Formal object oriented requirements:
simulation, validation and verification

J. Paul Gibson,
Computer Science Department,
NUI Maynooth, Ireland.

pgi bson@s. may. i e

Abstract

Requirements engineering is the first step in the software engineer-
ing process. A major part of building requirements is the modelling
of the system to be developed (or updated) together with the system
environment. These models are, of course, abstractions of the real
world and as such we can say that they are simulations which need
to be validated to show that they actually correspond to what exists
or what is required. They also have to be verified to show their con-
sistency.

Requirements models have 3 distinct roles — they are the princi-
ple media of communication between clients and requirements engi-
neers, they are the only model upon which rigorous and automated
analysis can be carried out before development begins, and they are
the structural foundation upon which design and implementation de-
pend. We advocate a formal object oriented approach which can
be presented in a client-friendly manner, using graphical represen-
tations.

The overall theme of this paper is the triangle of integration in
our simulations — we integrate user-friendly (graphical) animation
of operational requirements during validation, together with proof
of logical properties during verification, together with the structural
object oriented concepts which support formal incremental develop-
ment techniques.

1 Introduction

Simulation is concerned with constructing an abstract model of a real
system. Requirements modelling is concerned with synthesising and
analysing the abstract requirements of a client: the what, not the how.
Requirements models are naturally decomposed into two parts: the
model of the system to be built and the model of the system environ-
ment. These two models can be integrated into a single abstraction
representing the interface between the system and its environment.

Often, an implementation architecture exists such that new re-
quirements must be built onto an already developed system. In this
case it is very important that a correct simulation (abstraction) of the
already existing system is incorporated into the requirements model.
Of course, if this system was originally developed using a formal
method then a specification of the system, which has already been
validated, could be re-used for this purpose; and its integration could
be formally verified.

New requirements need to be validated — the client has to be will-
ing to accept that the model actually represents their needs. The re-
quirements also have to be verified — to show the logical consistency
of the different needs (both old and new) and different points of view.
The process of requirements engineering continually improves our
simulations until the best abstraction of the client’s needs is reached
and design can begin to transform the what into the how.

This paper reports on a formal object oriented method for incre-
mentally constructing, validating and verifying the simulation mod-

els which correspond to the user requirements. Graphical animation
of the models is central to our method.

2 The importance of requirements en-
gineering

Analysis is the process of maximising problem domain understand-
ing. Only through complete understanding can an analyst compre-
hend the responsiblities of a system. The modelling of these respon-
siblities is a natural way of expressing system requirements. The
simplest way for an analyst to increase understanding is through in-
teraction with the customer. The customer may be one person, in
which case the process is greatly simplified; however, it is more
likely that the customer is a group of clients, each with their own
particular needs. One of the main problems in dealing with a set of
customers is that the interelated set of requirements must be incorpo-
rated into one coherent and consistent framework. Each client must
be able to validate his (or her) own needs irrespective of the other
clients (unless of course these needs are contradictory).

Interaction with the customer is an example of informal commu-
nication. It is an important part of analysis and, although it cannot be
formalised, it is possible to add rigour to the process. A well-defined
analysis method can help the communication process by reducing the
amount of information an analyst needs to assimilate. By stating the
type of information that is useful, it is possible to structure the com-
munication process. Effective analysis is dependent on knowing the
sort of information that is required, extracting it from the customer,
and recording it in some coherent fashion. In other words, require-
ments capture and analysis is concerned with simulation of client’s
needs through abstraction.

3 Requirements Models — integrating
different needs

The requirements model is important as it acts as the communication
medium through which the client, analyst and developers can im-
prove their mutual understanding of the client’s requirements. There
are three different points of view:

e The client understands their needs from an abstract view point
which hides the how of the system to be developed. They have
operational requirements which are usually expressed as se-
quences of actions (or events) which they would (or would not)
like to be possible when they use the system. They also have
logical requirements based on always and eventually concepts
(Gibson & Méry 1998a) — they require some things to be true
always and these must be expressed as safety properties; and
they require that some things must eventually happen and these
must be expressed as liveness properties.



e The designer must be able to understand the abstract needs of
the client and transform these needs into an implementation.
The requirements model should act as a contract between the
client and the developer. It should also be possible to verify
that an implementation is correct with respect to the customer’s
requirements. This is the role of the designer.

e The analyst must help the customer to construct and validate
their requirements. Furthermore, it is the responsibility of the
analyst to verify that the operational requirements are consis-
tent with the logical requirements. After validation, it is the
analyst who acts as the principle interface between the design-
ers and the requirements models.

In this paper, we review how our formal object oriented development
method integrates these different view points.

3.1 Why formalise?

Formal methods are necessary in achieving correct software: that is,
software that can be proven to fulfil its requirements. Formal spec-
ifications are unambiguous and analysable (Turner 1993). Build-
ing a formal model improves understanding (Gibson 1993). The
modelling of nondeterminism, and its subsequent removal in for-
mal steps, allows design and implementation decisions to be made
when most suitable. Correctness preserving transformations facil-
itate the automatic generation of more efficent code whilst guaran-
teeing the preservation of original behaviour. Formal models are
amenable to mathematical manipulation and reasoning, and facilitate
rigorous testing procedures.

We advocate the use of formal methods in the building of require-
ments models. Only through formal models can re-use be controlled
at all levels of abstraction. Furthermore, only through formal tech-
niques can the client be sure that their requirements are truly met by
the implementations. There are three important aspects to the use of
formal methods for requirements capture:

e The method must be compositional so that incremental de-
velopment is supported. Furthermore, the method must sup-
port high-level structuring mechanisms which correspond to the
way in which the client structures their understanding of their
needs. In fact, we propose following a formal object oriented
approach (P. Gibson & Méry 1997).

e The method must offer a means of specifying operational re-
quirements for animation during validation. The requirements
models which we use correspond to compositional state transi-
tion systems and object oriented structuring mechanisms such
as extension, specialisation, delegation, subclassing and inheri-
tance are provided by a formal semantics which define a corre-
spondance between state machines and objects (Gibson 1993).

e The method must offer a means of specifying logical require-
ments. A purely operational view allows only the specifica-
tion of safety properties — bad things can never happen. We
also require a means of specifying liveness properties which
state that something good will eventually happen. We adopt
a mixed semantic model (P. Gibson & Méry 1997), based
on an integration of LOTOS (Bolognesi & Brinksma 1987),
TLA+ (Lamport 1995) and B (Abrial 1996), which presents
user friendly graphical views on the different abstraction mech-
anisms (Gibson & Méry 1998b).

3.2 Why graphical?

Graphical views have long been used to represent large quantities of
information in a simple and concise form. Humans have evolved a
very complex mechanism for collecting and colating information that
is presented graphically. Understanding the information depends on
clarity of expression which, in turn, relies on meaningful structure.

Graphical models can provide both these properties. Graphical views
are prominent at all stages of software development because of their
ability to convey structural aspects of a system.

All standard software visual models are particular types of graph
— each model attaches meaning to the labelling of nodes and links
and the relationship defined between connected nodes. Categorisa-
tion of graphical models is simply a grouping together of models in
which the meaning attached to the views shares some commonality.
It is precisely the meaning attached to graphical views which distin-
guishes different models.

The underlying modelling language (semantic basis) is a major
influence on the structure of a visualisation environment. Because
the environment manipulates components in the language, this di-
rectly influences the environment’s structure and form, though not
necessarily its presentation to the user. A visual representation must
be able to naturally model a conceptual system with the minimum
amount of mental transfer and mapping on the part of the modeller
(or viewer). We advocate an approach in which the fundamental
modelling blocks are objects and classes.

3.3 Why object oriented?

We advocate an object oriented approach to structuring our re-
quirements models. Object oriented methods encompass a set of
techniques which have been, and will continue to be, applied in
the successful production of complex software systems (Coad &
Yourdon 1990a, Coad & Yourdon 1990b, Booch 1991, Meyer 1987).
The methods are based on the simple mathematical models of ab-
straction, classification, refinement and polymorphism. Central to
the success of object oriented techniques is the support they offer to
re-use at all levels of abstraction. Re-use and structure are just as
important during requirements capture as during implementation.

Structure is fundamental to all stages of system development: it
provides the framework upon which already developed parts of a
system can be re-used. Structured analysis and requirements cap-
ture methods have been successfully applied in many different prob-
lem domains during the last twenty years(Constantine 1989, Cutts
1991, DeMarco 1979). It is clear that there is a symbiotic relation-
ship between structure and re-use: classification facilitates re-use of
abstractions and relations between abstract behaviours, composition
facilitates re-use of concrete behaviour, refinement facilitates re-use
of verification and validation, configuration facilitates re-use of com-
position mechanisms. Finally, a re-usable structure is often known as
an architecture. The key to building good requirements models is to
model understanding as structure and to provide facility for structural
re-use.

3.4 Method integration

The four most important parts of our development method depend on
formal specification techniques:
e Firstly, we have an executable model which is useful for vali-
dating the dynamic behaviour.
e Secondly, we have a logical model for specifying less opera-
tional properties that can be validated statically.
e Thirdly, we have a formal verification that the executable model
fulfils the requirements of the logical model.
e Finally, we promote incremental development whereby each
step can be compositionally validated and/or verified through
re-use of static and dynamic analysis.

4 Validation and verification

It is important to understand the difference between validation and
verification: the first is is about checking that a formal model cor-
rectly captures the client’s needs, and the second is about checking



that a formal model meets the requirements of another formal model.
We can verify the consistency of a requirements model by showing
that it’s operational requirements meet its logical requirements, or
that two sets of logical requirements are not contradictory. This is not
validation; it is, however, complementary to validation — it should
not be possible for a client to validate a model which is logically
inconsistent (i.e. impossible to implement). Such a situation arises
out of contradictory requirements and is often seen when require-
ments are extended independently. (The feature interaction problem
(Gibson 1997) is a good example which we will return to in section
7)

4.1 Refinement and Validation

The key to our validation is the operational object oriented semantics
which, through graphical animation, provide support for customers
to validate their understanding of their requirements, rather than vali-
dating their understanding of the models. In an ideal environment the
analyst would identify the set of concepts with which the customer
understands their needs, map these concepts onto the formal seman-
tics of one (or all) of our modelling languages and let the customer
construct their own requirements model. In practice it is more fea-
sible to expect the customer and analyst to work together during the
construction and refinement of requirements.

4.2 Incremental Animation

We advocate an incremental approach where requirements are con-
tinually changed, and animated step-by-step. We support four main
types of increment —

e Subclassing: An already specified class can be used as the ab-
stract superclass of a new subclass. The subclass must, when
working in our formal object oriented framework, exhibit all
the properties of the superclass, and so this can be re-used dur-
ing validation and verification of the new behaviour.

e Delegation: An already specified class can be used as a com-
ponent of a new class. The behaviour of the old class is en-
capsulated behind a well-defined interface and, again, we can
re-use our understanding of the old class in the validation and
verification of the new class.

e Co-operation: Two, or more, already specified classes can be
configured in order to define the required behaviour of a new
class. Our method formalises such configuration through the
use of invariants which act as a means of glueing together the
components in a way which guarantees correctness.

e Structurere-use: As understanding of the problem domain
increases due to the continually improving requirements model,
it is often the case that the client gains some insight into their
problem which allows them to re-structure their understanding.
In this case, our object oriented method provides a means of
transforming the structure of the original model in a localised
manner.

4.3 \Verification and theorem proving

As explained earlier, we have to be able to verify the logical consis-
tency of our requirements —

o Invariants: These are defined in all structured classes. We use
a theorem prover (B-core 1996) to show that all the operations
of the class are closed with respect to its invariants.

e Fairness: Using TLP (Engberg 1994), the TLA theorem
prover, we are able to prove eventuality properties.

e Algebraic Composition: In (Gibson 1998), we introduced
the notion of re-usable analysis techniques based on perform-
ing analysis on abstract superclasses and abstract composition
mechanisms.

5 Our tools

Our development framework integrates three different tools:
e An animator for validating the behaviour with the client

e A prover for verifying the logical consistency of the require-
ments

e A development manager for incremental refinement of require-
ments.

This integration is important because it is counter-productive to try
and separate these three aspects: animation can verify logical prop-
erties dynamically, provers often animate in order to identify critical
cases, and incremental development involves refinement of both log-
ical and operational properties.

5.1 Client-orientation

Given a flexibility in the way in which different structures can be
used to specify the same requirements, it is often difficult to judge
which structure is best. In our method, we emphasise the need for
client-oriented models — if the client cannot understand the require-
ments then validation cannot be done correctly and the rest of the
development process is compromised. When in doubt, the best rule
is to let the client’s understanding of their needs provide the under-
lying structure of the requirements model. If the analyst sees a better
way of structuring the requirements then it is up to them to explain it
to the client and get their acceptance that it is indeed an improvement.

5.2 Visual Abstraction - the importance of
mappings
There are three distinct modes of operation in our method:

e Visualisation is the process by which mappings are defined be-
tween formally specified models and graphical constructs.

e Synthesisis the creation of new classes of behaviour and re-
use of already existing classes. Synthesis mechanisms utilise
the visual mappings and may even be defined in terms of visual
manipulations.

e Analysis is the feedback step. The development of require-
ments models is an evolutionary process. Initially, there will be
many problems which will gradually be removed by customer
and analyst. Analysis can be improved through the use of visual
mappings and graphical animations.

Animation is the visual analysis of the dynamic properties of the
requirements models. In our method we encourage experimentation,
where the client animates many different test scenarios for any given
model.

5.3 Experimentation

Experimentation is the phase that follows the construction of a new
requirements model. The purpose of experimentation is to learn more
about the system under study by subjecting its model to various in-
teraction sequences selected from ligitimate inputs. The process of
constructing experiments is itself a modelling activity: one builds
a model (or models) of the environment of the system being anal-
ysed. This can be done in an ad-hoc fashion by the viewer subjec-
tively selecting interactions during each cycle of the animation. We
must also provide facility for a more planned creation of experiments
which permit the controlled exercise of the system through different
simulation scenarios. There are a number of important aspects to
experimentation:

e Full animation vs Statistics Gathering
The experiment, together with the system model, may be exe-
cuted without interaction from the viewer. This auto-animation



can either be presented to the viewer as-if they were involved in
the visual interactions. Contrastingly, the viewer may not wish
a full animation to be presented. In many cases the animation
process is being used to check a set of predefined properties or
for the purpose of gathering statistics. We offer each of these
facilities.

e What vs How

Experimentation, as a closed model, can present the behaviour
of a system as a black box — the internal state of the system can
be abstracted away from and only the sequence of interactions
need to be presented for analysis. In other words, the analysis
is concerned only with what the system is doing at its external
interface. This type of black box testing is fine in requirements
models which are complete. However, whilst the modelling
process is continually refining both what is being specified and
how it is being specified, it is important that the viewer can
choose to see different internal properties of the model in ques-
tion.

o Nondeterminism
During requirements capture, the modeller often wishes to
specify nondeterministic behaviour. There is flexibility (dur-
ing animation) in choosing random number generators or using
a pre-defined algorithm or data file for simulating this nonde-
terminism..

5.4 Interface design

The creation of user defined mappings is very much related to the
concept of user interface design. Extra burden is placed on the ana-
lyst to provide mappings which are acceptable to the user. However,
this extra work does lead to the development of rapid prototypes in
which the interface of the system has been given as much considera-
tion as the functionality which it offers.

6 Library aslanguage: the future ideal

We believe that the future of our method depends on the notion of li-
brary as language. One of the keys to the success of object oriented
programming languages is the way in which new programmers can
learn the language in a problem specific way, through use of libraries
of classes. Each programmer must understand the fundamental con-
cepts and language constructs, but the class libraries then act as the
language extensions. Often, object oriented programmers are expert
in certain problem domains and this corresponds to the libraries with
which they are familiar. Requirements capture techniques should,
we believe, offer the same advantages. The client should be able to
build models using their own language and this can be achieved by
the analyst creating libraries of re-usable classes which are client-
oriented. These libraries then define the vocabulary of the problem
domain being modelled.

The starting point for the construction or analysis of a require-
ments model is the library of predefined classes. In general, it is
useful to be able to distinguish between:

e Generally Applicable Library Classes — behaviour which is
well tried and tested and useful in a wide range of problem
domains. Such classes are the fundamental building blocks for
all modellers.

e Problem Domain Library Classes — behaviour which is well
tried and tested and useful within particular problem domains.
Modellers will be knowledgeable about only a subset of these
libraries.

e System Development Libraries — behaviour which is currently
under development.

In any particular problem domain, modelling is concerned with
the class specifications and the class mappings. The client can re-use
default mappings of the general classes or choose to define their own
mappings. Most problem domain library classes will contain rou-
tines for parameterised mappings which allow the client to choose
between different graphical representations. Finally, part of the pro-
cess of developing new classes is in developing default mappings for
graphical representation of these classes.

7 An industrial case study: feature in-
teractions

7.1 Problem Overview

The complexity of standard telephone behaviour is growing expo-
nentially due to the number of services (or features) available. The
feature interaction problem occurs when two or more features, whose
individual behaviours are easy to specify and validate with the client,
introduce unforseen problems when they are asked to work together
(see (Bouma & Velthuijsen 1994, Cheng & Ohta 1995) for a wide
range of papers on the subject). Formal methods have been pro-
posed as a means of controlling the complex analysis required for
the detection and resolution of these problems (Blom 1997). It is
well accepted that these formal techniques should be applied as early
as possible in the development process. Thus we have a need for
formal requirements models (Gibson 1997, Zave 1993).

7.2 Informal requirements models

Intuitively, we can see that a client often wishes to express different
types of requirements:

e Safety requirements — where the user specifies things that
must never happen. These can be state based, sequence based
or property based. A state based safety requirement corre-
sponds to the user never wanting to be in a certain concrete
state (e.g. My answering machine should never take a mes-
sage from a FAX). A sequence based safety requirement cor-
responds to the user never witnessing a sequence of external
actions (e.g. putting the phone on- hook , lifting the phone
of f - hook and then hearing a busy si gnal ). A property
based safety requirement corresponds to a state based require-
ment where the state is specified abstractly over a number of
possible states which are not explicitly listed (e.g. never want-
ing to pay for an overseas call).

e Livenessrequirements— where the user specifies that some-
thing good will eventually happen. These usually correspond
to different types of fairness or eventuality needs. For exam-
ple, my answering machine should eventually take a message
if | don’t reply. Eventuality requirements are common in user-
oriented specifications because they help to abstract away from
the network.

e Nondeterministic and consistency requirements — where
the user specifies a number of different behaviours which would
be acceptable and may require that the nondeterminism be re-
solved in a consistent fashion. For example, | don’t mind
whether my answering machine or my FAX get priority so long
as the priority cannot change unexpectedly.

e Compositional requirements— where the user specifies new
needs by ‘combining’ already existing services. For example, a
user with an answer i ng nmachi ne and cal I hol d may
wish to let a held caller leave a message while they are waiting,
and thus give them the option of abandoning the call if they
have to wait too long.



e Specialisation and extension requirements— where the user
specifies new needs by making refinements to already existing
services. For example, a user may require an answering ma-
chine which restricts the length of messages that can be left.

Our method supports the specification, integration, validation and
verification of all these different requirement types (Gibson 1998).

7.3 Integrating our formal requirements mod-
els

Three types of formal models are used. Firstly, we have an ex-
ecutable model (written in LOTOS (Guillemot, Haj-Hussein &
Logroppo 1991) using an object-based style (Gibson 1994)) which
is useful for compositional animation. Secondly, we have a logical
model (based on the B method) which is used to verify the state in-
variant properties of our system (statically). Finally, we use TLA
(Lamport 1990) to provide semantics for a static analysis of live-
ness and fairness properties. No one model can treat each of these
aspects, yet each of these aspects of the conceptualisation are neces-
sary in the formal development of features. We are in the process of
integrating the different semantics into one coherent model (Gibson
& Meéry 1996, Gibson & Méry 1997, Gibson & Méry 1998h, Gibson
& Méry 1998a).

7.4 Simulation: validation and verification

We have text-based animators for validating the operational require-
ments in all three formal models. We also have JAVA mappings from
textual specifications to graphical representations. Current work is
concerned with integrating these mappings into the animation tools
in order to provide graphical animations.

Validation of the telephone models has been done using a mixture
of text and graphics. The animators have been used in three distinct
ways:

e We use the formal specifications of a network and a set of
phones! in a composition which simulated a telephone sys-
tem. All nondeterminism was resolved internally and the an-
alysts, designers and clients could watch random animations as
a means of validating the integration of the network and tele-
phone models.

e We had client-led animations where the system was partly con-
trolled by the network simulator and partly controlled by the
client. The client could control any number of phones and the
animator controlled the remaining part of the system simula-
tion.

e We had designer-led animations where all the phones were con-
trolled by the animator and the designer chose how to resolve
the nondeterminism in the network.

In all cases animation was done in parallel with verification of
always and eventually properties. In fact, animation was also a good
tool for improving the understanding of the proof process.

8 Conclusions

We advocate a mixed-semantic approach to requirements engineer-
ing. Only through formal methods can integration of different
client’s needs be verified. Only through graphical animation can
clients be expected to validate complex models. The quality of the
validation depends on the quality of the model of the system to be de-
veloped and the quality of the model of the environment of this sys-
tem. These models can be used as simulations in order to facilitate

LIn all cases, it was necessary to consider no more than 3 phones to vali-
date any given service.

different abstractions on the same complete system. Simulation, val-
idation and verification are complementary aspects of requirements
capture.

References

Abrial, J.-R. (1996), The B Book, Cambridge University Press.

B-core (1996), B-Toolkit User’s Manual, Release 3.2, Technical report, B-
core.

Blom, J. (1997), Formalisation of requirements with emphasis on feature in-
teraction detection, in ‘Feature Interactions In Telecommunications 1V,
10S Press, Montreal, Canada.

Bolognesi, T. & Brinksma, E. (1987), ‘Introduction to the 1SO specification
language LOTOS’, Computer Networks and ISDN Systems 14, 25-59.

Booch, G. (1991), Object oriented design with applications, Benjamin Cum-
mings.

Bouma, L. G. & Velthuijsen, H., eds (1994), Feature Interactions In Telecom-
munications, 10S Press.

Cheng, K. E. & Ohta, T., eds (1995), Feature Interactions In Telecommunica-
tions 111, 10S Press.

Coad, P. & Yourdon, E. (1990a), Object oriented analysis, Prentice-Hall
(Yourdon Press).

Coad, P. & Yourdon, E. (1990b), Object oriented design, Prentice-Hall (Your-
don Press).

Constantine, L. (1989), Beyond the madness of methods: System struc-
ture methods and converging design, in ‘Software Development 1989°,
Miller-Freeman.

Cutts, G. (1991), Structured system analysis and design method, Blackwell
Scientific Publishers.

DeMarco, T. (1979), Sructured analysis and system specifi cation, Prentice-
Hall.

Engberg, U. (1994), TLP Manual-(release 2. 5a)-PRELIMINARY, Depart-
ment of Computer Science, Aarhus University.

Gibson, J. (1993), Formal Object Oriented Development of Software Systems
Using LOTOS, Tech. report csm-114, Stirling University.

Gibson, J. P. (1994), Formal object based design in LOTOS, Tr-113, Univer-
sity of Stirling, Computing Science Department, Stirling, Scotland.

Gibson, J. P. (1997), Feature requirements models: Understanding interac-
tions, in ‘Feature Interactions In Telecommunications IV’, 10S Press,
Montreal, Canada.

Gibson, J. P. (1998), Towards a feature interaction algebra, in ‘Feature Inter-
actions In Telecommunications V’, 10S Press, Lund,Sweden.

Gibson, J.-P. & M7ery, D. (1996), A Unifying Model for Specification and
Design, Rapport Interne CRIN-96-R-110, CRIN, Linz (Austria).

Gibson, M. & M Tery (1997), Feature interactions: A mixed semantic model
approach, in ‘Irish Workshop on Formal Methods’, Dublin, Ireland.

Gibson, P. & M ery, D. (1998a), Always and eventually in object models, in
‘ROOM2’, Bradford.

Gibson, P. & M “ery, D. (1998b), Fair objects, in ‘OT98 (COTSR)’, Oxford.

Guillemot, R., Haj-Hussein, M. & Logroppo, L. (1991), Executing large LO-
TOS specifications, in ‘Proceedings of Prototyping, Specification, Test-
ing and Verification VIII’, North-Holland.

Lamport, L. (1990), A temporal logic of actions, Technical Report 57, DEC
Palo Alto.

Lamport, L. (1995), TLAY, Technical report, December.

Meyer, B. (1987), ‘Re-usability: the case for object oriented design’, IEE
Software Engineering .

P. Gibson, B. M. & MTery, D. (1997), Specification of services in a com-
positional temporal logic, Rapport de fin du lotl du marche no 961B
CNET-CNRS CRIN, CRIN.

Turner, K. (1993), Using FDTS An Introduction To ESTELLE, LOTOS and
SDL, John Wiley and Sons.

Zave, P. (1993), ‘Feature interactions and formal specifications in telecom-
munications’, IEEE Computer Magazine pp. 18-23.



