
The Application Of
Correct ness Preserving Transformat ions

To Software Maintenance
J. Paul Gibson, Thomas F. Dowling

Department of Computer Science
National University of Ireland, Maynooth

Brian A. .Malloy
Department of Computer Science

Clemson University
Kildare, Ireland

{ pgibson,tdowling} @cs.may. ie

Abstract- The size and complexity of hardware and soft-
ware systems continues to grow, making the introduction of
subtle errors a more likely possibility. A major goal of soft-
ware engineering is to enable developers t o construct sys-
tems that operate reliably despite increased size and com-
plexity. One approach to achieving this goal is through for-
mal methods: mathematically based languages, techniques
and tools for specifying and verifying complex software sys-
tems. In this paper, we apply a theoretical tool that is sup-
ported by many formal methods, the correctness preserving
transformation (CPT), t o a real software engineering prob-
lem: the need for optimization during the maintenance of
code. We present four program transformations and a model
that forms a framework for proof of correctness. We prove
the transformations correct and then apply them to a cryp-
tography application implemented in CS+. Our experience
shows that CPTs can facilitate generation of more efficient
code while guaranteeing the preservation of original behav-
ior.

Keywords- Reverse engineering, formal methods, public
key cryptography, correctness preserving transformation,
code optimization.

I. INTRODUCTION

The size and complexity of hardware and software sys-
tems continues to grow, making the introduction of subtle
errors a more likely possibility. Some of these errors may
cause inconvenience or loss of money, while some errors
may even cause loss of life. A major goal of software en-
gineering is to enable developers to construct systems that
operate reliably despite increased size and complexity. One
approach to achieving this goal is through formal methods:
mathematically based languages, techniques and tools for
specifying and verifying complex software systems[8]

Although formal methods have increasingly been applied
to the specification and verification of software models and
systems, they have rarely been applied to software main-
tenance[24]. Perhaps the rare application of formal meth-
ods to maintenance is due to the difficulties involved: the
program developer has complete control over the structure
and organization of the development process, whereas the

Clemson, SC 29634
malloy@cs. clemson. edu

reverse engineer must maintain a completed system, pos-
sibly poorly documented and poorly constructed. Due to
this difficulty, many attempts at applying formal methods
to software maintenance have targeted toy programs rather
than real applications[24].

In this paper, we apply a theoretical tool that is sup-
ported by many formal methods, the correctness preserv-
ing transformation (CPT) , to a real software engineering
problem: the need for optimization during the maintenance
of code. We present four program transformations and a
model that forms a framework for proof of correctness. We
prove the transformations correct and then apply them to a
cryptography application[ll] implemented in the C++ pro-
gramming language[l]. Our experience shows that CPTs
can facilitate generation of more efficient code while guar-
anteeing the preservation of original behavior. Our ongoing
work includes the application of the CPTs to other sections
of the cryptography application, and reusing the CPTs in
other applications[21], [22].

The remainder of this paper is organized as follows. In
the next section we provide background about cryptogra-
phy, the cryptography application that we use as a case
study, and the formal techniques that we employ in this
paper. In Section 111 we present our methodology for prov-
ing correctness. Section IV contains the four CPTs and the
proofs of correctness. In Section V we present the results
of our case study where we apply the CPTs to a cryptog-
raphy application[22], showing a dramatic increase in effi-
ciency with only a single application of the CPTs. Finally,
in Section VI, we draw conclusions.

11. BACKGROUND

In the next section we provide background about a cryp-
tography application that we use to demonstrate the ef-

108 1063-6773/00 $10.00 0 2000 IEEE

+flNumber Biglnt
@field FiniteField
$.text string
&vector<int* elements __

%id encrypt 0
h i d decrypt 0
+emnedText 0
+printEncryptedMsg (ostream &:
*printDecryptedMsg (ostream

Biglnt
@number List

FinrteField
@rieldPolnts vector<~ig~nt>
~COdedFieldPOinlS vector*Biglnt>
@decodedFieldPoints vectorcBiglnb *Blglnl
@fieldNumber Biglnt - *Biglnt operator/()

6Biglnt operator"()
*Bight operator%()
*bo01 operator==()
QBiglnt intPowerModulo()

$encodeFieldPoints()
*decodeFieldPolnts()
*getDecodedFieldPoints()
%etFieldPoints()

Fig. 1. Class diagram for cryptography application. This figure illustrates the important classes in our application for encryption and
decryption. All four of our CPTs were applied to the BigInt and List classes. However, the other classes contain opportunity to apply
some of the CPTs that we present.

ficiency of our CPTs. Section 11-B contains background
about the formal techniques that we use in this paper.

A . T h e Cryptography Application

Our cryptography application uses public key encryption
where the encryption and decryption keys are distinct. It's
possible to determine the decryption key from the encryp-
tion key but, by using sufficiently large keys, this deter-
mination is computationally infeasible. This protection is
achieved by the use of a trapdoor process. A trapdoor pro-
cess is computationally trivial in one direction but compu-
tationally infeasible in the opposite direction without some
additional information. There are many examples of trap-
door processes in mathematics but our application uses fi-
nite fields. To make decryption computationally infeasible
we will use sufficiently large Finite Fields. By sufficiently
large we mean the number of elements in the field to be of
the order of one hundred digits.

The implementation that we use is based on the El
Gama1 encryption scheme[l2]. The finite field version
works as follows: Let the integer equivalent of the mes-
sage to be transmitted be denoted by P. Users A and B
start by deciding upon a very large finite field F, and a
generator g of that field. User A randomly chooses an in-
teger a in the range 0 < a < p - 1. This is the secret
deciphering key. A then computes and publishes ga. This
is the public key. User B does the same thing. To send a
message to user A, an integer IC is chosen at random and A
is sent the following pair of elements of F, ,

Recall that ga is publicly known but a is known only to the
(gk, Wk)

user A. With this knowledge the user A can strip off the
gak and retrieve P , but without the knowledge of a no one
else can retrieve P.

Figure 1 illustrates the important classes for implement-
ing our cryptography application. Users of the system need
only instantiate CryptoScheme, the class shown in the up-
per left corner of Figure 1, with the text to be encrypted or
decrypted. CryptoScheme contains methods to encrypt or
decrypt the text, and uses a finite field to afford public key
protection. The FiniteField class uses extended precision
numbers; thus the association with Biglnt, shown in the
upper right corner of the figure. To implement extended
precision numbers, the digits of the number are stored in a
list, with iterators to traverse the number in either direc-
tion. The List class and corresponding iterator classes are
shown at the bottom of Figure 1. All of our CPTs were
applied to the Biglnt and List classes.

B. Formal Methods and CPTs

Software development has reached the point where the
complexity of the systems being modeled cannot be han-
dled without a thorough understanding of underlying fun-
damental principles. Such understanding forms the basis
of scientific theory as a rationale for software development
techniques that are successful in practice. This scientific
theory, as expressed in rigorous mathematical formalisms,
must be transferred to the software development environ-
ment. In this way, we can more accurately refer to the de-
velopment of software systems as software engineering: the
application of techniques, based on mathematical theory,

109

towards the construction of abstract machines as a means
of solving well defined problems. This paper reports on
such a technology transfer.

B.l Introducing Formal Methods

Formal methods are techniques whose principle goal is
the construction of theories (and tools based on these the-
oretical models) for the development of correct software[lO] ,
[2]. A theoretical tool that is supported by many for-
mal methods is the correctness preserving transformation
(CPT). In this paper we are concerned with the practi-
cal application of this theory in a real software engineering
problem: the need for optimization during the evolution
and maintenance of code, without compromising an already
well behaved system.

B.2 Targeting Formal Methods

Formal methods are not widely used in real software de-
velopment (the best-known exceptions are in telecommu-
nications, safety-critical systems and embedded systems).
In many cases, this is because they are not suitably sup-
ported with development tools. Furthermore, engineers are
justifiably wary of some of the over-inflated claims coming
from the formal methods community. This, in turn, has led
to a certain mythology about the use and abuse of formal
methods [16], [3]. Finally, these methods, for a variety of
reasons, are viewed as being costly. A partial solution to
this problem, supported by this paper, is the application
of a very specific formal technique, in a specific problem
domain, in order to provide much needed focus, so that
software engineers can make up their own minds about the
utility of formality.

We acknowledge that it is impossible for a software sys-
tem to be perfect. When developing software we must de-
cide upon the primary characteristics that will drive the
process. Correctness is only one such characteristic among
many others such as: time-to-market, user-friendliness,
completeness, performance, fault tolerance, scale-ability,
extensibility, portability, re-usability and cost. In this pa-
per we report on our choice to employ formal techniques
in the verification of our code optimizations. Our experi-
ence shows that correctness preserving transformations can
facilitate the generation of more efficient code while guar-
anteeing the preservation of original behavior.

-

110

B .3 Transformational Design in formal development

Design is the process that transforms an initially abstract
(implementation independent) specification of system re-
quirements into a final, more constructive (implementation
oriented) specification. A fundamental notion in this work
is design trajectory: a sequence of steps, where each step
changes the previous specification in some way. The impor-
tant thing is that something must also be preserved along
this trajectory: the correctness of the design[23].

At each step, a transformation can be applied that re-
flects some architectural choice, without altering the exter-
nal (observable) behavior of the system. In theory, it is
possible to verify the correctness of any given design (or
programming) step by mathematical means[lO], [26]. In
practice, the complete formal verification of most design
steps is not possible because of combinatorial problems. In
these cases, specifications are partly verified by simulation
and testing.

In this paper we take the view that a code optimization
corresponds precisely to the formal methods notion of a
design transformation. We treat the non-optimum code as
if it were a functional specification of the required behav-
ior, and we consider the optimized code to be the result of
applying some sort of design modification to the original
code. A formal framework provides the means of proving
that the transformation (optimization) is correct, by prov-
ing that the functional behavior is maintained. Of course,
such proofs can be long and tedious and prone to error.
However, if we can re-use the formal analysis or proof ev-
ery time we perform the same transformation, then this
re-use would go a long way toward overcoming the expense
of the proof. This re-use is one of the contributions of this
paper.

B.4 Re-usable Proofs -- CPTs

In CPT-driven design, we get verification f o r free because
we apply only transformations (design changes) whose cor-
rectness has already been proven. For a classic CPT-
driven approach to verification we recommend the paper
by Brown[5] . We proceed by introducing formal terminol-
ogy about CPTs.

A specification can be said to be correct if it fulfills some property.
Assume a specification S , a transformation T and define S’ = T(S),
i.e. S’ is the result of applying T to S . T can be said to be correctness
preserving with respect to the property P if P (S) + P(S’). In other
words, the property P is preserved across the transformation T.

We chose to distinguish between external and internal

properties. External properties are those that can be ob-
served through interaction with a system at its external
interface. They are said to be purely functional as they
are concerned with what the system does rather than how
(well) it does it. Internal properties are those that can be
derived through examination of the text that specifies the
system in question. They cannot be ‘extracted’ through in-
teraction with the system interface alone. Formulation of
these properties requires the definition of a non-standard
interpretation of the specification. This interpretation is
said to provide a view on the system. In this paper we are
concerned with CPTs that maintain external properties.
Such CPTs are said to be structural.

By differentiating between what should stay the same
and what should be different, as the result of a design
change, an elegant and formal statement of the require-
ments of a design step can be given as follows. Given:
A specification S1
An implementation relation R
A view function V, which has S1 in its domain
A view property P that is fulfilled by V(S l) , i.e. P(V(S1)) is true.
A view property P‘ and a second view V’ such that not(P’(V’(S1)))

A structural design change corresponds to the specification of Sz, the
next design, such that:
R(S1, Sz), and R is a strong bisimulation equivalence’.
P(V(S2)) and P’(V’(S2))

In other words, SZ maintains the external behavior of SI,
maintains the view property P and adheres to a new view
property P’, which was not fulfilled by SI. One could say
that the reason for defining Sz was the fulfillment of this
new property.

B.5 Code Optimizations as CPTs

The formulation of a code optimization as a CPT is
straightforward:
S1 corresponds to the original piece of code to be optimized
S2 corresponds t o the new code
V is some view formalized by the algorithmic complexity
P is some (complexity) property exhibited by S1
P’ is some (complexity) property exhibited by SZ but not Si
V’ is usually taken to be the same as V, but it could be formulated, for
example, as a more precise statement of complexity that could address
such issues as best/worst-case scenarios and/or memory usage.

111. METHODOLOGY: REVERSE ENGINEERING FOR

CORRECTNESS

In our formulation of a code optimization as a CPT, we
have hidden the crux of the problem, namely: proving that
the final behavior of our 2 pieces of code are functionally

lStrong bisimulation equivalence states that the behavior trees of-
fered by S1 and Sz are the same (even if the way in which they are
specified is different). In programming languages, this would corre-
spond to being functionally equivalent.

In this paper, we report on our experiences with the second
case. The advantage over the first case is that we can
choose to formulate our reasoning in whatever framework
best suits our needs. The disadvantage is that we have
more work to do in order to build an abstract model.

A . The problem of multi-semantic models

We must acknowledge that a weakness inherent in our
approach arises from our use of at least two potentially very
different semantic frameworks. The proof of consistency
between models in different semantic domains is a very
important area of on-going research (see [13], [15] for some
of our previous work in this area). Without consistency,
our reasoning in one domain may not be valid in the other.
It is beyond the scope of this paper to directly address this
issue: we do return to it in later sections and argue that our
experiments provide further motivation for continuing the
research into constructing unified mixed-semantic models.

B. Abstract interpretation for reverse engineering

When we reverse engineer the code to a more formal
mathematical model, it is important that we abstract away
from irrelevant implementation details[20]. The goal is to
develop an abstract interpretation that captures precisely
the functional requirements, the internal view and the non-
functional properties (and no more). In many cases, this

~

111

equivalent. The semantics of our chosen programming lan-
guage (C++) make such a proof practically impossible to
construct, given the current state-of-the-art, in all but the
most trivial cases. However, this does not imply that we
should completely abandon our theoretical goal of proving
the optimization to be correct. In fact, we can, using expert
knowledge of C++ and the implementation of its semantics
(as specified by the compiler), argue for equivalence in a
semi-formal (rigorous) manner. Our first goal should be to
verify the soundness of such rigorous arguments. This can
best be achieved by expressing the argument in a formal
framework. There are two possibilities:

The C++ code was developed from a formal specification
and we can re-use this specification framework in order to
formulate and verify our reasoning. (In the current context
of software engineering, this is very unlikely.)

No formal specification of the code exists and we have
to reverse engineer the functional requirements through a
process of abstract interpretation, in order to verify our
reasoning.

T i: T --->T r+ j2

I1 ---> 12 I1 ---> I 2 I1 ---> I2 I1 ---> I2

Step 1 Step 2 Step 3 Step 4

Fig. 2. Implementation Oriented Optimization

will require a close structural mapping between implemen-
tation code and the reverse engineered specification. This
could prove problematic if the structures supported in the
implementation language are not directly supported in the
formal framework. However, as we shall see later in this
section, the use of object oriented structuring mechanisms
makes it easier for us to find correspondences between
structures at all levels of abstraction (see [14] for a more
comprehensive treatment of this argument).

C. Implementat ion oriented optimization

Consider the diagram in Figure 2.
The four steps, of the implementation oriented optimiza-

tion, are as follows:

Step 1 -
Transform the initial code, I1, to optimize it as Iz. Sketch an argu-
ment that the transformation is correct.
Step 2 -
Reverse engineer I] and I2 to S1 and SZ, respectively.
Step 3 -
Formulate a proof, in the formal framework, that S2 is correct with
respect to the functional requirements of SI. This proof must follow
the argument sketched in step 1.
Step 4 -
Attempt t o verify the proof (using tools available in the formal do-
main). If the proof is correct then we have verified our informal
reasoning of the correctness of the optimization. Otherwise, we can
change Iz, in order to f i l l in the holes in the proof, or we can change
our reasoning process, in order to re-formulate the proof.

In this approach we say that the optimization is
implementation-oriented because the transformation is first
formulated at the code level. This is the approach followed
in this paper.

D. Specification oriented optimization: re-usable correct-
ness

Consider the diagram in Figure 3.
The three steps, of the specification oriented optimiza-

tion, are as follows:

Step 1 -
Reverse engineer the code, mapping I1 to SI.

Step 2 -
Apply an already proven CPT to transform Si into Sz , where Sz
fulfills the additional properties required in our optimization.
Step 3 -
Use Sz to develop 12. This development could possibly be supported
by some sort of automated code generator.
Ideal step -
If the reverse engineer mapping and the code generation mapping can
be proven t o be correct then we have a fully formalized proof that 12
is correct with respect to the external functionality of I I .

E. Correctness of the mappings

Proving the correctness of the mappings across seman-
tic frameworks is a difficult task. However, progress has
been made and this is continuing research[l9]. It is clear
that it is much easier to analyze the mappings when the
semantic domain is small. Consequently, proving the cor-
rectness of our reverse engineering of the C++ code is a
much more difficult task than proving the correctness of
our code generation from the formal specification. In fact,
the mapping from specification to implementation can be
relatively straightforward to formulate: in the next section
we see how the C++ class can be mapped onto an abstract
data type (ADT2) specification of a type. (It is well ac-
cepted that an ADT can be conceptualized as an abstract
class specification[4], [9].) This is the basis upon which we
build the mappings (in both directions).

IV. PROOF OF CORRECTNESS

In this section, we apply our methodology for reverse en-
gineering the functional requirements through a process of
abstract interpretation, in order to verify our transforma-
tions. Each transformation represents an ad-hoc, expert-
driven optimization; currently, application of the transfor-
mations is not automated. We begin each section by de-
scribing the transformation under consideration, and then
we proceed with a proof of correctness.

2The text by Cardelli[G] provides a good introduction to such alge-
braic specification languages.

112

Step 1 Step 2 Step 3 Ideal

Fig. 3. Specification Oriented Optimization

B igh t BigInt::power(const B igh t & exponent) const {

if (exponent == 0) return 1;
else if (exponent == 1) return number;
else {

Bigh t temp = power(exponent/2);
if (exponent % 2 == 0) {

return temp * temp;
- 1

1

else {
return ((*this) * temp * temp);

1
1

Fig. 4. Tree Pruning (TP). This figure illustrates the C++ version of
our optimization to improve the efficiency of raising an extended
precision number to a power.

A . The TP transformation

The goal of the tree pruning transformation, tree pruning
(TP), is to reduce the computation, from O(n) to O(1og n),
through the use of a symmetrical argument whereby both
branches of a tree can be shown to evaluate to the same
value. As an example of this transformation, consider rais-
ing an extended precision number (BigInt) to an exponent.
Half of the computation can be obviated by computing the
result of raising the number to half of the exponent and
then using multiplication t o square the result. Then, in
the evaluation of one branch of the tree, the same argu-
ment can be re-applied recursively. The C++ version of
our code for TP is illustrated in Figure 4.

We formalize this transformation by modeling the two
functions as ADT operations, on a Bight type, and prov-
ing equivalence (through consistency analysis) of the two
operations. Consider, below, the specification, written in
ACT ONE (an ADT used in an LOTOS[18], an interna-
tionally recognized formal method).
TYPE Bigh t SORTS BigInt
OPNS 0,l:-> B igh t
+,*: Bigh t , B igh t -> Bigh t
equals: B igh t , B igh t -> Boo1
powerl: B i g h t , B igh t -> Bigh t
powerllocal: B igh t , BigInt, B igh t , B igh t -> Bigh t
EQNS FORALL this,exponent,answer,count: BigInt

powerl(this, exponent) = powerllocal(this,exponent,l,O);
[equals(count,exponent)] =>
powerllocal(this,exponent,answer,count) = answer;
[not(equals(count,exponent))] =>
powerllocal(this,exponent,answer,count) =
powerllocal(this,exponent ,answer*this,count+l);
ENDTYPE (*Bight*)

This is the formal specification that arises when we re-
verse engineer the original power method of the Bight
C++ class. There are a number of things to note, in gen-
eral, about this reverse engineering process:

The methods of the class correspond to operations of
the ADT type. This maps the purely syntactic notion of
interface.

The method bodies of the class correspond to the equa-
tions of the type. This maps the semantics (meaning) of
the code to be reverse engineered.

We explicitly represent the C++ this operator as the
first parameter in each of the ADT operation definitions.

We have abstracted away from the operation overloading
of the C++ power operator. It is not relevant to our proof.

We have not given the semantics for the operators +, - , *
and equals: for the moment we assume that they work as
required . . . we re-examine this assumption when we return
to our proof of correctness.

We explicitly provide the literal constructors (for the val-
ues 0 and 1) of BigInt.
Now let us consider the mapping of the C++ while loop.
There is a standard technique for this type of reverse engi-
neering, which we summarize below:

The while condition is mapped directly onto an expres-
sion precondition (in the square brackets).

The use of temporary variables in the while loop (the
count and the answer) requires us to define a local func-
tion, called powerllocal, in which these values are stored
as additional parameters.

The initialization of the local parameters, before the
while loop, corresponds to our call to the local function

113

where the paramctcrs are given thc required values. . The body of the loop maps to the rc-initialization of the
parameter values, in the recursivc calls, as required

The next step is to reverse engineer thc optimized code, as
specified by power2 in C-t+. The resulting ADT specifica-
tion is:
T Y P E Bigh t SORTS Bigh t
O P N S 0,l:-> B igh t
+,*,mod,/: BigInt, BigInt -> Bigh t
equals: B igh t , B igh t -> Roo1
powera: B i g h t , B i g h t -> Bigh t
E Q N S FORALL this,exponent,temp: B igh t
square(temp) = temp*temp;
[equals(exponent,O)] => powerZ(this,exponent) = 1;
[equals(exponent,l)] => power2(this,exponent) = this;
[(exponent>= 1) and equals((exponcnt mod Z) , O)] =>
power2(this,exponent) = square(power2(this, exponent/2);
[(exponent>= 1) and not(equals((cxponent mod Z) , O))] =>
power2(this,exponent) = this* square(powerZ(this, exponent/2);
ENDTYPE (*BigInt*)

The mapping procedure is similar to the first function,
but we make the additional notes:

We have additional assumptions to make about the op-
erators mod and /.

The recursive structure of the second C++ function maps
directly onto the same recursive structure in the ADT spec-
ification

We introduce a square operation in order to store
the the value of our temporary variable temp, defined as
power2(thisI exponent/2).

The sequence of C++ i f -else statements requires a bit
more work in the ADT specification becausc there is no
syntactic sugar for representing the else case. (However,
the generation of the equivalent sequence of preconditions
is easy to automate.)

To prove that powerl and power2 arc equivalent in our
formal framework, we follow the following strategy:

Formulate the assumptions that we make about the op-
erators of the Bight class as preconditions of correctness.
It is straightforward to prove these preconditions, in our
formal ADT framework, but we do not report on this as
part of this paper.

State the equivalence property as: powerl(x,y) =

power2 (x, y) , forall x and y of type BigInt.
Prove the property by using the ADT tools to prove

consistency of the BigInt specification containing power1 ,
power2 and the equivalence property; or prove the prop-
erty directly using a proof by structural induction on the
y variable.

It is beyond the scope of the paper to report on the
use of the ADT tool t o prove consistency of specifications.

~

114

However, we do sketch the proof by structural induction,
below:
The base case (when y =0) --
By definition of power1 and power2,
poueri(x.0) = powerllocal(x,O,l,O) = 1 and pouerZ(x,O) = 1
Thus, powerl(x,y) = powerZ(x,y) when y = 0.

The inductive case -
We assume that:
poweri(x,y) = power2(x.y) for some y, and we are required to prove
that:
powerl(x,y+l) = power2(x, y+ l)

By definition of powerl and powerllocal,
powerl(x,y+l)=powerllocal~x,y+l,l,O~=powerllocal~x,y+l,x,l~.
Now, for any two BigInts (a and b, say) then a equals h iff a+l
equals b+l, thus:
powerllocal(x, y+l , x, 1) equals powerllocal (x, y , x .O)
By definition of *, powerl and powerllocal,
powerllocal(x,y,x,O) equals (x*powerllocal(x.y,l,O)) equals (x
* powerl(x.y))
Now, by the induction hypothesis, this equals x*poverZ(x,y).

It remainsonly to show that: power2(x, y+l) equals x*poverZ(x,y).
This is done by considering the m e where y is odd and the case where
y is even. Each follows from the definition of powerZ(x,y) and the
assumption that the * operator is correctly defined.

(A complete copy of the proof can be obtained from the
authors, on request.)

B. The AR transformation

The goal of the array reference transformation (AR), is
to obviate an O(n) array lookup. To do this, data values,
that are to be searched in the array, are mapped to an
integer that will be used as an index into the array. Then,
rather than searching the array for the value and returning
the corresponding index in O(n) time, the value can be
found with a direct lookup in O(1) time.

The proof of the correctness of this transformation is
based upon proving that the alphabet array corresponds
to the identity function. In the reverse engineering of the
original non-optimized code, we map the notion of an ar-
ray into a function whose domain is the set of valid array
indices. For this, we chose a pure functional language(1ike
SML[25]) as our formal framework (whose semantics corre-
sponds to the lambda-calculus of Alonzo Church [7]). We
sketch the proof, below:
Define: alphabet = C (0.0); (1,l); (2,2); ... (255,255)
arrayindex((x,y)::z, i)= if i=x then y else arrayindex(z,i)
Now, we prove that:
arrayindex(alphabet, x) = x, provided 0<= x <= 255
Thus, the non-optimum access function defined as:
access1 (alphabet, i) = arrayindex(alphabet, expression(i))
Can be re-written as an equivalent function access2, defined as:
access2 (alphabet, expression(i)) = expression(i)

Although this proof is straightforward, we have gained
some insight into why it is superior to reasoning directly
in the C++ framework: the formulation of the abstract
interpretation improves our understanding of the rcasoning

process and identifies assumptions that need to be verified
for the transformation to be correct. In this example, there
is an important aspect of this abstract interpretation that
needs explanation: the express ion(i) in our formal model
is evaluated twice without any side-effects. In fact, our
reasoning would break down if there were any side-effects in
the expression when used in the C++ code. Through simple
inspection, we argue that instantiating the expression as
(i n t) t e x t Cil is valid (since its evaluation is side-effect
free in C++).

C. The MM transformation

The goal of the memory management transformation
(MM), is to minimize calls to new and delete to manage dy-
namic memory. In MM, the delete operator is overloaded
to place the deleted object into a free list. Also, the new
operator is overloaded and the actions of new are to first
check the free list: if the free list is not empty, then the
requested storage is allocated from the free list; otherwise,
the system new is used to allocate memory from the heap.

The proof of correctness of this transformation cannot
be treated satisfactorily in this paper. It is more complex
than the other three: we are preparing a separate papcr
on the approach taken to prove this complicated transfor-
mation to be correct. (For those interested, the crux of
the problem is in finding a suitable abstract interpretation
for the memory in the system and choosing the best for-
mal representation. Unlike the other transformation, these
choices are not straightforward.)

D. The BA transformation

The goal of the boundary analysis transformation (BA),
is to avoid a computation by exploiting the shortcut pro-
vided by a boundary computation. For example, when
computing the modulus two of a number, the result is de-
termined by the digit in the unit position: if this digit is
even, then the rcsult is zero, if this digit is odd, then the
result is one.

The modeling of this transformation is trivial, in almost
any formal framework. The proof of correctness is also
trivial: all we need is an abstraction (defined as a function,
AI, say) of thc data values that spccifics an equivalence
between diffcrent numbers providcd they return the same
result with respect to thc spccified modulus computation.
Then, in the optimized function, the computation can bc
defined directly on the abstraction rather than on the num-

her itself. The proof can then be formulated as:

Modulus (number) = Modulus2 (AI(number)), for all

valid numbers

V. APPLYING THE CPTs TO A N APPLICATION:
A CASE STUDY

In this section, we report on the efficiency improvement
that we achieved by applying the four correctness pre-
serving transformations (CPTs) to a cryptography appli-
cation[22]. All executions that we report were executed on
a 500 MHz Dell Optiplex, running the Linux Red Hat 6.1
operating system. We implemented the cryptography ap-
plication with the egcs C++ compiler, release 1.1.2. Each
of the executions that we report represent the results of
twelve executions, the lowest and highest value was dis-
carded and the reported result is the average of the ten
remaining values.

In the next section we report our results after applying
cach of the four CPTs in turn, so that we can compare the
effect of each optimization. We used profile information,
acquired from the gprof profiling tool, to guide placement
of each of the CPTs.

In Section V-B, we report our results after applying all
four CPTs to the application; we only applied each CPT
a single time to facilitate clarity of analysis. We applied
the CPT a t the same point in the application that it was
applied for the executions described in Section V-A.

A . Results for each individual CPT

Figure 5 illustrates the results of applying each of the
CPTs, in turn, to the cryptography application. The ta-
ble a t the top of the figure shows the execution times after
applying each of the CPTs, the bar graph at the bottom
of the figure further illustrates these timings. For the ta-
ble, the first column illustrates the applied optimization;
the remaining columns illustrate reported results. For ex-
ample, the second column illustrates the number of seconds
requircd to both encrypt and decrypt a file containing 1000
randomly generated characters. The first row of data illus-
trates timings for the original program, without any op-
timizations applied, the second row illustrates timings for
the array reference optimization (AR), the third row for
the mcmory management optimization (MM), the fourth
row for the boundary analysis optimization (BA) and the
last row illustrates timings for the tree pruning optimiza-
tion (TP). For example, in the original program using none

115

Program

AR
MM
BA
TP

Fig. 5. The effect of each optimization. The results depicted in this table show the outcome of applying each of the optimizations once in

seconds for seconds for seconds for seconds for seconds for

9.13 16 98 25.18 34.70 43.14
8.96 16.39 24.60 33.78 42.09
5.67 10.50 15.75 21.58 26.74
6.21 11.52 17.28 23.66 29 54
6.35 11.95 17.97 24.69 30.64

1000 bytes 2000 bytes 3000 bytes 4000 bytes 5000 bytes

of the transformations, the average time to encrypt and de-
crypt a file of 1000 characters was 9.13 seconds, as shown
in the first row, second column of the table.

The bar graph in Figure 5 better illustrates our results.
Time, in seconds, is plotted on the y-axis of the graph and
file size, in 1000 byte increments, is plotted on the x-axis
of the graph. The first set of five bars represents timings
for the original program and each of the four optimiza-
tions. For each set of experiments, the highest bar is al-
ways the original program and the lowest bar is always the
program containing the MM optimization. The array ref-
erence transformation provided the smallest improvement
in execution time, but consistently provided improvement.
This transformastion was not placed in an area of code that
was frequently executed.

B. Results for ull four CPTs

Figure 6 illustrates the results of applying all four of the
CPTs, a single time, to the cryptography application. The
table at the top of the figure illustrates timings for both
the original program and for the program containing all
four transformations. The columns are similar to those in
Figure 5. The bar graph at the bottom of the figure fur-
ther illustrates our timings, where the four transformations
consistently provided sixty percent increase in efficiency.
We found many more opportunity for exploiting some of
the transformations; for example, we found seven places in
the cryptography application where we could apply the BA
transformation but only two places where we could apply

the AR transformation. 13y applying each transformation
only once, we can better see the cumulative effect of the
four transformations.

VI. CONCLUDING REMARKS

In this paper, we applied correctness preserving truns-
formations, CPTs, to a real software engineering problem:
the need for optimization during the maintenance of code.
We have presented a framework for proving CPTs correct
and four CPTs together with proofs of their correctness.
We have applied the CPTs to an existing cryptography ap-
plication, implemented in C++, and have shown dramatic
improvement in efficiency with only a single use of each
CPT. Our ongoing work on this project includes efforts to
apply the CPTs to other sections of the cryptography ap-
plication as well as the development of additional CPTs.
We are also applying the CPTs to other applications to
further demonstrate their re-use. Our future work includes
an examination of the effects of the transformations on test
set adequacy [171.

VII. ACKNOWLEDGEMENT

We would like to thank Paul Redkoles for his help ac-
quiring profile information and for his tireless experiments
with gprof.

REFERENCES
[l] ISO/IEC J T C 1. International Standard: Programming Lan-

guages - C++. Number 14882:1998(E) in ASC X3. American
National Standards Institute, first edition, September 1998.

116

Program
Optimization

original
All four

25

20

15

10

5

0

seconds for seconds for seconds for seconds for seconds for
1000 bytes 2000 bytes 3000 bytes 4000 bytes 5000 bytes

9.13 16.98 25.18 34.70 43.14
3.75 7.01 10.50 14.49 17.83

35

30

35

30

25

20

15

10

5

0
1000 2000 3000 4000 5000

Fig. 6. The eflect of applying all four optimizations. The results depicted in this table show the outcome of applying all four of the
optimizations once in the program.

‘R.L. Baber. The Spine of Software - Designing Provably Cor-
rect Software: Theory and Practice, or: A Mathematical Intro-
duction To The Semantics Of Computer Programs. John Wiley
and Sons, 1987.
J . Bowen and M. Hinchley. Seven more myths of formal methods.
IEEE Software, 12(4):34-41, 1995.
R. Breu. Algebraic Specification Techniques in Object Oriented
Programming Environments. Springer-Verlag, 1991. Lecture
Notes in Computing Science, number 562.
N. Brown. Correctness-preserving transformations for the design
of parallel programs. In ECOOP ’94 Workshops : Models and
Languages for Coordination and Parallelism and Distribution.
Springer Verlag, 1995.
L. Cardelli and P. Wegner. On understanding types, data
abstraction, and polymorphism. A CM Computing Surveys,
17(4) :47 1-523, December 1985.
Alonzo Church. The calculi of lambda conversion. Annals of
Mathematics Studies, 6, 1941.
E. M. Clarke, J . M. Wing, and et al. Formal methods: State
of the art and future directions. A C M Computing Surveys,
28(4):626-643, December 1996.
S. Danforth and C. Tomlinson. Type theories and object-
oriented programming. A CM Computing Surveys, 20(1):29-72,
March 1988.
J.W. de Bakker. Mathematical Theory of Programming Correct-
ness. Prentice-Hall, 1980.
T . Dowling and B. A. Malloy. The design of a component-based
encryption scheme. Proceedings of the Fifth International Con-
ference on Computer Science and Informatics, February 2000.
(to appear).
T. El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on informa-
tion Theory IT-31, pages 469-472, 1985.
J.-P. Gibson and D. MBry. A Unifying Model for Multi-Semantic
Software Development. Rapport Interne CRIN-96-R-110, CRIN,
Linz (Austria), July 1996.
J.Paul Gibson. Formal Object Oriented Development of Soft-
ware Systems Using LOTOS. Tech. report csm-114, Stirling
University, August 1993.
Mermet Gibson and MBry. Feature interactions: A mixed se-
mantic model approach. In Irish Workshop o n Formal Methods,
Dublin, Ireland, July 1997.
Anthony Hall. Seven myths of formal methods. IEEE Software,

M. J. Harrold. The effects of optimizing transformations on
dataflow-adequate test sets. Proceedings of the Symposium on
Testing, Analysis and Verification, pages 130-138, 1991.
ISO. LOTOS - ab formal description technique based on the
temporal ordering of observed behaviour. Technical report, In-
ternational Organisation for Standardisation IS 8807, 1988.
Andy Galloway Keijiro Araki and Kenji Taguchi (editors). In-
tegrated Formal Methods conference (IFM99). Springer, 1999.

7(5):11-19, 1990.

[20] B. Liskov and J . Guttag. Abstraction and Specification in Pro-
gram Development. MIT Press, 1986.

[21] B. A. Malloy, D E. Bushey, and S. Yang. Using jet routes to
model path re-routing in the national airspace system. Proceed-
ings of the 13th European Simulation Multiconference (ESMSS),
pages 543-550, June 1994.

[22] B. A. Malloy, J . D. McGregor, and S. Hughes. Integrating a
gui into a command driven application. International Journal
of Computer and Applications, 2000. (to appear).

[23] Helmut A. Partsch. Specification and Transformation of Pro-
grams: A Formal Approach To Software Development. Springer-
Verlag, 1990.

[24] M. P. Ward. Reverse engineering through formal transformation.
Technical Report for Computer Science Labs, pages 1-19, Au-
gust 1994. http://www.dur.ac.uk/ dcsOmpw/martin/papers/.

[25] A. Wikstrom. Functional Programming Using Standard ML.
Prentice-Hall, 1987.

[26] N. Wirth. Program development by step-wise refinement.
Comm. ACM, 14:221-227, 1971.

117

http://www.dur.ac.uk

