
The Application Of 
Correct ness Preserving Transformat ions 

To Software Maintenance 
J. Paul Gibson, Thomas F. Dowling 

Department of Computer Science 
National University of Ireland, Maynooth 

Brian A. .Malloy 
Department of Computer Science 

Clemson University 
Kildare, Ireland 

{ pgibson,tdowling} @cs.may. ie 

Abstract- The size and complexity of hardware and soft- 
ware systems continues to  grow, making the introduction of 
subtle errors a more likely possibility. A major goal of soft- 
ware engineering is to  enable developers t o  construct sys- 
tems that operate reliably despite increased size and com- 
plexity. One approach to  achieving this goal is through for- 
mal methods: mathematically based languages, techniques 
and tools for specifying and verifying complex software sys- 
tems. In this paper, we apply a theoretical tool that is sup- 
ported by many formal methods, the correctness preserving 
transformation (CPT), t o  a real software engineering prob- 
lem: the need for optimization during the maintenance of 
code. We present four program transformations and a model 
that  forms a framework for proof of correctness. We prove 
the transformations correct and then apply them to  a cryp- 
tography application implemented in CS+. Our experience 
shows that CPTs can facilitate generation of more efficient 
code while guaranteeing the preservation of original behav- 
ior. 

Keywords- Reverse engineering, formal methods, public 
key cryptography, correctness preserving transformation, 
code optimization. 

I. INTRODUCTION 

The size and complexity of hardware and software sys- 
tems continues to grow, making the introduction of subtle 
errors a more likely possibility. Some of these errors may 
cause inconvenience or loss of money, while some errors 
may even cause loss of life. A major goal of software en- 
gineering is to enable developers to construct systems that 
operate reliably despite increased size and complexity. One 
approach to achieving this goal is through formal methods: 
mathematically based languages, techniques and tools for 
specifying and verifying complex software systems[8] 

Although formal methods have increasingly been applied 
to the specification and verification of software models and 
systems, they have rarely been applied to software main- 
tenance[24]. Perhaps the rare application of formal meth- 
ods to  maintenance is due to the difficulties involved: the 
program developer has complete control over the structure 
and organization of the development process, whereas the 
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reverse engineer must maintain a completed system, pos- 
sibly poorly documented and poorly constructed. Due to 
this difficulty, many attempts at applying formal methods 
to software maintenance have targeted toy programs rather 
than real applications[24]. 

In this paper, we apply a theoretical tool that is sup- 
ported by many formal methods, the correctness preserv- 
ing transformation (CPT) , to a real software engineering 
problem: the need for optimization during the maintenance 
of code. We present four program transformations and a 
model that forms a framework for proof of correctness. We 
prove the transformations correct and then apply them to a 
cryptography application[ll] implemented in the C++ pro- 
gramming language[l]. Our experience shows that CPTs 
can facilitate generation of more efficient code while guar- 
anteeing the preservation of original behavior. Our ongoing 
work includes the application of the CPTs to other sections 
of the cryptography application, and reusing the CPTs in 
other applications[21], [22]. 

The remainder of this paper is organized as follows. In 
the next section we provide background about cryptogra- 
phy, the cryptography application that we use as a case 
study, and the formal techniques that we employ in this 
paper. In Section 111 we present our methodology for prov- 
ing correctness. Section IV contains the four CPTs and the 
proofs of correctness. In Section V we present the results 
of our case study where we apply the CPTs to a cryptog- 
raphy application[22], showing a dramatic increase in effi- 
ciency with only a single application of the CPTs. Finally, 
in Section VI, we draw conclusions. 

11. BACKGROUND 

In the next section we provide background about a cryp- 
tography application that we use to  demonstrate the ef- 
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Fig. 1. Class diagram for  cryptography application. This figure illustrates the important classes in our application for encryption and 
decryption. All four of our CPTs were applied to  the BigInt and List classes. However, the other classes contain opportunity to  apply 
some of the CPTs that we present. 

ficiency of our CPTs. Section 11-B contains background 
about the formal techniques that we use in this paper. 

A .  T h e  Cryptography Application 

Our cryptography application uses public key encryption 
where the encryption and decryption keys are distinct. It's 
possible to determine the decryption key from the encryp- 
tion key but, by using sufficiently large keys, this deter- 
mination is computationally infeasible. This protection is 
achieved by the use of a trapdoor process. A trapdoor pro- 
cess is computationally trivial in one direction but compu- 
tationally infeasible in the opposite direction without some 
additional information. There are many examples of trap- 
door processes in mathematics but our application uses fi- 
nite fields. To make decryption computationally infeasible 
we will use sufficiently large Finite Fields. By sufficiently 
large we mean the number of elements in the field to be of 
the order of one hundred digits. 

The implementation that we use is based on the El 
Gama1 encryption scheme[l2]. The finite field version 
works as follows: Let the integer equivalent of the mes- 
sage to be transmitted be denoted by P.  Users A and B 
start by deciding upon a very large finite field F, and a 
generator g of that field. User A randomly chooses an in- 
teger a in the range 0 < a < p - 1. This is the secret 
deciphering key. A then computes and publishes ga. This 
is the public key. User B does the same thing. To send a 
message to user A,  an integer IC is chosen at random and A 
is sent the following pair of elements of F, , 

Recall that ga is publicly known but a is known only to the 
(gk, Wk) 

user A. With this knowledge the user A can strip off the 
gak and retrieve P ,  but without the knowledge of a no one 
else can retrieve P.  

Figure 1 illustrates the important classes for implement- 
ing our cryptography application. Users of the system need 
only instantiate CryptoScheme, the class shown in the up- 
per left corner of Figure 1, with the text to be encrypted or 
decrypted. CryptoScheme contains methods to encrypt or 
decrypt the text, and uses a finite field to  afford public key 
protection. The FiniteField class uses extended precision 
numbers; thus the association with Biglnt, shown in the 
upper right corner of the figure. To implement extended 
precision numbers, the digits of the number are stored in a 
list, with iterators to traverse the number in either direc- 
tion. The List class and corresponding iterator classes are 
shown at  the bottom of Figure 1. All of our CPTs were 
applied to the Biglnt and List classes. 

B. Formal Methods and CPTs 

Software development has reached the point where the 
complexity of the systems being modeled cannot be han- 
dled without a thorough understanding of underlying fun- 
damental principles. Such understanding forms the basis 
of scientific theory as a rationale for software development 
techniques that are successful in practice. This scientific 
theory, as expressed in rigorous mathematical formalisms, 
must be transferred to the software development environ- 
ment. In this way, we can more accurately refer to the de- 
velopment of software systems as software engineering: the 
application of techniques, based on mathematical theory, 
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towards the construction of abstract machines as a means 
of solving well defined problems. This paper reports on 
such a technology transfer. 

B.l Introducing Formal Methods 

Formal methods are techniques whose principle goal is 
the construction of theories (and tools based on these the- 
oretical models) for the development of correct software[lO] , 
[2]. A theoretical tool that is supported by many for- 
mal methods is the correctness preserving transformation 
(CPT). In this paper we are concerned with the practi- 
cal application of this theory in a real software engineering 
problem: the need for optimization during the evolution 
and maintenance of code, without compromising an already 
well behaved system. 

B.2 Targeting Formal Methods 

Formal methods are not widely used in real software de- 
velopment (the best-known exceptions are in telecommu- 
nications, safety-critical systems and embedded systems). 
In many cases, this is because they are not suitably sup- 
ported with development tools. Furthermore, engineers are 
justifiably wary of some of the over-inflated claims coming 
from the formal methods community. This, in turn, has led 
to  a certain mythology about the use and abuse of formal 
methods [16], [3]. Finally, these methods, for a variety of 
reasons, are viewed as being costly. A partial solution to 
this problem, supported by this paper, is the application 
of a very specific formal technique, in a specific problem 
domain, in order to  provide much needed focus, so that 
software engineers can make up their own minds about the 
utility of formality. 

We acknowledge that it is impossible for a software sys- 
tem to be perfect. When developing software we must de- 
cide upon the primary characteristics that will drive the 
process. Correctness is only one such characteristic among 
many others such as: time-to-market, user-friendliness, 
completeness, performance, fault tolerance, scale-ability, 
extensibility, portability, re-usability and cost. In this pa- 
per we report on our choice to employ formal techniques 
in the verification of our code optimizations. Our experi- 
ence shows that correctness preserving transformations can 
facilitate the generation of more efficient code while guar- 
anteeing the preservation of original behavior. 

- 
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B .3 Transformational Design in formal development 

Design is the process that transforms an initially abstract 
(implementation independent) specification of system re- 
quirements into a final, more constructive (implementation 
oriented) specification. A fundamental notion in this work 
is design trajectory: a sequence of steps, where each step 
changes the previous specification in some way. The impor- 
tant thing is that something must also be preserved along 
this trajectory: the correctness of the design[23]. 

At each step, a transformation can be applied that re- 
flects some architectural choice, without altering the exter- 
nal (observable) behavior of the system. In theory, it is 
possible to verify the correctness of any given design (or 
programming) step by mathematical means[lO], [26]. In 
practice, the complete formal verification of most design 
steps is not possible because of combinatorial problems. In 
these cases, specifications are partly verified by simulation 
and testing. 

In this paper we take the view that a code optimization 
corresponds precisely to the formal methods notion of a 
design transformation. We treat the non-optimum code as 
if it were a functional specification of the required behav- 
ior, and we consider the optimized code to be the result of 
applying some sort of design modification to  the original 
code. A formal framework provides the means of proving 
that the transformation (optimization) is correct, by prov- 
ing that the functional behavior is maintained. Of course, 
such proofs can be long and tedious and prone to  error. 
However, if we can re-use the formal analysis or proof ev- 
ery time we perform the same transformation, then this 
re-use would go a long way toward overcoming the expense 
of the proof. This re-use is one of the contributions of this 
paper. 

B.4 Re-usable Proofs -- CPTs 

In CPT-driven design, we get verification f o r  free because 
we apply only transformations (design changes) whose cor- 
rectness has already been proven. For a classic CPT- 
driven approach to  verification we recommend the paper 
by Brown[5] . We proceed by introducing formal terminol- 
ogy about CPTs. 

A specification can be said to  be correct if it fulfills some property. 
Assume a specification S ,  a transformation T and define S’ = T(S), 
i.e. S’ is the result of applying T to S .  T can be said to  be correctness 
preserving with respect to the property P if P ( S )  + P(S’).  In other 
words, the property P is preserved across the transformation T. 

We chose to  distinguish between external and internal 



properties. External properties are those that can be ob- 
served through interaction with a system at its external 
interface. They are said to be purely functional as they 
are concerned with what the system does rather than how 
(well) it does it. Internal properties are those that can be 
derived through examination of the text that specifies the 
system in question. They cannot be ‘extracted’ through in- 
teraction with the system interface alone. Formulation of 
these properties requires the definition of a non-standard 
interpretation of the specification. This interpretation is 
said to provide a view on the system. In this paper we are 
concerned with CPTs that maintain external properties. 
Such CPTs are said to be structural. 

By differentiating between what should stay the same 
and what should be different, as the result of a design 
change, an elegant and formal statement of the require- 
ments of a design step can be given as follows. Given: 
A specification S1 
An implementation relation R 
A view function V, which has S1 in its domain 
A view property P that  is fulfilled by V(S l ) ,  i.e. P(V(S1))  is true. 
A view property P‘ and a second view V’ such that not(P’(V’(S1))) 

A structural design change corresponds to  the specification of Sz, the 
next design, such that:  
R(S1, Sz), and R is a strong bisimulation equivalence’. 
P(V(S2))  and P’(V’(S2)) 

In other words, SZ maintains the external behavior of SI, 
maintains the view property P and adheres to a new view 
property P’, which was not fulfilled by SI. One could say 
that the reason for defining Sz was the fulfillment of this 
new property. 

B.5 Code Optimizations as CPTs 

The formulation of a code optimization as a CPT is 
straightforward: 
S1 corresponds to  the original piece of code to  be optimized 
S2 corresponds t o  the new code 
V is some view formalized by the algorithmic complexity 
P is some (complexity) property exhibited by S1 
P’ is some (complexity) property exhibited by SZ but not Si 
V’ is usually taken to  be the same as V, but it could be formulated, for 
example, as a more precise statement of complexity that could address 
such issues as best/worst-case scenarios and/or memory usage. 

111. METHODOLOGY: REVERSE ENGINEERING FOR 

CORRECTNESS 

In our formulation of a code optimization as a CPT, we 
have hidden the crux of the problem, namely: proving that 
the final behavior of our 2 pieces of code are functionally 

lStrong bisimulation equivalence states that  the behavior trees of- 
fered by S1 and Sz are the same (even if the way in which they are 
specified is different). In programming languages, this would corre- 
spond to being functionally equivalent. 

In this paper, we report on our experiences with the second 
case. The advantage over the first case is that we can 
choose to  formulate our reasoning in whatever framework 
best suits our needs. The disadvantage is that we have 
more work to do in order to build an abstract model. 

A .  The problem of multi-semantic models 

We must acknowledge that a weakness inherent in our 
approach arises from our use of at least two potentially very 
different semantic frameworks. The proof of consistency 
between models in different semantic domains is a very 
important area of on-going research (see [13], [15] for some 
of our previous work in this area). Without consistency, 
our reasoning in one domain may not be valid in the other. 
It is beyond the scope of this paper to directly address this 
issue: we do return to it in later sections and argue that our 
experiments provide further motivation for continuing the 
research into constructing unified mixed-semantic models. 

B. Abstract interpretation for reverse engineering 

When we reverse engineer the code to a more formal 
mathematical model, it is important that we abstract away 
from irrelevant implementation details[20]. The goal is to 
develop an abstract interpretation that captures precisely 
the functional requirements, the internal view and the non- 
functional properties (and no more). In many cases, this 
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equivalent. The semantics of our chosen programming lan- 
guage (C++) make such a proof practically impossible to 
construct, given the current state-of-the-art, in all but the 
most trivial cases. However, this does not imply that we 
should completely abandon our theoretical goal of proving 
the optimization to  be correct. In fact, we can, using expert 
knowledge of C++ and the implementation of its semantics 
(as specified by the compiler), argue for equivalence in a 
semi-formal (rigorous) manner. Our first goal should be to 
verify the soundness of such rigorous arguments. This can 
best be achieved by expressing the argument in a formal 
framework. There are two possibilities: 

The C++ code was developed from a formal specification 
and we can re-use this specification framework in order to 
formulate and verify our reasoning. (In the current context 
of software engineering, this is very unlikely.) 

No formal specification of the code exists and we have 
to reverse engineer the functional requirements through a 
process of abstract interpretation, in order to verify our 
reasoning. 



T i: T --->T r+ j2  

I1 ---> 12 I1 ---> I 2  I1 ---> I2 I1 ---> I2 

Step 1 Step 2 Step 3 Step 4 

Fig. 2. Implementation Oriented Optimization 

will require a close structural mapping between implemen- 
tation code and the reverse engineered specification. This 
could prove problematic if the structures supported in the 
implementation language are not directly supported in the 
formal framework. However, as we shall see later in this 
section, the use of object oriented structuring mechanisms 
makes it easier for us to  find correspondences between 
structures at all levels of abstraction (see [14] for a more 
comprehensive treatment of this argument). 

C. Implementat ion oriented optimization 

Consider the diagram in Figure 2. 
The four steps, of the implementation oriented optimiza- 

tion, are as follows: 

Step 1 - 
Transform the initial code, I1, to  optimize it as Iz. Sketch an argu- 
ment that  the transformation is correct. 
Step 2 - 
Reverse engineer I ]  and I2 to  S1 and SZ, respectively. 
Step 3 - 
Formulate a proof, in the formal framework, that  S2 is correct with 
respect to  the functional requirements of SI. This proof must follow 
the argument sketched in step 1. 
Step 4 - 
Attempt t o  verify the proof (using tools available in the formal do- 
main). If the proof is correct then we have verified our informal 
reasoning of the correctness of the optimization. Otherwise, we can 
change Iz, in order to  f i l l  in the holes in the proof, or we can change 
our reasoning process, in order to  re-formulate the proof. 

In this approach we say that the optimization is 
implementation-oriented because the transformation is first 
formulated at the code level. This is the approach followed 
in this paper. 

D. Specification oriented optimization: re-usable correct- 
ness  

Consider the diagram in Figure 3. 
The three steps, of the specification oriented optimiza- 

tion, are as follows: 

Step 1 - 
Reverse engineer the code, mapping I1 to  SI. 

Step 2 - 
Apply an already proven CPT to transform Si into Sz ,  where Sz 
fulfills the additional properties required in our optimization. 
Step 3 - 
Use Sz to  develop 12. This development could possibly be supported 
by some sort of automated code generator. 
Ideal step - 
If the reverse engineer mapping and the code generation mapping can 
be proven t o  be correct then we have a fully formalized proof that 12 
is correct with respect to  the external functionality of I I .  

E. Correctness of the mappings 

Proving the correctness of the mappings across seman- 
tic frameworks is a difficult task. However, progress has 
been made and this is continuing research[l9]. It is clear 
that it is much easier to analyze the mappings when the 
semantic domain is small. Consequently, proving the cor- 
rectness of our reverse engineering of the C++ code is a 
much more difficult task than proving the correctness of 
our code generation from the formal specification. In fact, 
the mapping from specification to implementation can be 
relatively straightforward to  formulate: in the next section 
we see how the C++ class can be mapped onto an abstract 
data type (ADT2) specification of a type. (It is well ac- 
cepted that an ADT can be conceptualized as an abstract 
class specification[4], [9].) This is the basis upon which we 
build the mappings (in both directions). 

IV. PROOF OF CORRECTNESS 

In this section, we apply our methodology for reverse en- 
gineering the functional requirements through a process of 
abstract interpretation, in order to verify our transforma- 
tions. Each transformation represents an ad-hoc, expert- 
driven optimization; currently, application of the transfor- 
mations is not automated. We begin each section by de- 
scribing the transformation under consideration, and then 
we proceed with a proof of correctness. 

2The text by Cardelli[G] provides a good introduction to  such alge- 
braic specification languages. 
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Step 1 Step 2 Step 3 Ideal  

Fig. 3. Specification Oriented Optimization 

B igh t  BigInt::power(const B igh t  & exponent) const { 

if (exponent == 0) return 1; 
else if (exponent == 1) return number; 
else { 

Bigh t  temp = power(exponent/2); 
if (exponent % 2 == 0) { 

return temp * temp; 
- 1  

1 

else { 
return ((*this) * temp * temp); 

1 
1 

Fig. 4. Tree Pruning (TP). This figure illustrates the C++ version of 
our optimization to  improve the efficiency of raising an extended 
precision number to  a power. 

A .  The TP transformation 

The goal of the tree pruning transformation, tree pruning 
(TP), is to  reduce the computation, from O(n) to  O(1og n), 
through the use of a symmetrical argument whereby both 
branches of a tree can be shown to  evaluate to the same 
value. As an example of this transformation, consider rais- 
ing an extended precision number (BigInt) to  an exponent. 
Half of the computation can be obviated by computing the 
result of raising the number to half of the exponent and 
then using multiplication t o  square the result. Then, in 
the evaluation of one branch of the tree, the same argu- 
ment can be re-applied recursively. The C++ version of 
our code for TP is illustrated in Figure 4. 

We formalize this transformation by modeling the two 
functions as ADT operations, on a Bight  type, and prov- 
ing equivalence (through consistency analysis) of the two 
operations. Consider, below, the specification, written in 
ACT ONE (an ADT used in an LOTOS[18], an interna- 
tionally recognized formal method). 
TYPE Bigh t  SORTS BigInt 
OPNS 0,l:-> B igh t  
+,*: Bigh t ,  B igh t  -> Bigh t  
equals: B igh t ,  B igh t  -> Boo1 
powerl: B i g h t ,  B igh t  -> Bigh t  
powerllocal: B igh t ,  BigInt, B igh t ,  B igh t  -> Bigh t  
EQNS FORALL this,exponent,answer,count: BigInt 

powerl(this, exponent) = powerllocal(this,exponent,l,O); 
[equals(count,exponent)] => 
powerllocal(this,exponent,answer,count) = answer; 
[not(equals(count,exponent))] => 
powerllocal(this,exponent,answer,count) = 
powerllocal(this,exponent ,answer*this,count+l); 
ENDTYPE (*Bight*) 

This is the formal specification that arises when we re- 
verse engineer the original power method of the Bight  
C++ class. There are a number of things to note, in gen- 
eral, about this reverse engineering process: 

The methods of the class correspond to operations of 
the ADT type. This maps the purely syntactic notion of 
interface. 

The method bodies of the class correspond to the equa- 
tions of the type. This maps the semantics (meaning) of 
the code to  be reverse engineered. 

We explicitly represent the C++ this operator as the 
first parameter in each of the ADT operation definitions. 

We have abstracted away from the operation overloading 
of the C++ power operator. It is not relevant to our proof. 

We have not given the semantics for the operators +, - , * 
and equals: for the moment we assume that they work as 
required . . . we re-examine this assumption when we return 
to our proof of correctness. 

We explicitly provide the literal constructors (for the val- 
ues 0 and 1) of BigInt. 
Now let us consider the mapping of the C++ while loop. 
There is a standard technique for this type of reverse engi- 
neering, which we summarize below: 

The while condition is mapped directly onto an expres- 
sion precondition (in the square brackets). 

The use of temporary variables in the while loop (the 
count and the answer) requires us to define a local func- 
tion, called powerllocal, in which these values are stored 
as additional parameters. 

The initialization of the local parameters, before the 
while loop, corresponds to our call to the local function 
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where the paramctcrs are given thc required values. . The body of the loop maps to the rc-initialization of the 
parameter values, in the recursivc calls, as required 

The next step is to reverse engineer thc optimized code, as 
specified by power2 in C-t+. The resulting ADT specifica- 
tion is: 
T Y P E  Bigh t  SORTS Bigh t  
O P N S  0,l:-> B igh t  
+,*,mod,/: BigInt, BigInt -> Bigh t  
equals: B igh t ,  B igh t  -> Roo1 
powera: B i g h t ,  B i g h t  -> Bigh t  
E Q N S  FORALL this,exponent,temp: B igh t  
square(temp) = temp*temp; 
[equals(exponent,O)] => powerZ(this,exponent) = 1; 
[equals(exponent,l)] => power2(this,exponent) = this; 
[(exponent>= 1) and equals((exponcnt mod Z ) , O ) ]  => 
power2(this,exponent) = square(power2(this, exponent/2); 
[(exponent>= 1) and not(equals((cxponent mod Z ) , O ) ) ]  => 
power2(this,exponent) = this* square(powerZ(this, exponent/2); 
ENDTYPE (*BigInt*) 

The mapping procedure is similar to the first function, 
but we make the additional notes: 

We have additional assumptions to make about the op- 
erators mod and /. 

The recursive structure of the second C++ function maps 
directly onto the same recursive structure in the ADT spec- 
ification 

We introduce a square operation in order to store 
the the value of our temporary variable temp, defined as 
power2(thisI exponent/2). 

The sequence of C++ i f  -else statements requires a bit 
more work in the ADT specification becausc there is no 
syntactic sugar for representing the else case. (However, 
the generation of the equivalent sequence of preconditions 
is easy to automate.) 

To prove that powerl and power2 arc equivalent in our 
formal framework, we follow the following strategy: 

Formulate the assumptions that  we make about the op- 
erators of the Bight  class as preconditions of correctness. 
It is straightforward to prove these preconditions, in our 
formal ADT framework, but we do not report on this as 
part of this paper. 

State the equivalence property as: powerl(x,y) = 

power2 (x, y) , forall x and y of type BigInt. 
Prove the property by using the ADT tools to prove 

consistency of the BigInt specification containing power1 , 
power2 and the equivalence property; or prove the prop- 
erty directly using a proof by structural induction on the 
y variable. 

It is beyond the scope of the paper to report on the 
use of the ADT tool t o  prove consistency of specifications. 

~ 
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However, we do sketch the proof by structural induction, 
below: 
The  base case (when y =0) -- 
By definition of power1 and power2, 
poueri(x.0) = powerllocal(x,O,l,O) = 1 and pouerZ(x,O) = 1 
Thus, powerl(x,y) = powerZ(x,y) when y = 0. 

The inductive case - 
We assume that:  
poweri(x,y) = power2(x.y) for some y, and we are required to prove 
that:  
powerl(x,y+l) = power2(x, y+ l )  

By definition of powerl and powerllocal, 
powerl(x,y+l)=powerllocal~x,y+l,l,O~=powerllocal~x,y+l,x,l~. 
Now, for any two BigInts (a and b, say) then a equals h iff a+l 
equals b+l, thus: 
powerllocal(x, y+l , x, 1) equals powerllocal (x, y , x .O) 
By definition of *, powerl and powerllocal, 
powerllocal(x,y,x,O) equals (x*powerllocal(x.y,l,O)) equals (x 
* powerl(x.y)) 
Now, by the induction hypothesis, this equals x*poverZ(x,y). 

It remainsonly to show that:  power2(x, y+l) equals x*poverZ(x,y). 
This is done by considering the m e  where y is odd and the case where 
y is even. Each follows from the definition of powerZ(x,y) and the 
assumption that the * operator is correctly defined. 

(A complete copy of the proof can be obtained from the 
authors, on request.) 

B. The  AR transformation 

The goal of the array reference transformation (AR), is 
to obviate an O(n) array lookup. To do this, data values, 
that are to be searched in the array, are mapped to an 
integer that will be used as an index into the array. Then, 
rather than searching the array for the value and returning 
the corresponding index in O(n) time, the value can be 
found with a direct lookup in O(1) time. 

The proof of the correctness of this transformation is 
based upon proving that  the alphabet array corresponds 
to the identity function. In the reverse engineering of the 
original non-optimized code, we map the notion of an ar- 
ray into a function whose domain is the set of valid array 
indices. For this, we chose a pure functional language(1ike 
SML[25]) as our formal framework (whose semantics corre- 
sponds to the lambda-calculus of Alonzo Church [7]). We 
sketch the proof, below: 
Define: alphabet = C (0.0); (1,l); (2,2); ... (255,255) 
arrayindex((x,y)::z, i)= if i=x then y else arrayindex(z,i) 
Now, we prove that:  
arrayindex(alphabet, x) = x, provided 0<= x <= 255 
Thus, the non-optimum access function defined as: 
access1 (alphabet, i) = arrayindex(alphabet, expression(i)) 
Can be re-written as an equivalent function access2, defined as: 
access2 (alphabet, expression(i)) = expression(i) 

Although this proof is straightforward, we have gained 
some insight into why it is superior to reasoning directly 
in the C++ framework: the formulation of the abstract 
interpretation improves our understanding of the rcasoning 



process and identifies assumptions that need to be verified 
for the transformation to be correct. In this example, there 
is an important aspect of this abstract interpretation that 
needs explanation: the express ion( i )  in our formal model 
is evaluated twice without any side-effects. In fact, our 
reasoning would break down if there were any side-effects in 
the expression when used in the C++ code. Through simple 
inspection, we argue that instantiating the expression as 
( i n t ) t e x t  Cil is valid (since its evaluation is side-effect 
free in C++). 

C. The MM transformation 

The goal of the memory management transformation 
(MM), is to minimize calls to new and delete to manage dy- 
namic memory. In MM, the delete operator is overloaded 
to place the deleted object into a free list. Also, the new 
operator is overloaded and the actions of new are to first 
check the free list: if the free list is not empty, then the 
requested storage is allocated from the free list; otherwise, 
the system new is used to allocate memory from the heap. 

The proof of correctness of this transformation cannot 
be treated satisfactorily in this paper. It is more complex 
than the other three: we are preparing a separate papcr 
on the approach taken to prove this complicated transfor- 
mation to be correct. (For those interested, the crux of 
the problem is in finding a suitable abstract interpretation 
for the memory in the system and choosing the best for- 
mal representation. Unlike the other transformation, these 
choices are not straightforward.) 

D. The BA transformation 

The goal of the boundary analysis transformation (BA), 
is to avoid a computation by exploiting the shortcut pro- 
vided by a boundary computation. For example, when 
computing the modulus two of a number, the result is de- 
termined by the digit in the unit position: if this digit is 
even, then the rcsult is zero, if this digit is odd, then the 
result is one. 

The modeling of this transformation is trivial, in almost 
any formal framework. The proof of correctness is also 
trivial: all we need is an abstraction (defined as a function, 
AI, say) of thc data values that spccifics an equivalence 
between diffcrent numbers providcd they return the same 
result with respect to thc spccified modulus computation. 
Then, in the optimized function, the computation can bc 
defined directly on the abstraction rather than on the num- 

her itself. The proof can then be formulated as: 

Modulus (number) = Modulus2 (AI(number)), for all 

valid numbers 

V. APPLYING THE CPTs TO A N  APPLICATION: 
A CASE STUDY 

In this section, we report on the efficiency improvement 
that we achieved by applying the four correctness pre- 
serving transformations (CPTs) to  a cryptography appli- 
cation[22]. All executions that we report were executed on 
a 500 MHz Dell Optiplex, running the Linux Red Hat 6.1 
operating system. We implemented the cryptography ap- 
plication with the egcs C++ compiler, release 1.1.2. Each 
of the executions that we report represent the results of 
twelve executions, the lowest and highest value was dis- 
carded and the reported result is the average of the ten 
remaining values. 

In the next section we report our results after applying 
cach of the four CPTs in turn, so that we can compare the 
effect of each optimization. We used profile information, 
acquired from the gprof profiling tool, to guide placement 
of each of the CPTs. 

In Section V-B, we report our results after applying all 
four CPTs to the application; we only applied each CPT 
a single time to facilitate clarity of analysis. We applied 
the CPT a t  the same point in the application that it was 
applied for the executions described in Section V-A. 

A .  Results for each individual CPT 

Figure 5 illustrates the results of applying each of the 
CPTs, in turn, to the cryptography application. The ta- 
ble a t  the top of the figure shows the execution times after 
applying each of the CPTs, the bar graph at the bottom 
of the figure further illustrates these timings. For the ta- 
ble, the first column illustrates the applied optimization; 
the remaining columns illustrate reported results. For ex- 
ample, the second column illustrates the number of seconds 
requircd to both encrypt and decrypt a file containing 1000 
randomly generated characters. The first row of data illus- 
trates timings for the original program, without any op- 
timizations applied, the second row illustrates timings for 
the array reference optimization (AR), the third row for 
the mcmory management optimization (MM), the fourth 
row for the boundary analysis optimization (BA) and the 
last row illustrates timings for the tree pruning optimiza- 
tion (TP). For example, in the original program using none 
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Fig. 5. The effect of each optimization. The results depicted in this table show the outcome of applying each of the optimizations once in 

seconds for seconds for seconds for seconds for seconds for 

9.13 16 98 25.18 34.70 43.14 
8.96 16.39 24.60 33.78 42.09 
5.67 10.50 15.75 21.58 26.74 
6.21 11.52 17.28 23.66 29 54 
6.35 11.95 17.97 24.69 30.64 

1000 bytes 2000 bytes 3000 bytes 4000 bytes 5000 bytes 

of the transformations, the average time to  encrypt and de- 
crypt a file of 1000 characters was 9.13 seconds, as shown 
in the first row, second column of the table. 

The bar graph in Figure 5 better illustrates our results. 
Time, in seconds, is plotted on the y-axis of the graph and 
file size, in 1000 byte increments, is plotted on the x-axis 
of the graph. The first set of five bars represents timings 
for the original program and each of the four optimiza- 
tions. For each set of experiments, the highest bar is al- 
ways the original program and the lowest bar is always the 
program containing the MM optimization. The array ref- 
erence transformation provided the smallest improvement 
in execution time, but consistently provided improvement. 
This transformastion was not placed in an area of code that 
was frequently executed. 

B. Results for ull four CPTs 

Figure 6 illustrates the results of applying all four of the 
CPTs, a single time, to the cryptography application. The 
table at the top of the figure illustrates timings for both 
the original program and for the program containing all 
four transformations. The columns are similar to  those in 
Figure 5. The bar graph at the bottom of the figure fur- 
ther illustrates our timings, where the four transformations 
consistently provided sixty percent increase in efficiency. 
We found many more opportunity for exploiting some of 
the transformations; for example, we found seven places in 
the cryptography application where we could apply the BA 
transformation but only two places where we could apply 

the AR transformation. 13y applying each transformation 
only once, we can better see the cumulative effect of the 
four transformations. 

VI. CONCLUDING REMARKS 

In this paper, we applied correctness preserving truns- 
formations,  CPTs, to  a real software engineering problem: 
the need for optimization during the maintenance of code. 
We have presented a framework for proving CPTs correct 
and four CPTs together with proofs of their correctness. 
We have applied the CPTs to an existing cryptography ap- 
plication, implemented in C++, and have shown dramatic 
improvement in efficiency with only a single use of each 
CPT. Our ongoing work on this project includes efforts to 
apply the CPTs to  other sections of the cryptography ap- 
plication as well as the development of additional CPTs. 
We are also applying the CPTs to other applications to 
further demonstrate their re-use. Our future work includes 
an examination of the effects of the transformations on test 
set adequacy [ 171. 
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