Towards a Feature Interaction Algebra

J. Paul Gibson, Université Henri Poincaré (Nancy I),
LORIA UMR 7503 CNRS, Campus scientifique, B.P. 239
54506 Vandoeuvre-Is-Nancy Cedex, France}
gibson@loria.fr

Abstract.

The composition (and configuration) of requirements is particularly important
in feature specification because the units of incrementation in system develop-
ment are themselves features. Thus we have requirements models made up of
a large number of components, each of which is easy to specify and validate
individually, but whose complexity resides in the semantics of composition, and
configuration.

We approach the definition of feature composition from the point of view of
the client. Through our study of CS-1, we identify different ways in which the
client would wish to compose their features with the plain old telephone service
(POTS). From this we motivate the development of a feature composition
algebra, the foundation of a feature interaction algebra. Quite simply, we hope
to be able to perform a meta-analysis of the feature interaction problem using
the feature classes rather than the features themselves. In this paper we show
the type of meta-analysis that can lead to an algebraic formulation of feature
composition and configuration.

1 Overview

In this paper, we examine the composition of telephone feature requirements. Clients often
have a compositional understanding of their needs, and requirements are continually evolving
in a compositional manner. The key issue is re-use of what has already been defined, together
with an integration of what is now required. Problems occur when contradictory requirements
are defined. The detection and resolution of these contradictions is important in the analysis
and requirements modeling of feature interactions (see [8]). In an ideal world, the requirements
modellers would be restricted to using a finite set of well defined composition mechanisms,
and each of these would have a corresponding contradiction detection and resolution method.
Unfortunately, users always demand new ways of composing their requirements and no such
method exists.

We restrict our attention to a set of telephone features as defined by a subset of Capability
Set 1 (CS1) of the ITU-T. Feature interactions arising out of contradictory requirements are
common even in this small subset of telphone capabilities. Through our study of CS-1, we
identify different ways in which the client would wish to compose their features with the plain
old telephone service (POTS). This will form the basis from which we go on to develop a
feature composition algebra. Our goal is to have an algebra of interactions. Every feature
will be classified in a number of fundamental ways, including the way in which it is specified
to be composed with POTS, and through this classification we can: create a class hierarchy
of features, identify interactions by the types/classes of the features rather than by analysing
the features themselves, define re-usable composition mechanisms which can be applied to any
given set of classified features, and define re-usable methods of interaction resolution, based
on our composition mechanisms.

2 Structure in Object Oriented Feature Specifications

Structure is fundamental to all stages of system development: it provides the framework

upon which already developed parts of a system can be re-used. Structured analysis and
requirements capture methods have been successfully applied in many different problem do-
mains during the last twenty years[5, 7]. The figure below illustrates, for a simple example,
the symbiotic relationship between structure and re-use: classification facilitates re-use of ab-
stractions and relations between abstract behaviours, composition facilitates re-use of concrete
behaviour, refinement facilitates re-use of verification and validation, configuration facilitates

re-use of composition mechanisms.

Composition Structure

Classification Structure P

(N classification m
Transport . (e)
/ ranSlJOr \wm& ng e T Car
P
4 I
Land Air ’ ! (Enm@ Chassis) (Fittings Wheels Steering

dial
/ \ \ ”, rnms
Diesel

Petrol Electric v
~ " abstraction g

Water !
AN (== orcks
. e |

Breaks Rail Road ! block e

N L _____

i configuration -

- Configuration Structure _

T
= |
-7 heel wheel) .
=z w! I Engine drives front whedls

~ o~ | b
COSt<60000_ _ _ _ _ _ _ _ = _ Chassis Engine Steering | Steering directs front wheels
British . .
implement as N | | Chassis connects 4 wheels
Saloon whed wheel ~ |
| etc ...

Figure 1: Structure and Re-Use

2.1 Composing Feature Requirements

In this paper we focus on the composition and configuration issues when developing new
telephone features. In particular, we examine the different ways in which telephone users
may wish to configure their sets of requirements. A divide-and-conquer approach to telephone
feature development, based on the has-a relationship, can be summarised as follows: If we
wish to understand a telephone system then we must first understand the component features,
and then understand the way in which the components can be configured. [8] has examined
the means by which feature requirements models can be built and validated by the client.
This paper is concerned with the configuration issues. We show that the method by which we
compose each feature with the standard telephone behaviour can help us to identify both the
means by which features can be configured and the potential interactions between features.
There are always different ways of understanding behaviour and such understanding leads
to different sets of components. However, in the telephone model of requirements it is quite
natural to view the system as a set of features. Given a set of feature requirements then
how do we put them together into one requirements model? Different users will require their
features to work together in different ways — defining different priorities between features,
for example. Configuration is thus central to the feature interaction problem.

2.2 Object Oriented Structuring: some motivation

Object oriented concepts were conceived in Simula [19], went through infancy in Smalltalk
[13, 14] and could be said to be leaving adolescence, and approaching maturity, in the form of
many different languages[6, 22, 18, 21] and methods[20, 4, 18, 2]. In each of these models, we
see different forms of structuring which correspond to the ideas expressed in the car example.
In this paper we are concerned with composition and configuration and so we could say that

our presentation is object based[23].

(1) Simple Composition

Compositional structure is fundamental to object oriented analysis. A simple container view
of composition enforces the notion of state encapsulation. The state of an object is defined
by the state of all its components. An object’s state is encapsulated if it can be changed only
through the services offered at its external interface. Consequently, the state of its components
can be changed only by the object itself. Composition is a relationship between a container
object and its contained parts: it tells us nothing about the relationship between the parts.
(2) Configuration

If A and B are components of object C then we say that A and B are configured (in C) if C
offers a service which requires the use of both A and B. In the car, for example, it is clear
that the radio and the engine are components of the same object but they are not usually
configured! Configurations lead us to define invariant properties between components that
must be true for the containing system to behave correctly. In other words, invariants are
part of the formal glue for putting requirements components together.

2.3 Features, Interactions and Incremental Development

In figure 2, we consider POTS as one requirements model. We note that to extend this
base requirement with a new feature we must define a means of composing POTS with this
feature, or, as illustrated in the diagram, use a previously defined mechanism. Unfortunately,
for two different features there is no guarantee that we can use the same composition mecha-
nism. Furthermore, for each composition we may require an additional restriction (called the
composition invariant) on the way in which the parts are configured in order to gurantee that
individual requirements are met.

Component Set Composition Set
ey T |
1 POTS Feature2 Featurel : | :
| : | :
| : | :
: Satisfies P Satisfies F2 Satisfies F1 1~ - L o e e D
| = ~ - -
1 : N e
I I RE-USE
________________________ - N
— - ~
_ - ~
- - ~
Compositiont - -~ Composition2 A
4 7\ 4 2\
POTS + Feature2
POTS + Featurel Satisfies P and F1 iff Satisfies P and F2ff
@ | nvl(POTS, Featurel) @ | nVZ(POTS, Feature2)
. . . comp2
comp. where, Inv1 isan invariant where, Inv2 is an invariant
of the composed system of the composed system
which is enforced by the which is enforced by th
composition mechanism composition mechanism
compl comp2
& J & J

Figure 2: Incrementing POTS

Given such a composition technique we must now address the problem of integrating
Featurel and Feature2 in the same set of requirements. In figure 3, we see that an interaction
occurs if the invariants introduced by the two features and /or the two composition mechanisms
are contradictory. In section 4.5 we see that this is one type of interaction which can be
detected automatically through using our analysis method.

2.4 The Mized Semantic (Composition) Approach

We have shown the need for a mixed semantic model when specifying telephone feature

Compositionl Composition2

(N\ (N\

POTS + Featurel POTS + Feature2

Satisfies P and F1iff
Inv1(POTS,Featurel)

Satisfies Pand F2 iff

Inv2(POTS,Feature2)

and Pand F2 and Pand E2

where, Invlisaninvariant
of the composed system
which is enforced by the
composition mechanism
compl

where, Inv2 isan invariant
of the composed system
which is enforced by th
composition mechanism
comp2

Featurel

N ,
N ,
Re-use) Reuse

. Configure (POTS,Featurel,Feature2)

Satisfies P and F1 and F2 iff
Inv1(POTS,Featurel)

‘ comp2 RS and
@ ‘ Featurez ‘/ Inv2(POTS, Feature2)
compl and
- - - Pand F1 and F2

Figure 3: Integrating Two Features

requirements [10]. Such a model is used to provide three different client views:

e An object oriented view which provides the operational semantics used during animation
for validation, and the structuring mechanisms which are fundamental to our approach.
This view is formalised using an object oriented style of specification in LOTOS [9].

o An invariant view which allows the client to describe abstract properties of a system
(or component) which must always be true. This view is formalised using B and leads
to the automatic detection of many interactions [17].

o A fairness view which allows the client to describe properties of the system which must
eventually be true even though they have no direct control over them. A temporal logic
provides an ideal means of specifying and verifying such requirements[11].

A composition mechanism defines a creation mechanism which is reusable (i.e. can be
applied to different sets of components). Clearly, we have to be more precise as to the
meaning of a component. From the customer’s point of view, and hence at the requirements
level of abstraction, a component must be some piece of behaviour which can be validated
independently. In other words, a component must be able to be seen as a model of behaviour
in its own right. We give an overview of the composition techniques from each of our three
different view points and argue that a user oriented view would be best during requirements
capture. In section 4.5 we show how our analysis method uses each of these different points
of view:

(1) Object oriented composition in LOTOS:

LOTOS [3] is made up from an abstract data type part [16], and a process algebra part [15].
Clearly there are ways of composing behaviours in each of these models. However, the object
oriented composition is at a higher level of abstraction. We do not compose with language
operators; rather we compose using object oriented concepts.

(2) Invariant composition (in B):

B [1] is a model-oriented method providing a complete development process from abstract
specification towards implementations through step-by-step refinement of abstract machines.
An abstract machine describes data, operations and invariant preserved by every operation.
Abstract machines are composed by conjunction of its invariants and combination of opera-
tions. The resulting abstract machine may either preserve the resulting invariant, or invalidate
it. The violation of invariant is interpreted as an interaction and is in fact an interference

between operations: it is a way to detect interaction among services specified as abstract
machines.

(3) Fairness composition (in TLA):

The composition of fairness assumptions in TLA is done at a high level of abstraction and is
preserved through the composition process. A model for a TLA formula is an infinite trace of
states, and a TLA specification is made up of three parts: the initial conditions, the relation
over variables, and the fairness constraints. When combining two services, we increase the
restrictions over traces but we extend the models by adding new variables. TLA provides
an abstract way to state fairness assumptions but in our approach this unfriendly syntax is
hidden from the customer. We encapsulate fairness within each object as a means of resolving
nondeterminism due to internal state transitions. This is a simple yet powerful way for the
fairness to be structured and re-used within our requirements models[12].

(4) Feature composition (user conceptualisation):

In an ideal world, feature composition would be done using concepts within the clients con-
ceptual model of their requirements. Clients cannot be expected to express themselves using
formal language operators. This does not mean that they cannot express themselves formally.
It is the role of the analyst to map the clients composition concepts onto composition meth-
ods in the formal model. For now, we are forced to communicate through the object oriented
models (which could be argued to be client friendly). In the future we hope to develop a
modeling language based on client concepts rather than modeling language concepts. This
paper reports on our attempt to identify such concepts.

3 Telephone Feature Composition: an algebraic ideal

Before we introduce our first steps towards developing a feature interaction algebra, we
motivate our work by illustrating, in the figure below, an ideal development environment
based on a composition algebra.

Feature Class Hierarchy
e O O
/ \
O O

featurel + feature2 = feature3

J/

) O
O O

N

of

" Composition Mechanisms

O

al
7
-

> e
~ DAY AR RN ff fS A
~ 7 N o 7 / \ A

N o V {5 |

AN >7 P \ /

/ N s N SNo o A

< - s N /7

/ 7w o ~ 7

- N N

Feature Library

-

RN

S

-

Re-usable Meta Analysis]

Figure 4: An Ideal Environment

The most important part of our ideal environment is a library of features which have
already been formally specified and validated. This library will be structured in a class hier-
archy where each feature will have many abstract superclasses. The second most important
part of our environment is a library of (formally specified) feature composition mechanisms
which will operate on a subset of features (depending, of course, on their classification. A
re-usable (meta-analysis) will have already identified which classes of features interact and,
where possible, will also provide re-usable resolution mechanisms. Creating a new feature will
usually require the client combining already existing features in pre-defined ways, resulting in
a new feature whose classification is calculated automatically following our algebraic seman-
tics. Some features will require the specification of new concepts within the problem domain

and, as such, cannot be developed using already existing features. These new features will
often fit directly into our already existing class hierarchy. In such a case, the meta-analysis
does not need to be further extended. In the worse case, new abstract classifications (and
composition mechanisms) will be needed and hence the analysis will need to be done from
scratch. Furthermore, the requirements modellers will be responsible for placing this new case
within the formal algebra.

4 Telephone Feature Composition: some analysis

In this we give a graphical representation of our formal feature requoirements models'.
The graphical syntax is informally explained and, where appropriate, we comment on how
the formal meaning is captured using LOTOS, B and TLA. The semantics are clearly based
on a state transition model and, although they are not shown in this paper, we have a
means of mapping these specifications onto more client-friendly graphical representations.
The graphical specifications which are given correspond to the default diagrams which are
produced when no client mappings exist.

4.1 POTS Specification

We have specified a simple POTS client-oriented model of phone behaviour. This is suffi-
ciently complex to illustrate the graphical syntax, in figure 5, being employed to communicate
the formal semantics with the client.

" “Phone USING | D, signal, on-off
e N

L7 / otherUp ~ N otherDown
. lift

regard=on L regard=off regard=off
listen=ringing listen=talk listen=ringing
drop

)
«~ otherDown

|
|
|
|
|
|
|
|
|
|
| T~ regard:on regard=off .
)) dial(ID
|
|
|
|
|
|
|
|
|
|
|

dlalln

A listen:signal
lift regard=off
r.egardzoff listen=connecting
listen=ready
dial(1D)

regard:on-off

State Invariant: (regard=on) => ((listen =ringing) or (listen = silent))
Fairness: WF(noconnection)

I
I
I = = ’
l sa(g
|l %D-
&
q CQ \
= \
l < AN
|
\
N e L e e e e L L L D _—_—

Figure 5: The Phone

4.2 Caller Identification

The first feature which we consider is caller identification. This feature is one of the
simplest to understand (and specify). In CS1, this feature is known as Call Number Delivery
(CND). The informal description is as follows:

CND requires a special telephone that can show the caller’s number before a call
is answered. The user might decide not to answer a particular caller when the

Tn fact, due to lack of space, we are restricted to 3 of the simplest features — a more comprehensive
list can be found at our web page http://www.loria.fr/ gibson/features.html

telephone rings.

The way in which we define a caller identification component and compose this with the
telephone component may not be so obvious. There are many different ways in which we could
choose to provide call identification to the user For example, we could change the regard or
signal services to provide identification information when in the state on and ringing, or
define a new accessor for the Phone which provides identification information (for all Phone
states, not just when on and ringing), or define a new state component within the Phone
specification, or ... We can see that, even with such a simple feature, it is important to be
precise about the actual requirements of the user. The behaviour which we finally chose to
specify is illustrated in figure 6. Each of the classes is specified by an abstract data type in
LOTOS. Then these data types are wrapped up into LOTOS processes and their interaction is
defined using the process algebra operators. In this example, as with the ones which follow, we
leave out the specification of fairness and invariants, and mention them only when necessary.

Phone+ID = Phone |[dialIn]|CallerID

(N\
Phone USING ID, signal, on-off
4 N

y~ otherUp ™o \\(\)therDown it

regard=on lift = regard=off regard=off \ N
_= _listen=ringing listen=talk listen=ringing N
! N N drop
' (diain /\ AN \
42 otherDown / \ N

!
regard—on \ regard=off]
dial(ID
/ 4 listen:signal
- — 4 [lift regard=off h
rggard—off listen=connecting regard off ;
listen=ready I|slen busy . regard:on-off

~_adio) f

I |

dia CallerID USING ID

- ~ Tfordl ninID, ™ get-ID=-1D

!
1

! Am T T T ()

: N _7 N o getlD=n _ - get-ID=n

get-1D:ID
N 7 AN p
~ _didInFrom(n) ,”~ Se dialln

~——o

Figure 6: Caller Identification

The following aspects of the specification should be noted:
Compositional Re-Use
The original Phone specification is unchanged: we have real compositional re-use where the
behaviour of the Phone is encapsulated behind it’s interface. There is no need to re-validate
this component.
Interface Union
All the services offered by the Phone are also offered by the new system, defined by the
Phone+ID class. This is represented graphically by directly connecting the interface of the
component to the the interface of its container. The new system also offers a get-id accessor,
which is is identical to the accessor of the same name as offered by the CallerID component.
We say that the new system interface is a union of its components’ interfaces.
Internal Action Refinement
The CallerID component acts as a filter to the telephone network by synchronising on a
dialInFrom action, which carries the identification of the caller as a parameter, and storing

this identification for the user to access. It then synchronises on a dialln event with the
Phone. At the network level we have an action refinement (and syntactic renaming) on
the dialIn event which now, as dialInFrom, carries additional information needed by the
CallerID feature.

Internal Synchronisation

Synchronisation between the Phone and the CallerID feature occurs on the internal dialln
event. This is represented by a dotted graphical line between the two components, labelled
with the event name. The type of synchronisation is defined to be strict, using the standard
| [actionname] | notation as seen in LOTOS. A strict synchronisation is one in which both
components must perform the state transition at the same time, otherwise the action cannot
be carried out.

Local Fairness Requirements

We require weak fairness on the dialln action in the CallerID component. This guarantees
that after a dialInFrom action we do not risk waiting forever for the dialIn to occur. This
does not imply weak fairness on the dialln in the telephone since this would state that if we
waited long enough we would always have an incoming call!

The CallerID Component

In the initial state the get-ID accessor is undefined. This is represented by the exception
value ID. The CallerID has as many states as there are possible identification ID values.
Thus, this may not be a finite state machine. A parameterised state (represented by a dotted
node) can be used to define sets of state transitions and/or accessor values. Such a set is
defined by some state conditions which must be true for the transitions to be valid. When
the node is empty there are no such conditions and the transitions are valid forall states of
the class. We should interpret the diagram as saying that: ‘forall states of CallerID when a
dialInFrom(n) action occurs then the new value of get-ID is set to n’; and: ‘forall states a
diallIn action can occur and it does not change the value of the get-ID accessor’.
Localisation

We note that the addition of this new feature can be said to be local since it has no effect on
the other users of the telephone system.

Extension: A Phone refinement

The new system is said to extend the old phone behaviour: it offers exactly the same behaviour
plus a new service. This is a form of refinement. A phone user will be completely unaware
if a phone is replaced by a phone extension. However, this is not true of the network which
is connected to the phone. It must be changed to take into account the action refinement on
dialln.

Similar Features: A classification

One of the main goals of this work is to classify features by the way in which they must be
composed with the telephone network. The form of composition seen with CallerID is also
used for two other features which we have developed, namely CallInHistory and BlackList.
These three features interact in the same way when composed with other features: thus we
can re-use the same interaction analysis for each of the three requirements models.

4.3 Originating Call Screening

Originating Call Screening (OCS) allows restriction on the types of calls that a user can
make. The informal description is as follows:

OCS prevents calls to certain telephone numbers or area codes. Parents, for ex-
ample, might wish to stop their children from calling premium rate numbers. In
the extreme case, all outgoing calls (except perhaps to the emergency services)
may be disabled: the network operator might do this if a telephone bill remains
unpaid.

For now, we do not consider who is making such a restriction. We require a store for a
list of numbers which are to be screened. The simplest functionality is to provide a means
of adding a number to the list and removing a number from the list. (More complex means

of updating the list can be built upon these two services.) Then, when the user dials a
number, a connection is not made if the number requested is on the restricted list. The
formal requirements model is illustrated in figure 7.

Phone+OCS = OCS refines Phone(off ,connecting)

'd N\
N lift
P I I | dial(1D)
——————— | [“OCO““GC“O”'”‘*' b“W] | Phone USING ID,signal ,on-off
! listen:signal
1
|) regard:on-off
1
1
! OCS = ConnectControl |[connect,noconnect]| NoConnectStore I~
I N
1
| regard=off | Erop] |
| listen=connecting
| - ConnectControl USING ID |
| dial(n) connect(n) -
=
1 -—_

- noconnect(n)

1 NoConnectStore USING IDSet

connect(n) [not(contains(numbers,n)]

I
| Eonnect,nooonnec’[] | [N
’ N s,n)
:_ - N) removelD() removel D(ID)
\? ****** ’A' - addiD(n) ~
\) add(numbers,n) addID(ID)

noconnect(n) [contains(numbers,n)])

Figure 7: Originating Call Screening

There are a number of interesting points to note about this model:

The OCS Component

The new OCS feature is itself composed from two components: the NoConnectStore and the
ConnectControl. NoConnectStore stores the list of numbers which have to be screened. This
list is set to be empty on the creation of the store. The store always allows the addition and
removal of ID numbers from the IDSET list of numbers to be screened. The store will always
be able to do either a connect(n) or a disconnect(n), but not both, depending on whether
n is in the set of numbers to be screened. This is formally specified as a precondition (between
square brackets in the diagram) on the action. We require weak fairness on the connect and
noconnect actions in 0CS.

ConnectControlis a state refinement of off and connectingin the Phone. It is a machine
which gets created by the dial(ID) action resulting in a Phone which is off and listening,
and which EXITS when the Phone is asked to do any event which would result in a Phone
state change (in this case drop, free, busy or noconnection). Note that the number being
dialled is available to the ConnectControl component on creation. ConnectionControl re-
solves some of the nondeterminism in the Phone specification by stating that a free or busy
can occur only after a connect, and a noconnection can occur only after a noconnect.
Phone-OCS Configuration
We have two types of synchronisation, forced on us by the state refinement, between 0CS and
Phone. We must have full synchronisation on all actions which can change the state of Phone
when off and connecting, and hence we have an internal synchronisation on noconnection,
free and busy, and an external synchronisation on drop. We must be careful with ezternal
synchronisations because they may restrict the behaviour of the telephone user. For example,
0CS should never stop the user from being able to drop the phone if such a drop would
be possible in the Phone state. In this case, a simple analysis shows that drop is always

possible in OCS and thus the user’s ability to drop is not affected. In fact, it is the refines
composition mechanism which guarantees the preservation of original Phone behaviour when
composed with 0OCS in this way.

Localisation

This change is again local to the user who requests the service. There is no visibility of the
service to other users in the system.

Feature Classification

We classify the new feature by the way in which it is composed with the phone system. In this
case, the new feature is based on a state refinement. Similar features are CallBack, CallHold
and Answer Machine.

4.4 Black List

The Black List feature has a similar function to originating call screening, but restricts
incoming rather than outgoing calls. In CS-1 this service is known as Terminating Call
Sereening (TCS) and its informal description is as follows:

TCS, also known as incoming call barring, prevents calls from certain telephone
numbers or area codes. In the extreme case, all incoming calls may be disabled;
for example, a call-box may not be allowed to receive calls.

Our specification of this feature is illustrated in figure 8.

PhonetBlackList= Phone|[dialIn]|Blacklist

Phone USING ID, signal, on-off

A
E‘a"”] ‘ BlackList USING IDSet, Boolean

e N
diallnFrom(n) [nis_in numbers]

N ~

e ” forall numbersIDSet N

P ——_ 4

| BN checkID(n)=
‘\didInFrom(n) Sl _ nisin numbers/
- _ {\not(n is innumbers)] —/'\— - ddID (n)
\\‘ !
" dilin
N\ J
removel D(ID) addID(ID) checkID(ID):Boolean

Figure 8: Black list

Again, we have some comments to make with regard to this feature model:
Composition Re-Use
The composition is precisely that seen for the CallerID feature: there is internal synchroni-
sation on the dialIn event and the system depends on an action refinement in the network
to carry the new identification data using a dialInFrom action.

Phone refinement

Unlike CallID, not all dialInFrom actions result in a dialIn action: the blacklist filters out
all incoming dials which are stored in the list of numbers in its state. However, like CallID,
from the point of view of the user the new system is a refinement of the old phone — the only
difference is the resolution of some of the nondeterminism in the original phone model.
Weak fairness guarantees eventuality

We require weak fairnesson the dialIn event in the BlackList component. In the BlackList
component we see that after a dialInFrom event, the external services removeID and addID
may not be enabled until a dialIn action is performed, in the case where the number is not
black listed. However, weak fairness on dialIn guarantees that this transition will eventually
occur. Thus, we guarantee that the telephone user will not be deadlocked if they wish to add
or remove a number from the blacklist because of an incoming call.

Localisation

At first glance, this feature seems to be local. All other users of the telephone system can
remain unaware of this particular feature at any given phone. However, we have abstracted
away from an implementation detail which has global effect: what signal should a caller hear
if they telephone someone who has black listed them? We chose to have a ringing signal. This
seems to be the most acceptable choice, and in our network model we specified the feature
in this way. Thus the blacklist service required only local change to the telephone user which
requested this service. All other users retain their original behaviour.

4.5 An Analysis Method

The simple examples, above, give a flavour of our compositional approach. We have used
the same method to develop a total of 12 features and 5 composition mechanisms. In this
subsection we review 4 important parts of our analysis method:

e Invariants in B

In [17] we see the method by which B is used to verify our invariant properties in a
compositional manner. For example, in the network of many different telephones we
use the invariant to specify relations between pairs of phones. A simple POTS state
invariant requirement is that only an even number of phones can be talking at
the same time. This is proved by showing that it is true in the initial state (where all
phones are off and ready). Then we show that all possible state transitions maintain
the required property (if it is true before the action occurs then it is true after the action
occurs). This property cannot be checked through an exhaustive search of a system of
an unbounded number of phones. It can be checked by proving that all transitions are
closed with respect to the invariant. We can do this quite easily in B. Note that using
this technique, the three-way-calling feature will break our invariant and thus tell us
that there is an interaction!

e Nondeterminism in OO LOTOS
In [8] we saw how a three-way-calling feature and a call hold feature could be said to
interact becuase of the way in which they introduce nondeterminism into the model.
In this case the nondeterminism arises becauses the flash-hook action is overloaded and
the user cannot say whether it initiates one feature or the other. We have a mechanism
for identifying such an interaction automatically which is founded on the classification
of feature compositions.

o Nondeterministic Interaction Resolution
The resolution of the introduction of nondeterminism can also be resolved automatically.
We have two methods. The first forces the user to resolve the choice at run time, the
second forces the specifier to resolve the problem at compile-time by stating a priority
between the features.

o Eventuality Composition in TLA
In [12], we show how the notion of eventuality can be verified compositionally using TTLA.

The example of a telephone answering machine with call forwarding shows a class of
feature interaction which repeatedly occurs and should lend itself to automatic detection
and resolution (although, this is ongoing work).

The development of such re-usable techniques is fundamental to producing a mature and
stable analysis method. We believe that such a method would be improved through the
incorporation of feature classifications and meta-analysis methods.

5 Feature Classification

The question of how to classify features is fundamental to our algebraic approach. Through
analysis of our specification of the CS-1 services we identify the need for a multiple inheritance
hierarchy of feature classification. Our first attempt at defining such a hierarchy is illustrated
below:

Function Type Connection Type Refinment Type Point of view Type

/ SN N N

Billing Routing Endpoint Single Multiple Feature Caller Calee
Impact Type Composition Type _

SN NS

featurel feature2 .. featureN
Local Global Network IIf <> exitonly staterefinment actlonreﬂnment

Figure 9: Feature classification hierarchy

Figure 9 shows that we have 6 fundamental classifications:

(1) Function Type

In CS-1 each feature falls into 1 of three function types, corresponding to billing, routing and
endpoint. Billing features are those concerned with how each customer is to be billed. (We
are currently developing such features but do not report on them in this article.) The CS-1
billing features are:

Automatic alternative billing (AAB), Credit card calling (CCB), Freephone (FPH),
Premium rate (PRM), Split Charging (SPL), Premium Charging (PRMC), and
Reverse Charging (REVC).

Billing was abstracted away from in our case studies and consequently does not appear in
our requirements models. Routing features are those which are concerned with setting up
connections between users at the network level. The CS-1 routing features are:

Call Forward (CF), Call Transfer (CT), Call Forward on Busy (CFB), Follow Me
Diversion (SF), and Origin Dependent Routing (F).

Routing features are those which require changes to the network model? in order for the
functionality to be specified. These features cannot be specified by changing the telephone
model alone. Such features are called Endpoint features. End-point features are the easiest
to specify as they require changes only at the telephone level of the requirements model. Such
features are prominent in the case studies that we have carried out:

2The development of a good network model is one of our next goals. We have not managed to specify
an OO network architecture at a proper level of abstraction. Tt seems to us that we are infringing on
design decisions whilst we should just be building requirements.

Call Hold, Originating Call Screening, Answer Machine, Do Not Disturb, Call
Identification, Terminating Call Screening, Abbreviated Dialling, and Redial.

(2) Connection Type

Connection type partitions features into those which are concerned with 2-users at one time
(single connections) and those which allow more than 2-users on the same line (multiple
connections).

(3) Refinement Type

Most features in CS-1 are intended to alter/extend POTS functionality. Such features are
said to be of refinement type POTS. However, other features are not designed to change the
functionality of POTS but are intended to alter/extend other features in the system. These
are said to be of refinement type Feature.

(4) Impact Type

Impact type classifies where in our requirements models there is a need to make changes in
order to incorporate the new functionality. A local impact is one in which only the telephone
model of the service requester has to be changed. A global impact is one in which all the
telephone models have to be change. A network impact is one in which the network model
(between users/telephones) has to be changed.

(5) Composition Type

Composition type corresponds to the way in which a feature has been specified to configure
with POTS. Each configuration is specified as an ensemble of compositions. Many such con-
figurations are common to different features. Thus, composition type identifies the structure
that exists between POTS and the feature being classified.

(6) Point of view Type

There are two different models for most features: the caller and the callee. Some features
change the behaviour of the feature subscriber as a caller, as a callee, or as both. The role of
the point of view classification is to make this property an explicit part of the requirements
model.

6 Constructing an Algebra: a meta-anlysis

6.1 Pair-wise Analysis

Our case study was extended to examine compositions between pairs of features. We
identified 5 different types of feature pairs:

e Independent: When the features are combined with POTS, there is no interaction
between the features. There is no sharing of actions or state and, thus, no communication
between the two features. In other words, the individual behaviour of each feature (with
POTS) is exactly as before.

e Perfect Friends: The two features do communicate (either through shared state or
actions) but this communication in no way alters the behaviour of either feature and so
they do not interact in the sense used in this report.

e Friends: These features do not interact provided some of the nondeterminism in ei-
ther/both of the models is resolved in some specific way. In some sense, they can be
said to make implementation decisions which help their friend feature to work correctly.

e Politicians: There is an interaction where both features cannot work exactly as before.
However, a resolution mechanism exists whereby some sort of feature priority can be used
to resolve the problem automatically. Such a resolution mechanism permits a subset of
one or both of the features to be maintained when the two features are combined.

e Enemies: There is an interaction and no resolution technique exists other than to say
that when one feature is operating the other must be dormant. Two such features can
exist in the same system but dynamically both features are never executing at the same
time.

Using these pair-wise composition categories, we hope to be able to arrive at the point
where we can formally state the following sort of properties, for example:

e Billing features are independent from interface features.

A local-caller and a local-callee feature are always perfect friends.

Two POTS state-refinements are friends iff they refine different states.

Two features which refine the same feature are politicians if they refine the same state,
and share an action which exits this state.

o Two features are enemies if they refine the same state but do not share an action which
exits this state.

We emphasise that these properties illustrate the type of analysis which we believe can be
achieved when a classification hierarchy is formalised. The process of formalising such analysis
is the main goal of our current research.

6.1 An n-wise to pair-wise transformation

Of course, as we have pointed out earlier, pair-wise feature interaction is only a small part
of the problem. The real difficulty lies in analysing systems with many features operating
together. However, there is much hope that most interactions arise out of pair-wise configura-
tions. For example, consider 3 features A,B and C; we believe that A,B and C interact implies
that A and B, or A and C, or B and C interact in most® cases. Only in a small percentage of
cases do A,B and C interact when the pairs AB, AC and BC do not. Thus, n-wise analysis
of n features can be done using (n*(n-1)/2) pair-wise analyses (most of the time). The key
to our meta-analysis is to formally define most of the time and have a simple algorithm for
deciding when such a pair-wise approach works. This is another part of our current research.

Given a complete classification of features, we still need to prove the consistency and
completeness of a feature interaction algebra. At the moment, such an algebra is an ideal more
than anything else. As well as feature classes we have to consider feature composition types.
Furthermore, another dimension may be added when we define different means of composing
features (polymorphic 74”7 semantics) in response to politician and friend interaction types.
This will further complicate our goal of developing a usable algebra.

7 Conclusions

The problem of telephone feature interaction is just a particular instance of a general
problem in software engineering. The same problem occurs when we consider inheritance in
object oriented systems, sharing data in distributed systems, multi-way synchronisation in
systems of concurrent processes, etc However, the problem is particularly difficult in
telephone systems because features are themselves the increments of development.

We have shown the importance of re-usable composition mechanisms. Although our work
is targeted towards the client during requirements capture, we believe that the same models

30ur case study would suggest 90 percent, but more analysis needs to be carried out.

could be used during design and at the network level. We support the principle of developing
re-usable analysis techniques based on re-usable synthesis mechanisms. The object oriented
approach can be extended to include a classification of feature types and we hope to map
this onto a formal algebra for feature development. Such an algebra should provide a meta-
analysis framework in which the complexity explosion nature of feature interactions is greatly
reduced.

References

[1] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
[2] G. Booch. Object oriented design with applications. Benjamin Cummings, 1991.

[3] Ed. Brinksma, Giuseppe Scollo, and Chris Steenbergen. LOTOS specifications, their
implementation and their tests. In Sizth International Symposium on Protocol Testing,
Specification and Verification, Montreal, June 1986.

[4] P. Coad and E. Yourdon. Object oriented analysis. Prentice-Hall (Yourdon Press), 1990.

[5] L. Constantine. Beyond the madness of methods: System structure methods and con-
verging design. In Software Development 1989. Miller-Freeman, 1989.

[6] Brad Cox. Object oriented programming: an evolutionary approach. Addison-Wesley,
1986.

[7] T. DeMarco. Structured analysis and system specification. Prentice-Hall, 1979.

[8] J. Paul Gibson. Feature requirements models: Understanding interactions. In Feature
Interactions In Telecommunications IV, Montreal, Canada, June 1997. IOS Press.

[9] J.Paul Gibson. Formal Object Oriented Development of Software Systems Using LOTOS.
Tech. report csm-114, Stirling University, August 1993.

[10] Mermet Gibson and Méry. Feature interactions: A mixed semantic model approach. In
Irish Workshop on Formal Methods, Dublin, Ireland, July 1997.

[11] Paul Gibson and Dominique Méry. Always and eventually in object models. In ROOM2,
Bradford, June 1998.

[12] Paul Gibson and Dominique Méry. Fair objects. In OT98 (COTSR), Oxford, May 1998.

[13] Adele Goldberg. Smalltalk-80: The Interactive Programming Environment. Addison-
Wesley, 1984.

[14] Adele Goldberg and David Robson. Smalltalk-80: The language and its implementation.
Addison-Wesley, 1983.

[15] C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

[16] B. Liskov and Zilles S. Programming with abstract data types. In ACM SIGPLAN
Notices, number 4 in 9, pages 50-59, 1974.

[17] B. Mermet and D. Mery. Detection of service interactions: An approach with b. In
AFADLY7, Toulouse (France), 1997.

[18] B. Meyer. Object Oriented Software Construction. Prentice Hall, 1988.

[19] Kristen Nygaard and Ole-Johan Dahl. Simula 67. In Richard W. Wenenlblat, editor,
History of Programming Languages. Wenelblat, 1981.

20
21
22
23

James Rumbaugh et al. Object oriented Modeling and Design. Prentice-Hall, 1991.
A. Snyder. Common objects: an overview. ACM SigPlan Notices, October 1986.
Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, 1986.

[20]
[21]
[22]
[23] P. Wegner. Dimensions of object-based language design. In Special Issue of SIGPLAN
notices, pages 168-183, October 1987.

