A taxonomy for triggered interactions
using fair object semantics

Paul Gibson, NUI Maynooth, Ireland
Geoftf Hamilton, DCU, Dublin, Ireland
Dominique Méry, Université Henri Poincaré, Nancy, France

Abstract. We formalise the notion of triggered features and show how
the resulting model can be used to classify a subset of common interac-
tions. Our underlying fair object formal framework, based on the inte-
gration of object-state machines and temporal logic, can be exploited to
provide support for re-usable analysis. We test our theoretical results in
the construction of object oriented feature requirements models, where
each feature is triggered by the same dialIn event. Our results support
the view that the development of a feature interaction algebra is not just
a theoretical proposition but is also a practical engineering possibility.

1 Introduction
1.1 Owverview of issues to be addressed

This paper reports on the continuation of our work, introduced in [10], towards for-
mulating a feature interaction algebra. In the conclusions of the previous paper, we
identified the crux of the problem as being able to perform a re-usable analysis of fea-
ture interactions based on feature classes. The weaknesses to this introductory work
were that the classification hierarchies were treated informally, and the analysis that
arose was based on a small number of very different features.

In this paper, we aim to address these weaknesses. Firstly, we decided to focus
attention on a subset of the many possible features. We agree with [5], where it is
claimed that the feature interaction problem is not one problem but rather a multitude
of problems, some of which are understood, but others remain puzzling. We chose to con-
centrate on triggered interactions, which have been identified in many different papers
(e.g. [19, 2]). The goal was to better model an understanding of this small, yet very im-
portant, subset of features — this forms the main body of this paper. Secondly, having
previously argued for the formal integration of logical and operational requirements|12],
we wanted to apply the resulting fair object[10] semantics in the domain of telephone
features. Thirdly, we wanted to test our integrated tool support[15, 11] on the new re-
quirements models that we built. Finally, we wanted to address two important issues of
failure within the feature interaction community as a whole: the use of formal methods
and the missed-use of modularity[4, 21].

1.2 Background and related work

In [5], it was stated that for progress to be made in the feature interaction domain
then there are a number of important research areas which need to be targetted. This

greatly motivated our research because we are addressing many of these issues con-
currently: the application of formal methods is fundamental to our approach[9]; the
classification towards a taxonomy corresponds to our re-usable analysis based on ab-
stract classes[10]; the ezperimentation with different methods, architectures, platforms,
etc ... corresponds to the way in which we have developed our mixed semantic ap-
proach [12]; and the consistent and coherent tool support throughout development is
provided by our incremental approach to integration of animators for validation and
provers for verification[11].

The work presented in this paper is complementary to the plug-and-play approach in
[20] which is based on treating features as first class citizens. We support this view, but
are concerned with the claim that the central point to features is to add functionality
to the system which was not considered when the system was designed. We believe that
this paints a very bad picture. In our approach, as with all object oriented methods,
the goal is to build a set of abstract classes which provide a stable foundation upon
which changes can be incorporated. In this way, we may not be able to predict the
exact functionality being specified by a new feature’s requirements but we should be
able to predict how it may be incorporated into the old system.

The use of foreground/background models in [16] inspired us to re-evaluate our
specification of an interaction as a simple breaking of invariant properties. As we, too,
had experience of such a model leading to many spurious interactions, we tried to find
a new way of specifying properties which were like invariants but not quite as strong.
This required the notion of eventuality and the use of temporal logics. The notion of
stability which arose out of our work has just started to help us resolve some of the
central issues in the feature interactions seen in this paper. This is work in progress
but we return to it (in section 7) as we believe it motivates continuing with our fair
objects-based method.

1.8 Paper structure

The paper is structured as follows. In section 2, we introduce the fair object semantic
model upon which our formal reasoning is based. In section 3, we illustrate how tele-
phone feature requirements can be modelled as fair objects. In section 4, we introduce
the notion of triggered features through the simple example of an answering machine.
In section 5, a taxonomy for triggered types is proposed. In section 6, we examine the
utility of our taxonomy through the analysis of a set of features which are all triggered
by the dialIn event. In section 7, we discuss re-usable detection and resolution tech-
niques for triggered feature interactions. Section 8 concludes with a review of how the
work presented in the paper addresses some of the issues raised with respect to the use
of formal methods and the lack of modularity.

2 Fair Objects
2.1 The need for fairness in requirements models

An operational approach to requirements specification offers many advantages: the
customer can use the requirements model as a type of prototype which they can execute
(animate). This improves the communication between the customer and analyst, and
aids in synthesis, analysis and validation. However, we have found the inability to
express liveness requirements a main weakness when applying an operational approach:

we can specify only what cannot happen (i.e. safety properties) rather than what must
happen. In many cases, it is an explicit requirement of the customer that something
good must happen rather than something bad never happening. The specification and
verification of such liveness requirements is not possible in the classical operational
(state transition system) models.

Liveness requirements often manifest themselves as making some sort of fair choice
between internal state transitions. In other words, in nondeterministic operational mod-
els the eventuality of something good happening depends on the nondeterminism being
resolved fairly. We choose to adopt temporal logic as a suitable means for expressing
and reasoning about such fairness properties.

2.2 Fairness — a liveness property in TLA

TLA [18] provides a simple and effective means of expressing fairness properties. The
semantics incorporate the notions of always (represented by the box operator O) and
eventually (represented by the diamond operator <). Using these, we can specify dif-
ferent categories of fairness for guaranteeing the eventuality requirements:

e Weak fairness states that if an action is continually enabled then it will be
eventually carried out.

e Strong fairness guarantees the eventual execution of an action when that action
is enabled an infinite number of times (though not necessarily continuously).

e Possible Fairness deals with the case when it is always possible for an action
to be enabled (by following a certain sequence of internal actions) yet the action
cannot be guaranteed to be executed through the use of strong fairness.

The ability to model nondeterminism at different levels of abstraction is the key
to TLA’s utility in requirements modelling. It provides a means of specifying and
verifying eventuality requirements as different types of fairness property. Unfortunately,
TLA does not provide the means for easily constructing and validating initial customer
requirements. By combining TLA and operational (object-oriented) semantics we can
alleviate these problems.

2.8 Fair objects: fair servers, progression and politeness

In [14], we proposed the concept of fair objects, which combine temporal semantics and
object-oriented concepts in a complementary fashion. The underlying semantic model
is that of an object as a labelled state transition system (O-LSTS), as first modelled[8]
using LOTOS. This work identified three temporal modalities which provide useful high-
level specification mechanisms for requirements modelling: fair servers, progression and
politeness.

A fair object is one which cannot introduce deadlock (or livelock) into a system
through continually refusing to execute a method request. More specifically, a fair
object has the property that all its external services are always eventually enabled.

We have also formulated the notion of progression, the need for which arises from
the way in which concurrent processes are modelled through an interleaving of events.
We can view such interleaving as if there is a scheduler which randomly chooses which
process to be executed at any particular time. In such systems we specify a progression
requirement to guarantee that that each of the component processes is fairly scheduled.

Finally, although safety properties, specified as invariants on the state components,
are preserved under composition in our object-oriented approach through encapsulation,
liveness properties rely upon the cooperation of the environment. In [13], we exam-
ined the effect of object composition on the liveness requirements of the objects being
composed. When following an object-oriented approach to specifying the behaviour
of concurrent systems, we would like to be able to specify the liveness properties of
each object. However, an object must be viewed as an open system which relies on
its environment to ensure that its liveness properties are satisfied. When these objects
are composed, the resulting composition must be checked to ensure that the liveness
properties specified for each object are preserved. If this is the case, we say that these
objects are polite [3, 10].

2.4 The need for client-server eventuality classes

Different forms of politeness arise when maintaining the eventuality properties in the
new composed system depends on some form of fairness in the other component(s)
involved in the construction. Clients may, in order for the system to function correctly,
require that the services they request are carried out eventually. We have, during
the development of telephone services based on the fair object concepts, identified
five different types of client eventuality requirements which provide high level reusable
concepts:

¢ Immediately Obliged — A client may require that a service request be serviced
immediately.

¢ Eventually Obliged — A client may require that a service is carried out even-
tually.

e Immediately Conditional — A client may wish a service to be performed
immediately but if it cannot be done without delay then it must be informed so
that it can attempt to do something else.

e Eventually Conditional — The service is required eventually but if it cannot
be guaranteed in a finite period of time then the client must be informed so that
something else can be done.

e Unconditional — The client wants the service but places no eventuality re-
quirements on when (or if) the service is performed.

(The compositional specification and verification of these eventuality classes is on-going
research which is beyond the scope of this paper.)

2.5 The novelty of our approach

One solution [13] to ensuring that the liveness properties of objects are preserved under
composition is to allow only a weak form of object composition in which the liveness
properties of the objects are guaranteed to be preserved. This is the approach which is
taken in [1] and [6], where only parallel composition of objects (with no communication)
is allowed. The liveness properties of the composed object in this case are easy to
represent in TLA as the logical conjunction of the liveness properties of each object.

In general, however, we require stronger forms of object composition in which there
is communication (through synchronisation) between the composed objects. This is the
approach which is taken in [17] and [7]. In this case, separate proofs are required to show
that the liveness properties of the composed objects are preserved under composition.

The approach which we take is to define only local liveness requirements on each
object. Each object can perform a number of actions, which may be either internal
or external. The local liveness requirements for the object specify the liveness of the
external actions of the object over all its possible action sequences independent of the
environment. We then show how additional liveness constraints can be placed on the
internal actions of an object to ensure that it meets its local liveness requirements.

2.6 Using liveness to classify fair object interactions

We define the following different classes of politeness between two composed (interact-
ing) objects:

e Independent - if they do not synchronise on any actions

e Perfect friends - if they do synchronise on actions, but the internal liveness
constraints do not need to be strengthened to meet the local liveness requirements
of the composed object

e Friends - if they synchronise on actions, but the internal liveness constraints
of actions in one or both objects need to be changed to meet the local liveness
requirements of the composed object

e Politicians - if the local liveness requirements of the composed object cannot
be met by changing the internal liveness constraints in either object unless some
additional resolution mechanism is used

e Enemies - if the local liveness requirements of the composed object cannot be
met by changing the internal liveness constraints in either object or by using any
additional resolution mechanism

This terminology corresponds exactly to the informal definitions of feature interaction
types given in our introduction to a feature interaction algebra[10].

3 Fair Objects for modelling telephone feature requirements

In this section we introduce our method for modelling feature requirements using our
fair object semantics. Of course, we start with the specification of a simple POTS
telephone and build from there.

3.1 A POTS telephone as a fair object

Consider the state transition diagram for the Phone in figure 1. There are three types
of requirement to be specified:

1. The operational requirements

There are eight states in the system and the initial state, identified by an incoming
arrow which is not rooted from another state, is on-silent. There are three external
state transitions (1ift, drop and dial), and six internal (nondeterministic, from the

Phone USING ID, signal, on-off

- ~
-

Vs g otherUp ~. ~ .otherDown
\

lift

,
!

regard=on
listen=ringing

E—

regard=off
listen=talk

\didin e otherDown \
regard on \\ regard=off
/ fre/e/ .

lift regard=off - - i
regard=off listen=connecting regard=off /’
listen=ready listen=busy /

dia(ID !
—dap) /T S .
\ i /
N N . 7
\\‘\\\ noconnection /,/”/
. ST L
lift f drop f dial(ID) Q listen:signal l regard:on-off l

Figure 1: A phone (POTS) Fair Object

point-of-view of the phone user) transitions (diallIn, otherDown, otherUp, free, busy
and noconnection). Two accessor operations (signal and regard) are used to provide
information (to the phone user) about the current state of the phone system; these do
not result in state changes to the system. Without fairness requirements, this state
transition model is considered as a standard class; and an object of such a class is
specified as being in one of the eight possible states. The methods of the class (object)
correspond exactly to the external state transitions and accessor operations.

2. Safety requirements

Safety requirements are specified as state invariant properties. The telephone is specified
as consisting of two object components: regard and listen. A state invariant which
defines a relation between these components will include the following requirement:

Always, if I am talking with someone then the telephone must be off hook

This can be formalised' in TLA as:

O ((listen = talk) => (regard = off))

In the simple finite telephone system, this is directly verifiable by checking that it
is true in all the states. Since there are only eight states, this is trivial to check.
3. Fairness requirements
Even the simple telephone can benefit from the specification of an eventuality require-
ment. In the phone specification it is possible to be in the state off-connecting
forever. In this state we have just dialled a number and we must wait for the system
to tell us if the number is free, busy or that noconnection is possible. A reasonable
eventuality requirement is:

I will eventually leave the state off-connecting even if I do not force the
state transition myself.

'We do not give the exact TLA specification, but use a simpler syntax to capture the idea.

Using TLA, this requirement is guaranteed by weak fairness on the noconnection event:
W F(noconnection).

Thus, if the network takes too long to decide if the requested line is free or busy, then
we will eventually get a noconnection signal.

3.2 A POTS System

The operational object oriented semantics

The diagram in figure 2 shows how we compose our 3-Phones system using synchro-
nisation between our fair object components. In this case, we show a system with
only three telephones which are connected, through synchronisation of their internal
actions, to a central exchange. (It is beyond the scope of this paper to detail the ex-
change component’s specification. We note only that all three telephones are instances
of our Phone class and that the exchange component is also specified using the same
fair object semantics.)

lift d dial list d i i i
1 i rFP l? 1s|en refar llﬁt dﬁop dlrl llﬁten refard

[[[[!
exchange
Phone
[[| | |

1 I | | |
lift drop dial listen regard

Figure 2: A 3-phone POTS system

A safety property

In the network of many different telephones we can use invariants to specify safety
requirements between sets of Phones. For example, a simple POTS state invariant
requirement is that O (the number of phones talking is even) This is proved by showing
that it is true in the initial state (where all phones are off and ready). Then we show
that all possible state transitions maintain the required property (if it is true before the
action occurs then it is true after the action occurs). This property cannot be checked
through an exhaustive search of a system of an unbounded number of Phones. It can
be checked by proving that all transitions are closed with respect to the invariant.

A liveness property

Within the telephone network, the POTS exchange component controls the synchro-
nisation between pairs of Phone connections. When one Phone hangs up, for example,

the POTS exchange must inform the other Phone user by changing the state of their
phone. The updating of shared state information must always eventually be carried
out. For example:

When I dial the number of a Phone which is free then it will eventually
ring

These type of eventuality requirements can be guaranteed using the notion of progres-
Si0M.

4 An answer machine as a triggered fair object

Without giving the actual specification of the service+feature composition, it should be
clear (from the diagram in figure 3) how an answering machine object (answermachine)
synchronises with a Phone object. The standard functionality is for the Phone to ring
for a finite period of time and then the answermachine takes control so that a message
can be taken. When the answermachine is active, it will return to the inactive state
when a 1ift or otherDown action is forced through synchronisation with the Phone.

Phone answermachine
glilei -1 [~ /_)I—lﬁh_l
listenH AS dialln inactive onring
regardr BRFORE 1ift|otherDown time
otherDown out
\llgakemessaggl |givemessage |
~beep—_
l!ft

Figure 3: POTS with answering machine

The answer machine can be said to refine the onringing Phone state into three
substates: onring, givemessage and takemessage. These substates are linked by the
new (internal) transitions timeout and beep. When the Phone is in the onringing
state, the answermachine must be in one of these three substates. Further, when the
Phone is not in the onringing state then the answermachine must be inactive. As the
onringing state can occur only after a dialIn event, we say that the answermachine
is triggered by the diallIn.

A reasonable liveness requirement is that when I ring someone with an answering
machine I will eventually talk with them or get to leave a message. This requirement is
quite naturally specified by making the answering machine a fair object, which guaran-
tees the eventual execution of a timeout and beep provided no external actions return
control to the Phone.

4.1 Stability issues

When we enter the answering machine states, in the new composed system, we no longer
preserve the invariant of the system-wide POTS — the number of people talking is no

longer even. Previously, our analysis (and many others like ours) would register this as
an interaction. We propose a solution where some invariant properties are weakened
so that they are no longer required to be true in every state of the composed system,
but are required to be eventually true from any state of the system. We call these
weakened invariants stability properties. In section 7, we comment on how stability
may offer insight into the resolution of some feature interactions. So, for example, in
the answering machine example it is clear that the invariant that an even number of
people must be talking at any one time is certainly broken. However, if it is specified as
a stability requirement then we can guarantee that the property will always eventually
be true, provided that the answer machine is guaranteed to return control to the Phone
(which it does).

5 Triggered features: some analysis

The answer machine seems to capture the essence of a typical triggered feature. How-
ever, it is not clear, without further analysis, how the concept of triggering can be
formalised. In this section we consider triggering as a general concept, outside of any
particular modelling domain.

5.1 What is triggering?

Consider the diagram in figure 4. This represents a triggering which is easily understood
because it corresponds, almost exactly, to the standard remote procedure call model
which is found in most programming languages. (In the diagram, as with all similar
diagrams which follow, we do not name uninteresting states and state transitions which
play no role in the interaction between the service and the feature.)

Service Feature
é@ - (s2) trigger s
trigger trigger g9 | | additional
@) O return s3 service
(::) return
returmd O @ O
| |

1 I
base service

Figure 4: The base trigger class

In this service+feature state transition model, we are interested only in fve states
and two transitions:

e State SO is the state of the service in which the feature has just been triggered
(and is henceforth known as an trigger state).

e State S1 is the state of the service to which the feature returns control to the
service (and is henceforth known as a return state).

e State S2 is the initial (inactive) state of the feature.

e State S3 is the state in which the feature is initially active after triggering (and
is henceforth known as an entry state).

e State S4 is the final active state in which the feature can return control to the
service (and is henceforth known as an exit state of the feature.)

The semantic rules which define this base trigger class are as follows:

e There may only be one of each of the states SO to S4, although they do not
necessarily have to be distinct. So, for example, SO and S1 may be the same
state.

e There may only be one trigger action and one return action, although they do
not necessarily have to be distinct.

e The service and feature must synchronise on the trigger and the return actions.

e The feature may add additional services (as actions at its external interface) but
these must not be found in the base services offered by the service.

This class of feature (as defined by the base triggering mechanism) offers a very
limited range of potential functionality. However, it does have the advantage that the
new system (service + feature) can be proven to be a refinement of the original service
provided that the return event is eventually enabled. This is the role of fairness in our
formal reasoning.

5.2 Towards a classification

Let us consider a number of different ways in which we can change the triggering
semantics of the base class, above, whilst still retaining the intuitive notion that a
feature is being triggered from within a service.

Variation 1: multiple trigger and return instances

The most obvious first step is to generalise the model to allow multiple instances of the
same trigger and return actions. This is illustrated in figure 5, where we model 2
triggers and 2 returns.

Service Feature

Trigger | sO) Tt N | 2°
:) rigger (s0) returnq s WITH

N\ BASE CASE
Otr:.gge]:“@ returrf@ —

Figure 5: Multiple Trigger and Return instances — variation 1

The semantic rules which define this class of triggered feature are as follows:

e [f treated in pairs, the trigger-return combinations all follow the rules for the base
case.

e States SO and S2 must be different but S1 and S3 may be the same.

Variation 2: multiple return states

The next variation allows multiple return states in the feature. This is illustrated in
figure 6, where we model the fact that the feature can return control to the service from

two different states (S4 and S5).

Service Feature

AS
WITH
BASE CASE

return O

©
return @ O O

Figure 6: Multiple return states — variation 2

The semantic rules which define this class of triggered feature are as follows:

e If treated in pairs, the trigger-return combinations all follow the rules for the base

case.

e States S4 and S5 must be different.

Variation 3: different triggers and returns

This variation is the most general and, as such, it is the most difficult to analyse. We
allow multiple entry and exit points in the feature and we allow multiple triggers and
return states in the original service. This is illustrated by an example in figure 7, where
we have two triggers (t1 and t2) and two returns (rl and r2). Furthermore, we see that
the feature now has two inactive states (s7 and s4).

Service Feature

7N\ tl
t1 (s0) rl @ rl @ tl @
> O
~ t Role
t2 \ sl r2)@ r1 N

r2 @ tl ((s8

O r2 O £2 O

Figure 7: Most general trigger-return case — variation 3

The semantic rules which define this class of triggered feature are as follows:

e [f treated in pairs, the trigger-return combinations all follow the rules for the base
case.

e All inactive states of the feature class (those which can be reached through a
return transition) must have all triggered actions enabled.

There are many different restrictions on this most general case (like the base case,
variationl and variation2). The more restrictions we place on the triggering mechanism,
the easier it is for us to reason about the features and potential interactions. Our
goal is to identify the most useful set of variations in order for us to formalise a re-
usable analysis. The next variation shows that not all triggered features are defined as
restrictions of variation3.

Variation 4: no loss of control

Here the idea is that the service does not pass its only thread of control to the feature.
Instead, it continues with its behaviour as if the trigger feature did not exist. The
trigger is used to do one of two things:

e start a flow of execution in a previously passive feature (which was deadlocked
due to it waiting for a trigger action to be performed), or

e interrupt/influence a flow of control inside a previously active feature (which was
carrying out its behaviour in parallel with the service)

In this variation, there is no need for a return action. Furthermore, the feature can
have no influence whatsoever on the behaviour in the service it is triggered from. This
is illustrated in figure 8.

Service Feature

trigger O
trigger O
Oﬁext/ O O O

Figure 8: No loss of control — variation 4

Note that we do not connect the trigger to any particular state of the feature because,
in the general case, the feature could be in any of its states. As with the trigger-return
class, there are many different subclasses to this trigger-only class:

e strict synchronisation — the feature must perform a trigger action when the
service requests it

e optional synchronisation — the feature may perform a trigger action when the
service requests it

e strict asynchronisation — the feature must eventually perform a trigger action
when the service requests it

e optional asynchronisation — the feature may eventually perform a trigger
action when the service requests it

By default, we choose strict synchronisation; thus we have to ensure that the trigger
action must be enabled in all the states of the feature.

5.8 Some eventuality analysis

In [2], the notion of extension is equivalent to a triggered feature; but one where the fea-
ture may return to the service behaviour. We classify 2 different means of guaranteeing
return to original behaviour.

Guaranteeing eventual return

In all the variations, we can see that it is possible for the behaviour to get stuck in a
state of the feature whilst the user of the feature is continually requesting a return to
the service. Now, if the feature is specified as a fair object we can guarantee that the
return is eventually enabled and that we shall then return to the service behaviour.

A different situation arises when the return is an internal action of the feature. In
other words, it is executed independent of the feature’s environment. In such a case,
we can only guarantee eventual return by specifying a suitable level of fairness on the
return action itself (and even then we may require the service user to initiate some
sequence of state transitions before this guarantee can be made.)

Guaranteeing immediate return

In some cases, when the return is an external action of the service, it may be required
that the user can return to the service immediately. This can be guaranteed only by
enabling such a return in all states of the feature.

Fairness for eventual return in triggered features

It should be clear that fairness has an important role to play in the classification of
triggered features. In the next section we re-examine the fair object semantics, in a
particular set of triggered features, so that we have a more formal foundation upon which
to start building our analysis towards a triggered feature interaction classification.

6 Classification of Dialln triggered features and their interactions
6.1 A Dialln triggered feature list

There were a wide range of features which could be said to be triggered by the dialIn ac-

tion in POTS. We chose not to examine the call forward features (CF no-reply/busy/unconditional)
because we assume that they are never passed onto the phone, being caught at the ex-

change inside the network, and re-routed centrally. Similarly, we did not consider the
automatic call back feature. The features that we were left with are: three way calling

(TWC), call hold (CH), caller identification (CID), call log (CLOG), answer machine

(AM) and incoming call screening (ICS).

6.2 The informal classification through erperimentation

Following the variations in the previous section, we arrive at the following informal
classification:

e TWC, CH — variation 3 (single trigger, multiple trigger instances, multiple re-
turns)

e CID, CLOG — variation 4
e AM — variation 2 (single trigger, multiple return states, multiple returns)

e ICS — this does not correspond to any of our variations. The problem with
this feature is that it appears to filter out some of the allowable traces in the
original service behaviour and so the new service+feature model is definitely not
a refinement of the old service model.

We note that this classification has arisen out of our limited experimentation (through
specification and analysis of the fair objects requirements models for each feature). This
is just a first step towards formalising the hierarchy, but our semantic rules do add some
much needed rigour.

6.3 Classifying triggered interactions

This is work in progress but we are experimenting in the following way:

When analysing the interaction between 2 trigger features, F1 and F2. It
is necessary only to identify the types of the features and these should be
completely sufficient for us to apply a re-usable abstract analysis technique,
parameterised by the feature types in question.

Again, the formulation of such abstract analysis can be carried out only after we
have more thoroughly experimented with the fair object models and the trigger types.
Unfortunately, this work is not yet ready for presentation. However, we can give you
an idea of the type of results which we are hoping to achieve through automation in
our analysis tools. In particular, we are most interested in identifying cases where
interactions are guaranteed not to occur. For example:

e Two variation4 features cannot interact when they share the same trigger action
provided they cannot block the trigger action from being executed and they have
different return actions.

e Two variation3 features cannot interact on different trigger events provided they
are guaranteed to eventually return control to the original service.

e If F1,F2 and F3 are triggered features then they cannot interact when all three are
implemented in the same system provided no two of them interact in a pair-wise
fashion

7 Re-usable Analysis for triggered interaction detection and resolution

Many of the classic triggered interaction problems arise when two features are triggered
by the same action and the resulting introduction of non-determinism leads to incon-
sisent requirements. The most common technique to resolve such interactions is to use a
priority mechanism. We are currently working on formulating a refinement of a system
with two interacting triggered features which will resolve the interaction automatically.
The idea is that the first time the non-determinism arises then the user is forced to
make the choice. Consequently, any time after this choice has been made, the nonde-
terminism will be resolved in a manner consistent with the user’s initial choice. This
type of refinement could be made available as a correctness preserving transformation
for use during design: instead of the designer having to resolve the interaction statically,
they can gurantee that the resolution will be carried out dynamically. In this case, the
designer’s goal of having consistent resolution would have automated tool support.

The concept of stability may lead to an alternative solution where the invariants
of each feature are weakened so that they have only to be true when that feature has
actually been triggered — provided that they will always eventually be true then we
do not mind if they are false while another feature is executing. We are currently
working on defining new synchronisation mechanisms which incorporate stability into
their semantics in order to facilitate the exiting of unstable states by prioritising those
states which are stable (when an internal choice of actions is provided then a system
which is constructed from the stable synchronisation operators will choose to move
towards a stable state.) This is very much work in progress, but mention it for future
reference as another approach to formalising the notion of resolution through priority.
In this case the designer’s goal of keeping the system as stable as possible would have
automated tool support.

8 Conclusions

P. Zave, in [21], identifies the importance of failure of modularity’. We agree that we
need to: improve the feature specification and feature composition rules with respect to
modularity. The problem with modularity seems to be the choice between an approach
based on information hiding and an architecture-driven approach. In a purely archi-
tecture driven approach, it was said that a pretense of implementation independence
s abandoned. We do not, however, agree that an architectural approach gives rise to
software specifications rather than requirements specifications. In all complex systems
there is an inherent structure. In requirements, this structure helps to synthesise and
analyse the models. It does not force the implementers to follow particular design
decisions (although, they are free to do so if they desire).

In [4], a number of weaknesses in a formal methods approach are identified. We
comment on these with respect to our approach: Finding appropriate levels of abstrac-
tion is very hard ...but using object oriented modelling facilitates moving between the
levels as required. Formal modelling and analysis is time consuming ...but the extra
time invested does lead to (semi-)automation of re-usable proofs which is a great sav-
ing. New features are usually non-conservative extensions ...but it is important that
our approach can distinguish between those that are and those that are not. There is
little evidence of formal approaches uncovering unknown interactions ...but using our
approach we can predict interactions between non-standard variations on well-known
features. Most techniques are designed for expression rather than for tool support ... but

our formal fair object semantics are developed incrementally in parallel with our tool
support for specification, validation and verification. The specifications should be read-
able by a wide audience . .. as is supported by an object oriented model which facilitates
specification of multi-view mappings to a wide range of different graphical representa-
tions. The methods are targetted at the whole problem ...clearly our work, to date,
has not attempted to address all feature types. In fact, we could almost be accused of
doing the opposite by focusing too closely on only triggered features. They work only
i a pair-wise fashion . ..but we believe this paper supports the view that an algebraic
approach is the best way to get around this problem.

To conclude, this paper is a review of a lot of different threads of research that are
coming together (slowly but surely). As work in progress, it is clear that much needs to
be done but, as we stated from the outset, we believe it is best to take a small, steady
step than to leap ahead in an uncontrolled fashion. A feature interactiona algebra is
an ideal but it is an ideal which this paper brings us one step closer to reaching.

References

[1] M. Abadi and L. Lamport. Conjoining Specifications. ACM Transactions on Program-
ming Languages and Systems, 17(3):507-533, May 1995.

[2] A. Aho et al. Sculptor with chisel: Requirements engineering for communications services.
In K. Kimbler and L.G. Bouma, editors, Feature Interactions in Telecommunications and
Software Systems V., pages 45-66. IOS Press, 1998.

[3] N. Barreiro, J.L. Fiadeiro, and T. Maibaum. Politeness in Object Societies. In
R. Wieringa and R. Feenstra, editors, Information Systems: Correctness and Reusability,
pages 119-134. World Scientific Publishing Company, 1995.

[4] M. Calder. What use are formal design and analysis methods to telecommunications
services. In K. Kimbler and L.G. Bouma, editors, Feature Interactions in Telecommuni-
cations and Software Systems V, pages 23-31. IOS Press, 1998.

[56] J. Cameron and F.J. Lin. Feature interactions in the new world. In K. Kimbler and
L.G. Bouma, editors, Feature Interactions in Telecommunications and Software Systems
V., pages 3-9. IOS Press, 1998.

[6] E. Canver and F.W. von Henke. Formal development of object-based systems in a tem-
poral logic setting. In Formal Methods for Open Object-Based Distributed Systems, pages
419-436. Kluwer Academic Publishers, February 1999.

[7] J.L. Fiadeiro and T. Maibaum. Sometimes ” Tomorrow” is ”Sometime”: Action Refine-
ment in a Temporal Logic of Objects. In D. M. Gabbay and H. J. Ohlbach, editors,
Temporal Logic. Springer Verlag, 1994.

[8] J.Paul Gibson. Formal Object Oriented Development of Software Systems Using LOTOS.
Tech. report csm-114, Stirling University, August 1993.

7

[9] J.Paul Gibson. Feature requirements models: Understanding interactions. In Boutaba
Dini and Logrippo, editors, Feature Interactions in Telecommunication Networks IV,

pages 46-60. IOS Press, 1997.

[10] P. Gibson. Towards a feature interaction algebra. In K. Kimbler and L.G. Bouma, editors,
Feature Interactions in Telecommunications and Software Systems V, pages 217-231. IOS
Press, 1998.

[11] P. Gibson. Formal object oriented requirements: simulation, validation and verification.
In Helena Szczerbicka, editor, Modelling and Simulation: A tool for the next millenium
, vol 11, ESM99, pages 103-111. SCS, 1999.

[12] P. Gibson, G. Hamilton, and D. Méry. Requirements integration problems in telephone
feature development. In Andy Galloway Keijiro Araki and Kenji Taguchi, editors, Inte-
grated Formal Methods conference, IFM99, pages 129-151. Springer Verlag, 1999.

[13] P. Gibson, G. Hamilton, and D. Méry. Composing fair objects. In International Confer-
ence on Software Engineering Applied to Networking and Parallel/ Distributed Computing
(SNPD ’00), 2000. To be announced.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

P. Gibson and D. Méry. Fair objects. In H. Zedan and A. Cau, editors, Object-oriented
technology and computer systems re-engineering. Horwood Publishing, 1998. Presented
at COTSR, Object Technology (OT98), Oxford, UK.

P. Gibson, Y. Mokhtari, and D. Méry. Animating formal specifications — a telephone
simulation case study. In Helena Szczerbicka, editor, Modelling and Simulation: A tool
for the next millenium , vol II, ESM99, pages 139-146. SCS, 1999.

R.J. Hall. Feature combination and interaction detection via foreground/background
models. In K. Kimbler and L.G. Bouma, editors, Feature Interactions in Telecommuni-
cations and Software Systems V, pages 232-246. 10S Press, 1998.

H.-M. Jarvinen and R. Kurki-Suonio. DisCo Specification Language: Marriage of Actions
and Objects. In 11th International Conference on Distributed Computing Systems, pages
142-151. IEEE Computer Society Press, 1991.

L. Lamport. A temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 16(3):872-923, May 1994.

Y. Peng et al. Feature interaction detection technique based on feature assumptions. In
K. Kimbler and L.G. Bouma, editors, Feature Interactions in Telecommunications and

Software Systems V., pages 291-298. I0S Press, 1998.

M. Plath and M. Ryan. Plug-and-play features. In K. Kimbler and L.G. Bouma, editors,
Feature Interactions in Telecommunications and Software Systems V, pages 150-164. TOS
Press, 1998.

P. Zave. Architectural solutions to feature-interaction problems in telecommunications.
In K. Kimbler and L.G. Bouma, editors, Feature Interactions in Telecommunications and
Software Systems V., pages 10-22. I0S Press, 1998.

