∃elec · (elec ∈ votant ∧ elec )→ s ∈ honest voters sig ∧ (elec )→ s) )→ h ∈ voters hosting)))

which expresses that for all correctly recorded choices (valid votes) in polling
stations (regis votes offices), there exists an eligible voter having a valid signa-
ture (honest voters sig introduced in the third refinement), with an identical
signature, previously registered in the system, that casts this said choice.

Refinement 6 - models the depedency between the choice offerred to, and
taken by, the voters and the specific type of election/referendum being run;
and the anonymity of this choice. The recording of a vote is preceded by the
choice that can be made by an eligible elector. The choice of bulletins must be
anonymous, which can be guaranteed by the use of envelopes, as is the case
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10 J.P. Gibson et al.

in classic voting. We introduce in this refinement several new variables that
facilitate the modelling of envelopes during the vote recording process. The vari-
able valid envelopes corresponds to the envelopes chosen by voters. A voter who
took an envelope is added to the variable voters envelopes. Each valid choice
is assigned to a single valid envelope. The choice of voter is made concrete by
the event choose. To make a choice, a voter must have authorization for this
action. The actions enabled by this event are guarded by the existence of the
person who wishes to initiate a process of voting in the list previously established
electoral roll and that no signature is yet registered to his vote.

Refinement 7 - Different elections have different modes/types of voting. For
example, a majoritarian voting where a presidential candidate must be elected
is represented by paper ballot where every candidate is the option to vote
and each paper corresponds to one candidate (vote or poll). This constraint is
shown in Event-B by the following constant: axmt1 : bulletins representatives ∈
Representatives ! Bulletins where Representatives corresponds to the set of all
representatives needed for a specific election including designations that may be
chosen by a voter. For instance, this set can contain: candidat1, candidat2, . . . ,
candidatn, None of the above, in the case of a presidential election. It may also
contain favorable, unfavorable, if the choice in a referendum is an adherence to
any law.

In the case of a preferential voting or cumulative voting, voters should make
their choice on paper ballot, where all candidates are listed on all these papers.
This choice corresponds to a preference order mentioned next to each candidate
on the same paper ballot. This constraint corresponds to a Cartesian product
presented as follows in the Event-B method: axmt2 : bulletins representatives =
Representatives×Bulletins. These constraints situate our development and thus
contextualize the proofs. We have shown that constraints rely on the static part
in the system, and we qualify this as a context of constraints. Each type of
voting is defined in a different Event-B context. These two Event-B contexts
extend the first one introduced in the beginning of this section (C0 Recording)
and are noted by C1 Recording T1 et C1 Recording T2. At this stage of refine-
ment, the machine introduced in the previous refinement is refined into two differ-
ent machines. This decomposition allows each machine to see a different Event-
B context. Thus, the machine M8 Recording T1, (respectively the machine
M8 Recording T2) sees the Event-B context C1 Recording T1 (respectively
the context C1 Recording T2). In the following, we report on the development
of the first type of voting.

Each voter who has selected a paper ballot is added in the variable
bulletins voters with their own bulletin. This action is observed in the event
choose. The selected paper ballot and the voter are added to the variable
bulletins voters. This choice represents a ballot stored in the variable ballots.
The voter puts one and only one name or paper (or candidate) in the ballot
box. Therefore, one and only one ballot is sleeved in an envelope. The recorded
bulletins are a subset of the set of Bulletins. This variable will serve us in the
Event-B context corresponding to tallying. The variable ballots offices allows us
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Applying a Dependency Mechanism for Voting Protocol Models 11

to record the ballots per polling station. The casting of votes in the ballot boxes is
made concrete by modifying the variable rec votes associated to a specific polling
station in the recording event. It is based on the representatives indicated on
the collected papers through the variable collected bulletins representatives that
the affectation of voices to these representatives will be made.

Once this phase is finished, i.e.: the counter to express time comes to the
end, the tallying phase can begin using the results obtained. In the following
section we explain the formal dependency mechanism used to model the transfer
of results.

4 Dependency Relationship Between Voting Phases

The data provided for the B contexts of this phase are deduced from the first
phase corresponding to a validation of both B contexts by machines from the
first phase. We detail in the following the tallying of the first type of voting that
corresponds to the machine M8 Recording T1.

This Event-B context includes all elements defined in the first phase, namely,
C1 Recording T1. The context C0 Tallying T1 extends C1 Recording T1 and
contains, in addition to elements defined in C1 Recording T1, some of the vari-
ables defined in the machine M8 Recording T1 which are defined as constants
in the present context listed in twenty two axioms. For instance,
collected bulletins representatives,rec votes, valid sig . . . .

Abstract Model: Phase of Tallying - The desired termination property for
this phase of any voting protocol is identical for all types of voting, thus, the
first abstract model M0 Tallying is common to both types of voting that we
introduce in this phase. This model describes the counting via three events tally,
finish and maintain. The only variable introduced at this level is a boolean
which verifies whether counting is complete. The event tally is observing the
value of this variable which is “false” in its guard, and does not perform any
action in this machine.

Refinement 1: Phase of Tallying - In this machine which refines the
M0 Tallying machine, the tally is done at the specific polling station. The vari-
able correct result office characterizes the representative’s scores per polling sta-
tion (inv1 : correct result office ⊆ PollStation × (Representatives × N)). In each
polling station, the scores of each representative are unique:

inv2 : ∀h, r, x1, x2 ·

⎛

⎝
h ∈ PollStation ∧ r ∈ Representatives
∧h )→ (r )→ x1) ∈ correct result office
∧h )→ (r )→ x2) ∈ correct result office

⎞

⎠⇒ x1 = x2

At initialization, no representative has received any votes. The counting of
the voters’ choices requires representatives who are registered in the envelopes
(destroyed envelopes representatives), and the ballots recorded per polling sta-
tion (destroyed ballots office). In addition, one must know the representatives
of registered ballots (destroyed bulletins representatives). These variables can
be seen as “copies” of constants defined in the Event-B context seen by the
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present machine. To verify that all registered bulletins were correctly counted,
after the end of tallying, we must ensure that all voters who have signed have
a bulletin that has been counted, and vice versa, all counted bulletins corre-
spond to choices of voters who indeed signed. We introduce a new variable
counted bulletins representatives that contains the bulletins, effectively counted.
As all bulletins contain at most one representation
(bulletins representatives ∈ Representatives ! recorded bulletins), this guaran-
tees verifiability of the dynamic behaviour of the system.

inv3 : destroyed envelopes representatives ⊆ envelopes representatives
inv4 : destroyed bulletins representatives

⊆ (collected bulletins representatives ✄ (ran(valid envelopes ✁ ballots)))
inv5 : destroyed ballots office ⊆ ballots offices
inv6 : counted bulletins representatives

⊆ (collected bulletins representatives ✄ (ran(valid envelopes ✁ ballots)))
inv7 : counted bulletins representatives ∩ destroyed bulletins representatives = ∅

This property is true only if the votes were recorded correctly without being
corrupted. Verifiability is also expressed in the context seen by the present
machine1. Other properties are also expressed to say, for instance, that if there
exists a corrupt paper ballot, then these are not counted. At initialization, all
variables are initialized with the values of the corresponding constants, with the
exception of the variable counted bulletins representatives which is initialized to
the empty set. The variable checked introduced in the abstract model of the same
phase will be maintained in this machine, and its refinement. The tally counts all
correctly recorded choices in polls (destroyed bulletins representatives that is a
copy of the collected choices in collected bulletins representatives). The variable
checked is a boolean initialized to false, that asserts that the tally can continue
as long as there exist ballots not yet counted. This property is expressed by the
variant of this machine, and guarantees convergence of the tallying process.

Refinement 2: Phase of Tallying - Finally, the tally for each representative
corresponds to the number of total votes (sum of voices by office). This refine-
ment introduces the total computation of voices of each representative saved in
the variable global result : inv1 : global result ∈ Representatives→N. Each repre-
sentative has zero votes/voices at the initialization, and the action incrementing
the total voices of each representative is added to the same event for counting.

Condition for Dependencies - We recall that the dependencies between two
parties (two models) M1 and M2 are defined by: (i) the B contexts seen by the
first machines are also seen by the machines defined for the second component;
(ii) a transformation of a some variables of the first model M1 into constants in
the target model M2; (iii) the predicate characterizing the termination property
of the first model satisfies the constraints defined in the B context of the target
model.

1 Note that in the real development this property is more complicated than the one
presented in this document. The full, more complex model, can be obtained from
the authors on request.
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The stability in the first model is defined over traces generated from the
machine in this model. This modelling reflects the fact that at the end of the first
phase, no changes can be made on these elements as variables, because these vari-
ables in the phase of registration maintain their values at the termination. There-
fore, we can define them as constants in this Event-B context. A vote is validated
only when all the constraints defined in this Event-B context are valid. The vali-
dation of such constraints is based on facts or data generated during the record-
ing phase. This implies the existence of states in the model M8 Recording T1
satisfying these constraints that we call context deduced or combination of
situations and constraints. The satisfaction of axioms thus defined, particu-
larly the axioms dep axm23 and dep axm24, expresses the “initial configu-
ration” of this phase of the vote: C0 Tallying T1(s2, c2) ∧ Init2, where s2 and
c2 are respectively, sets and constants of the B context C0 Tallying T1.

This relationship expresses a dependency between these two components. In
particular, the two axioms dep axm23 and dep axm24 should be validated by
properties over values of state variables of the previous phase.

To express the validation of these constraints, we introduce the constant
valide. This constant also depends on the state the machine 8 of the registration
phase. The states that validate these constraints are the states which, in addition
to satisfying the axioms axm1 . . .axm22, must also fulfill the conditions defined
in the axiom dep axm24 which expresses constraints, such as: (1) the closing
time of polls has arrived: timer = end time; (2) no corrupt signature has been
recorded: alone corrupt sig = ∅; (3) no corrupt choices assigned to an envelope
have been recorded: corrupt choices envelopes = ∅; (4) choices and signatures
are registered in the polls provided the voters who made these choices have signed
at offices where they were registered to vote: ∀ s, v, h · (s +→ v ∈ rec votes ∧ h +→
(s +→ v) ∈ regis votes offices ⇒ ∃ elec · ((elec +→ s) +→ h ∈ voters hosting)); (5)
the number of correct votes is the same as the number of recorded envelopes:
correct choices envelopes ∈ valid choices !" valid envelopes; and (6) a recorded
vote (with valid choices and signatures) can not belong to two different offices:
(∀ v1, b1, b2 · (b1 +→ v1 ∈ regis votes offices ∧ b2 +→ v1 ∈ regis votes offices ⇒
b1 = b2)).

The designed patterns have generated 1317 proof obligations, among which
757 are discharged in an non-automatic manner. Non-automatic proof obliga-
tions are related to properties using universal quantification. The instantiation
of the patterns consists in specifying values of sets in B contexts, which does not
give rise to additional proof obligations and in introducing other refinements for
specific needs of designers.

5 Conclusion and Future Work

5.1 Contributions: Contexts, Refinements and Dependency

Our overall contribution is to illustrate a formal method for combining con-
texts, refinements and dependency composition in a coherent and reusable man-
ner. Two main voting families appear in our development. However, the spe-
cific family remains implicit. It follows that the interpretation of the results is
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14 J.P. Gibson et al.

not taken into account in our modelling. The certification of models needs to
describe the voting method in order to make a decision. Such an interpretation
thus depends on the context in which the proofs are made. Contexts are formal
objects [17] based on McCarthy’s principle that contexts are constructed incre-
mentally from previous ones, which corresponds to “context lifting”. The situa-
tion appears as a new parameter in the predicates and thus, predicates depend
on a situation. A lifting involves situations or times. In the Event-B formalism,
situations are states and constraints are static properties defined in Event-B
contexts. Thus, the dependency relationship in this formalism is defined as a
combination of states and constraints. The dependency is a measurable relation-
ship taking values from situations facts and giving rise to new proof obligations.
Such a principle represents a duality to the principle of invariance in Event-B
machines, claiming that states are constrained by invariants in order to establish
safety in a proof system.

5.2 Future Work: Security Issues

Security is an important issue for ensuring reliable operation and protecting the
integrity of stored information to guarantee a trustworthy e-voting system [6].
These are based on a systematic engineering approach achieved by the identi-
fication, detection and correcting security risks and threats, requirements and
recovery strategies [13]. Thus, validation of the assumptions made by designers
is performed on threat modelling attached to their contextual information to
safeguard the system against unauthorized modification of data, or disclosure of
information. Deeper analysis of the security in an e-voting system relies also on
identifying assets to determine answers to questions about what the system is
designed to protect, and from whom [19]. Our modelling deals only with voters.
To target a particular system, it would therefore be necessary to integrate the dif-
ferent assets. This can be achieved by defining a set Assets in the Event-B context
of the recording phase, and all these actors will be constants included in this set.

Our development can be combined with the already realized models of
Benäıssa [3,4] that deal with the key establishment properties for the prepa-
ration phase. His works deal with the authentication properties, as well as the
key establishment goals combined with the attacker’s knowledge. The authen-
tication models can be reused as input provided from the preparation phase of
the vote to the voting phase in our development as a result via the dependency
mechanism. We can also consider the probabilistic approaches such as blind
signatures, mix nets or encryption schemes.
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18. Méry, D., Poppleton, M.: Towards an integrated formal method for verification of
liveness properties in distributed systems. Softw. Syst. Model. (SoSyM) (2015)

19. Myagmar, S., Lee, A.J., Yurcik, W.: Threat modeling as a basis for security
requirements. In: Symposium on Requirements Engineering for Information Secu-
rity (SREIS). IEEE, August 2005

A
u

th
o

r 
P

ro
o

f



Author Queries

Chapter 9

Query
Refs.

Details Required Author’s
response

AQ1 Please check and confirm if the corresponding author and
the e-mail ID are correctly identified. Amend if necessary.

AQ2 Per Springer style, both city and country names must be
present in the affiliations. Accordingly, we have inserted
the city names in affiliations 1 and 2. Please check and
confirm if the inserted city names are correct. If not,
please provide us with the correct city names.

AQ3 Kindly note that the given list are renumbered.

A
u

th
o

r 
P

ro
o

f


